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Abstract

A path P (k, r, l) is an oriented path consisting of k forward arcs, followed
by r backward arcs, and then by l forward arcs. We prove the existence of
any P (k, 1, l) of length n−1 in any (2n+2)-chromatic digraph. Moreover,
if D is an n-chromatic digraph containing a Hamiltonian directed path,
then it contains any P (k, 1, l) of length n− 1.

1 Introduction

Digraphs considered in this paper are finite, having no loops, multiple edges or
circuits of length 2. Let D be a digraph. We denote by E(D) the arc set, V (D) the
vertex set of D and v(D) the number of vertices of D. We say that D contains a
digraph H if H is isomorphic to a subdigraph of D. Let K ⊆ V (D); the subdigraph
of D induced by K is denoted by D[K]. We denote by Dc the digraph obtained from
D after reversing the orientations of all arcs in E(D). For every v ∈ V (D), N+

H (v)
(respectively, N−

H(v)) denotes the outneighborhood (respectively, inneighborhood) of
v in a subdigraph H of D. For short, we write N+(v) (respectively, N−(v)) instead
of N+

D (v) (respectively, N
−
D (v)). The underlying graph of D is denoted by G[D] and

the maximum degree of vertices in G[D] is denoted by Δ(D).

The chromatic number of a graph G, denoted by χ(G), is the smallest number
of colors needed to color the vertices of G so that no two adjacent vertices share the
same color. The chromatic number of a digraph D is the chromatic number of its
underlying graph. A digraph D is said to be k-chromatic if χ(D) = k.

An oriented path is a digraph whose underling graph is a path. An oriented path
is said to be directed if all its arcs are of the same orientation. Let P = x1x2 . . . xn

be an oriented path; we denote by P[xi,xj ] the oriented subpath xixi+1 . . . xj , for every
1 ≤ i < j ≤ n. A block of P is a maximal directed subpath of P . Assuming that P
has l blocks of consecutive lengths k1, k2, . . . , kl, in which the first block is made of
forward arcs, then we write P = P (k1, k2, . . . , kl). An oriented path P in D is said
to be Hamiltonian if V (P ) = V (D).
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The notions of oriented cycles are defined in a similar way as those of oriented
paths. Likewise the notation for an oriented cycle is defined similarly. Thus, an
oriented cycle consisting of l blocks of consecutive lengths k1, k2, ..., kl is denoted by
C(k1, k2, ..., kl), and a directed cycle is called a circuit. A digraph D is said to be
Hamiltonian if it contains a Hamiltonian circuit.

An outbranching (respectively, inbranching) is an oriented tree in which a unique
vertex has its indegree (respectively, outdegree) zero, and the other vertices have
indegree (respectively, outdegree) one. The vertex of indegree (respectively, outde-
gree) zero in an outbranching (respectively, inbranching) is called a root. An outforest
(respectively, inforest) is a digraph whose connected components are outbranchings
(respectively, inbranchings). Let F be an outforest and let v be a vertex in F . We
denote by PF (v) the unique directed path in F joining v with the root of the out-
branching containing v. The level of v, denoted by lF (v), is the order of the path
PF (v). Set Li(F ) = {v ∈ V (F ); lF (v) = i}. In a similar way, we define PF (v), lF (v),
and Li(F ) in case F is an inforest and v is a vertex in F .

LetD be a digraph; then D contains a spanning outforest and a spanning inforest.
An arc (u, v) ∈ E(D) is said to be a forward arc with respect to a spanning outforest
(respectively, inforest) F of D whenever lF (u) < lF (v) (respectively, lF (u) > lF (v)),
otherwise it is called a backward arc.

A maximal outforest (respectively, inforest) of D is a spanning outforest (re-
spectively, inforest) of D such that

∑
v∈V (D) lF (v) is maximal. In [5], El Sahili and

Kouider, after introducing the notion of maximal outforest, proved that in a maximal
outforest, Li(F ) is stable in D for every i. In a similar way, one can easily notice
that in a maximal inforest, Li(F ) is stable in D for every i.

Digraphs contained in any n-chromatic digraph are called n-universal. Our focus
in this paper is on studying the universality of oriented paths. In 2015, El Sahili [7]
conjectured that for n ≥ 8, every oriented path of order n is n-universal.

Regarding oriented paths in general, there is no better result than the one given
by Burr [3], that is, every oriented path of length n− 1 is (n− 1)2-universal. Gallai
[8] and Roy [12] proved that every directed path of order n is n-universal. However
in tournaments, Havet and Thomassé [9] proved that, except for three particular
cases, every tournament of order n contains every oriented path of order n. Addario-
Berry et al. [1] used strongly connected digraphs to prove El Sahili’s conjecture for
paths with two blocks. El Sahili et al. [6] gave a new elementary proof without using
strongly connected digraphs.

After the case of two blocks was solved, the case of three blocks remained open.
In the general case of paths with three blocks, the first linear bound was given by
El Joubbeh [4] who proved that any P (k, r, l) of length n − 1 is contained in any
(4.6n)-chromatic digraph. Mourtada et al. [10] proved that the path P (n− 3, 1, 1) is
contained in any (n+1)-chromatic digraph. In addition, Mourtada et al. [11] proved
that any (2k + 1)-chromatic digraph contains a P (1, k, 1).

In this paper, we are interested in studying the existence of the path P (k, 1, l) of
length n − 1. We prove its existence in any (2n + 2)-chromatic digraph. Then, we
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study the case of an n-chromatic digraph containing a Hamiltonian directed path.

2 The existence of P (k, 1, l) in a (2n+ 2)-chromatic digraph

In this section, we study the chromatic number of digraphs containing any P (k, 1, l)
of length n− 1 and we get the following result:

Theorem 2.1 Let D be a (2n+2)-chromatic digraph; then D contains any P (k, 1, l)
of length n− 1 with k, l ∈ N

∗ where N
∗ is the set of positive integers.

Proof. Let D be a (2n+2)-chromatic digraph and suppose to the contrary that there
exist k, l ∈ N

∗ such that D contains no P (k, 1, l) of length n− 1. Divide D into two
induced subdigraphs D1 and D2 such that χ(D1) = χ(D2) = n+ 1.

Let F1 be a maximal spanning outforest of D1 and F2 be a maximal spanning
inforest of D2. Let x ∈ D1 and y ∈ D2 with lF1(x) ≥ k + 1 and lF2(y) ≥ l + 1; then
(x, y) ∈ E(D) whenever x and y are neighbors in G[D]. In fact, if (y, x) ∈ E(D),
then PF1(x) ∪ (y, x) ∪ PF2(y) contains a P (k, 1, l), a contradiction.

Set B = {y ∈ ⋃
i≥l+1Li(F2); y has an inneighbor x ∈ ⋃

i≥k+1Li(F1)}. There
exists no backward arc in D[B] with respect to F2. Actually, if (y1, y2) is a backward
arc with respect to F2 in D[B], then PF1(x) ∪ (x, y2) ∪ (y1, y2) ∪ PF2(y1) contains a
P (k, 1, l), where x is an inneighbor of y2 in

⋃
i≥k+1Li(F1), a contradiction. It follows

that D[B] contains no circuits. Moreover, d+D[B](y) ≤ 1 for every y ∈ B, since if

there exists y ∈ B such that d+D[B](y) ≥ 2, let y1 and y2 be two outneighbors of y in

B with lF2(y1) ≥ lF2(y2); then PF1(x) ∪ (x, y1) ∪ (y, y1) ∪ (y, y2) ∪ PF2(y2) contains
a P (k, 1, l), where x is an inneighbor of y1 in

⋃
i≥k+1Li(F1), a contradiction. Thus,

D[B] contains no cycles and so it is a bipartite graph. Color the first k levels of F1

and the first l levels of F2 by k+ l colors by giving each level a color distinct from the
others. Color (

⋃
i≥k+1Li(F1)) ∪ (

⋃
i≥l+1Li(F2)−B) by n+ 1 new colors and B by 2

colors. All colorings are done properly, so the obtained coloring is a (2n+ 1)-proper
coloring, a contradiction. �

3 The existence of P (k, 1, l) in digraphs containing a Hamil-

tonian directed path

The bound 2n+ 2 may be strongly improved if the digraph contains a Hamiltonian
directed path. First, we prove the existence of any P (k, 1, l) of length n − 1 in
any n-chromatic Hamiltonian digraph. Then, depending on this result, we prove
the existence of any P (k, 1, l) of length n − 1 in any n-chromatic digraph with a
Hamiltonian directed path.

In our proof, we take advantage of Brooks’ theorem [2] which states that:

Theorem 3.1 For every connected graph G that is neither an odd cycle nor a com-
plete graph, χ(G) ≤ Δ(G).
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Since in tournaments with n vertices, the existence of any P (k, 1, l) is already
proved [9], it follows that all the digraphs considered in this section are not tourna-
ments.

In order to reach the proofs of our main results, we need the following lemma:

Lemma 3.2 Let D be a Hamiltonian digraph with χ(D) ≥ n such that D contains
no P (k, 1, l) of length n− 1 for some k, l ∈ N

∗. Then Δ(D) = n.

Proof. Let D be a Hamiltonian digraph with χ(D) ≥ n such that D contains no
P (k, 1, l) for some k, l ∈ N

∗. Let v(D) = m and C = v1v2 . . . vm be a Hamiltonian
circuit in D. Since n = k+1+ l+1 > 3, we get that D is not an odd cycle. Besides,
as D is not a tournament, then by Theorem 3.1, χ(D) ≤ Δ(D).

For every vt ∈ V (D), we define the vertices at and a′t and the set At such that:

l(C[vt,at]) = k + 1, l(C[a′t,vt]) = l + 1, andAt = V (C[at,a′t]).

Set vt+1 = v1 for t = m, and vt−1 = vm for t = 1. We are going to show that
|N(vt) ∩ At| ≤ 2.

If vt has two inneighbors in the set At, say vi and vj with i < j, then C[vt+1,vi] ∪
(vi, vt) ∪ (vj , vt) ∪ C[vj ,vt−1] contains a P (k, 1, l), a contradiction. So vt has at most
one inneighbor in the set At.

If vt has two outneighbors in the set At, say vi and vj with i < j, then C[vt+1,vi] ∪
(vt, vi)∪ (vt, vj)∪C[vj ,vt−1] contains a P (k, 1, l), a contradiction. Thus vt has at most
one outneighbor in the set At. Hence, we have

|N(vt)| ≤ |N(vt) ∩ At|+ |V (C)− At| ≤ 2 + k + l = n (*)

Therefore Δ(D) = n. �

As a direct conclusion from Lemma 3.2, we get that an (n+1)-chromatic Hamil-
tonian digraph D contains any P (k, 1, l), since otherwise we have Δ(D) = n, and so
χ(D) ≤ n, a contradiction.

One can easily see that a cycle of type C(1, r) with 1 + r ≥ n contains any
P (k, 1, l) of length n− 1.

We remark that if D is an n-chromatic digraph with v(D) = n + 1, then D
contains an n-tournament. Let S1, . . . , Sn be n stable sets covering V (D). Since
v(D) = n + 1, there exists i0 ∈ {1, . . . , n} such that |Si0| = 2 and |Si| = 1 for
every i 	= i0. We have D[

⋃
i �=i0

Si] is an (n− 1)-tournament Tn−1 since if there exists
{i, j} ⊂ {1, . . . , n} such that Si ∪ Sj is stable in D, then χ(D) ≤ n − 1, which is
a contradiction. There exists x ∈ Si0 such that x is adjacent to all the vertices in⋃

i �=i0
Si, since otherwise the vertices of Si0 can be added to

⋃
i �=i0

Si forming n − 1
stable sets in D covering it, contradicting χ(D) = n. Therefore D[Tn−1 ∪ {x}] is an
n-tournament.

Theorem 3.3 Let D be an n-chromatic Hamiltonian digraph. Then D contains any
P (k, 1, l) of length n− 1.
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Proof. Let C = v1v2 . . . vm be a Hamiltonian circuit in D. Suppose, without loss of
generality, that d(v1) = Δ(D). The proof proceeds by induction on v(D) = m ≥
n + 1. It is true for m = n + 1, since in this case, D contains a tournament T of
order n which contains any P (k, 1, l). Let us prove it for m ≥ n + 2, assuming that
it is true up to m− 1.

Suppose to the contrary that D contains no P (k, 1, l) for some k, l ∈ N
∗;

then using Lemma 3.2, we have d(v1) = n, and so by (*), we get V (C[v2,vk+1]) ∪
V (C[vm−l+1,vm]) ⊂ N(v1), and v1 has one inneighbor and another outneighbor in the
set A1.

To continue our proof, we need to consider two cases concerning the values of k
and l.

• Case 1: k > 2.
We have (v1, v3) ∈ E(D), since otherwise (v3, v1)∪C[v3,v1] is a C(1, m− 2), a contra-
diction.

Now consider the vertex v2; using (*), we have

|N(v2)| ≤ |V (C[v3,vk+2]) ∪ V (C[vm−l+2,v1])|+ 2.

We are going to prove that v4 /∈ N(v2). Indeed, (v4, v2) ∪ C[v4,v2] is a C(1, m −
2) if (v4, v2) ∈ E(D), and (v1, v3) ∪ (v2, v3) ∪ (v2, v4) ∪ C[v4,v1] is a C(1, m − 1) if
(v2, v4) ∈ E(D), and so, in both cases, D contains a P (k, 1, l), a contradiction. Also,
v5 /∈ N(v2), since otherwise (v5, v2) ∪ C[v5,v2] is a C(1, m− 3) if (v5, v2) ∈ E(D), and
(v1, v3)∪ (v2, v3)∪ (v2, v5)∪C[v5,v1] is a C(1, m−2) if (v2, v5) ∈ E(D), and so, in both
cases, D contains a P (k, 1, l), a contradiction. Thus, d(v2) ≤ n− 2.

Now consider the digraph D′ = D − {v2}. Note that χ(D′) = χ(D) = n and
C[v3,v1] ∪ (v1, v3) is a Hamiltonian circuit in D′. Thus, by induction, D′ contains a
P (k, 1, l), a contradiction.

We omit the case when l > 2, since it is done analogously by proving that
d(vm) ≤ n− 2, and then applying the induction hypothesis on D′ = D − {vm}.
• Case 2: k ≤ 2 and l ≤ 2.
In this case, P (k, 1, l) ∈ {P (1, 1, 1), P (1, 1, 2), P (2, 1, 1), P (2, 1, 2)}. We are going to
deal with the existence of each type in D.

1. The existence of a P (1, 1, 1):
Let vj be the outneighbor of v1 in A1 = V (C[v3,vm−1]). We have j = 3, since
otherwise (vj−1, vj)∪(v1, vj)∪(v1, v2) is a P (1, 1, 1), a contradiction. Moreover,
N−(v2) = {v1}, since otherwise (w, v2)∪ (v1, v2)∪ (v1, v3) is a P (1, 1, 1), where
w is an inneighbor of v2 other than v1, a contradiction. We have N+(v2) =
{v3}, since otherwise (v1, v3) ∪ (v2, v3) ∪ (v2, w) is a P (1, 1, 1), where w is an
outneighbor of v2 other than v3, a contradiction. Consequently, d(v2) = 2 =
n− 2. Let D′ = D−{v2}; then D′ is an n-chromatic Hamiltonian digraph and
C[v3,v1]∪(v1, v3) is a Hamiltonian circuit in D′. Thus, by induction, D′ contains
a P (1, 1, 1), a contradiction.
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2. The existence of a P (1, 1, 2):
(vm−1, v1) ∈ E(D), since otherwise a C(1, m − 2) appears in D, a contradic-
tion. We have vm−2 /∈ N(vm), since otherwise either (vm−2, vm) ∪ (vm−1, vm) ∪
(vm−1, v1) ∪ (v1, v2) is a P (1, 1, 2) or (vm, vm−2) ∪ C[vm,vm−2] is a C(1, m− 2), a
contradiction.
No outneighbor of vm exists in Am = V (C[v2,vm−3]), since otherwise (vm−1, v1)∪
(vm, v1)∪ (vm, vi)∪ (vi, vi+1) is a P (1, 1, 2) with vi an outneighbor of vm in Am,
a contradiction.
Using (*), we get d(vm) ≤ |{v1}∪{vm−1}|+1 = 3 = n−2. Let D′ = D−{vm};
then D′ is an n-chromatic Hamiltonian digraph with C[v1,vm−1] ∪ (vm−1, v1) a
Hamiltonian circuit in D′. Thus, by induction, D′ contains a P (1, 1, 2), a
contradiction.

3. The existence of a P (2, 1, 1):
We proved that D contains a P (1, 1, 2). Applying this result on Dc, which is
an n-chromatic Hamiltonian digraph, we get that Dc contains a P (1, 1, 2), and
so D contains a P (2, 1, 1), a contradiction.

4. The existence of a P (2, 1, 2):
By (∗), we have |N(v2)| ≤ |{v3, v4} ∪ {vm, v1}|+ 2. We use a similar argument
to that used in the beginning of case 1, to prove that neither v4 nor vm is a
neighbor of v2, so d(v2) ≤ 4 = n − 2. Let D′ = D − {v2}; then, as in the
previous cases, D′ contains a P (2, 1, 2).

�

Theorem 3.4 Let D be an n-chromatic digraph containing a Hamiltonian directed
path. Then D contains any P (k, 1, l) of length n− 1 with n ≥ 5 and k, l ∈ N

∗.

Proof. We proceed by induction on v(D). For v(D) = n + 1, D contains an n-
tournament which contains any P (k, 1, l). Let us prove it for m ≥ n + 2, assuming
that it is true up to m− 1.

Let P = v1 . . . vm be a Hamiltonian directed path in D. Suppose that D contains
no P (k, 1, l) for some k, l ∈ N

∗ and, without loss of generality, suppose that k ≥ l.
We have k + l = n− 2 with n ≥ 5, and k ≥ l so it follows that k ≥ 2.

Note that v1vm /∈ E(G[D]), since otherwise either D is a Hamiltonian digraph if
(vm, v1) ∈ E(D), or (v1, vm) ∪ P is a C(1, m− 1) if (v1, vm) ∈ E(D), and so, in both
cases, D contains a P (k, 1, l), a contradiction.

We are going to prove now that v2vm /∈ E(G[D]). If (v2, vm) ∈ E(D), then
(v2, vm) ∪ P[v2,vm] is a C(1, m − 2), a contradiction. Suppose that (vm, v2) ∈ E(D).
Then v1 has no outneighbors in P[v3,vm−n+3], since otherwise (vm, v2)∪(v1, v2)∪(v1, w)∪
P[w,vm] is a C(1, r) with r ≥ n− 1, where w ∈ N+(v1) ∩ P[v3,vm−n+3], a contradiction.
Besides, v1 has at most one inneighbor in P[v3,vm−n+3], since otherwise (vm, v2) ∪
P[v2,vi]∪(vi, v1)∪(vj , v1)∪P[vj ,vm] is a C(1, r) with r ≥ n, where vi and vj , i < j, are two
inneighbors of v1 in P[v3,vm−n+3], a contradiction. Thus d(v1) ≤ n−2. Hence D−{v1}



B. TARHINI AND M. MORTADA/AUSTRALAS. J. COMBIN. 83 (2) (2022), 304–311 310

is an n-chromatic digraph containing a Hamiltonian circuit C = (vm, v2) ∪ P[v2,vm].
Then using Theorem 3.3, D − {v1} contains a P (k, 1, l), a contradiction.

Set A = V (P[vk+1,vm−l−1]). Then, by following a similar argument to that intro-
duced in Lemma 3.2, we get that vm has at most one inneighbor and at most one
outneighbor in the set A. Thus |N(vm) ∩ A| ≤ 2, and so d(vm) ≤ |NP[v1,vk]

(vm)| +
|NP[vm−l,vm−1]

(vm)|+ 2 ≤ (k − 2) + l + 2 = n− 2.

Therefore χ(D − {vm}) = n and P[v1,vm−1] is a Hamiltonian directed path in
D − {vm}. Then, by induction, D − {vm} contains a P (k, 1, l), a contradiction. �
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