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Abstract

Given a simple graph G, a p-restricted edge cut is a subset of edges of
G whose removal disconnects G, and such that the number of vertices
in each component of the resulting graph is at least p. The p-restricted
edge connectivity is denoted by A,, which is the minimum cardinality
over all p-restricted edge cuts. If a p-restricted edge cut (also called a
Ap-cut) exists, then the graph is called p-restricted edge connected, or, for
short, A,-connected. Obviously, for any \,-cut F', G — F' has exactly two
components, and each component has at least p vertices. If the deletion of
any Ap-cut results in at least one component containing exactly p vertices
in the resulting graph, then the graph is called super-A,. In this paper, we
examine the p-restricted edge connectivity of the bipartite Kneser graph
H(n,k) when n > 3k + 1 and show that the graph is super-\, for p <5.
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1 Introduction

Given a graph G with vertex set V(G) and edge set E(G), let ' C E(G). Then F
is an edge cut if the resulting graph G — F' is disconnected. Fabrega and Fiol [4]
proposed the concept of p-restricted edge connectivity. We call F' a p-restricted edge
cut if each component of the resulting graph G — F' has at least p vertices, where p is
a positive integer. The minimum cardinality over all p-restricted edge cuts, denoted
by Ap, is the p-restricted edge connectivity. If p-restricted edge cuts exist, then the
graph is called p-restricted edge connected. A graph is called super-\, (sometimes it
is also called optimal-\,) if the deletion of every minimum p-restricted edge cut will
result in a component with exactly p vertices. Clearly, 1-restricted edge connectivity
is the edge connectivity of GG, and 2-restricted edge connectivity is also known as the
super edge connectivity of G.

Let A, B be two proper subsets of V(G). We denote by E[A, B] the edges with
one end in A and the other end in B. If B = V(G) \ A, then we denote E[A, B|
by C(A). Let F be a p-restricted edge cut. If |[F| = A, then F' is called a A,-cut of
G. In this case, the graph G — F' contains two components A and B. Let A be the
smaller component; then C'(A) is the A\,-cut and A is called a \,-fragment of G. If A
is a A\,-fragment and |A| = p, then A is called trivial and is also known as a \,-atom.
The non-trivial A,-fragment with minimum cardinality is called a A,-superatom of
G. It is easy to see that every A,-superatom A satisfies p+ 1 < |A| < |[V(G)|/2.

The Kneser graph was proposed by Kneser in 1955 [7]. Structural properties of
Kneser graphs, such as hamiltonicity, chromatic number and matchings, have been
studied extensively. Only recently, a conjecture was made [3] in relation to the super-
connectivity of Kneser graphs; some progress was made in [2]. Apparently this is not
an easy problem to settle. In this paper we will study the connectivity of a closely
related graph, which is the bipartite Kneser graph.

The vertices of the bipartite Kneser graph H(n, k) are all k-subsets and all (n—k)-
subsets of [n] = {1,...,n}, such that there is an edge between vertices u and v in
H(n, k) if and only if u C v or v C u. So clearly H(n, k) is regular. The degree of
H(n,k)is (::2kk) = (";k) and the order of H(n, k) is 2(}). A graph is vertez-transitive
if its automorphism group acts transitively on its vertices. Similarly, a graph is
edge-transitive if its automorphism group acts transitively on its edges. A graph is
symmetric if its automorphism group acts transitively on ordered pairs of adjacent
vertices. Mirafzal and Zafari [10] showed that H(n, k) are vertex transitive, edge-
transitive and symmetric. As H(n, k) are symmetric, it is clear that the connectivity
of H(n,k) is ( ;k), which is equal to its degree. When k = 1, H(n, 1) is a Cayley
graph.

Since when n = 2k, H(n,k) is a null graph, so in this paper we assume that
n > 2k+1. Clearly, when n = 2k +1, the girth of H(n, k) is 6, and when n > 2k +2,
the girth of H(n, k) is 4.

Miitze and Su [14] showed that the bipartite Kneser graph H(n, k) has a hamilton
cycle when k > 1 and n > 2k + 1. Mirafazal [12] proved that the automorphism
group of the bipartite Kneser graph Aut(H(n,k)) = Sym([n]) x Z when k > 1
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and n > 2k + 1, where Z, is the cyclic group of order 2. Kim, Cheng, Liptak and
Li [6] and Mirafazal [11] showed that the bipartite Kneser graph H(2k + 1,k) is a
regular hyperstar graph HS(2(n+1),n+1). Jin [5] constructed some 1-factorizations
of bipartite Kneser graphs by perpendicular arrays when & = 2 and n is an odd
prime. Mohammadyari and Darafsheh [13] used the transitivity property of the
automorphism group of the bipartite Kneser graph to calculate its Wiener, Szeged
and Pl indices.

There are many results in p-restricted edge connectivity. Wang et al. [18] studied
some sufficient conditions for super p-restricted edge connectivity of graphs with
diameter 2. Yuan et al. [20] proved that a bipartite graph with n vertices is super
p-restricted edge connected if §(G) > (n + 2p + 3)/4, where §(G) is the minimum
degree of G. Yang et al. [21] gave a sufficient condition for an optimal 3-restricted
edge connected vertex transitive graph to be a super 3-restricted edge connected
graph. Balbuena et al. [1] gave some sufficient conditions for super p-restricted
edge connectivity of permutation graphs when p = 2,3. Shang and Zhang [15]
presented some degree conditions for any triangle free and bipartite graph to be super
3-restricted edge connected. Wang and Zhao [19] presented some degree conditions
for graphs to be super 3-restricted edge connected. Sun et al. [16] proved that
a connected vertex transitive graph with degree d > 5 and girth g > 5 is super
p-restricted edge connected for any positive integer p with p < 2g or p < 10 if
d=g=06.

The following results are for graphs which are symmetric.

Theorem 1.1 [8] The only connected reqular edge-symmetric graphs which are not
super edge-connected are the cycles C,,.

Since H (n, k) is edge-symmetric, by Theorem 1.1 we know that the edge-connectivity
of the bipartite Kneser graph H(n, k) is A(H(n, k)) = (”;k) Furthermore, we know
that H(n, k) is optimal super edge connected, or in other words, super-\s.

An edge cut F is a cyclic edge cut if G — F' is disconnected and has at least
two components containing cycles. A graph G has a cyclic edge cut if and only if
it has at least two disjoint cycles. The cyclic edge connectivity, denoted by A(c), is
the minimum cardinality of a cyclic edge cut over all cyclic edge cuts. Denote by (
the minimum cardinality over all edge cuts of shortest cycles. A graph is cyclically
optimal if A(c) = (. A graph is super cyclically edge connected if when removing any
minimum cyclic edge cut, there is at least one component which is a shortest cycle
of the graph.

Theorem 1.2 [17] Let G be a connected edge-transitive graph with the number of
vertices in G being at least 6 and the minimum degree being 4. Then G is cyclically
optimal.

Theorem 1.3 [16] Let G be a cyclically optimal d-regular graph with d > 3 and

girth g at least 3. Let p be a positive integer satisfying p < g — . Then G is

d—2
super-\p.
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From the above results, it is clear for n = 2k + 1 that H(n, k) is cyclically optimal
when k > 3. Therefore H(n, k) is super-A, for p <5 when n =2k + 1 and k > 3.

In the next section, we will first look at some properties of A,-superatom. And
in Section 3 we will investigate the p-restricted edge connectivity of H(n,k) when
n > 3k. In the approach we have employed in this paper, we are looking at the
possible size of A\, superatom. Such an approach will rely on a good upper bound
of the maximum number of edges in a ), fragment. In general, given a graph with
girth g, it is hard to know exactly the maximum number of edges in the graph, and
thus it is hard to obtain a bound on the edge cut set; so in this paper, we assume
that p is close to the girth g. Further discussion on this can be found in the last
section of the paper.

2 The Bound of )\,-superatom

Given a d-regular graph G with girth g, if p < g, clearly we have an upper bound on
the cardinality of a p-restricted edge cut of the graph G. Considering a A, fragment
which is a tree of order p, the cardinality of the edge cut corresponding to the A,
fragment is p(d — 2) + 2, which is the upper bound of the p-restricted edge cut. In
the case that p = g, the component could be a cycle of order p, and then the upper
bound on the cardinality of the p-restricted edge cut is p(d — 2).

Next, we look at the bound on the number of vertices in a A,-superatom. Clearly,
a Ap-superatom will contain more than p vertices if it exists. If there are no A,-
superatoms, then the size of a p-restricted edge cut is determined.

Mantel’s theorem stated that:

Theorem 2.1 If a graph G on n vertices contains no triangle, then it contains at
most |n?/4| edges.

Then we have the following result.

Theorem 2.2 Let G be a connected d-reqular graph with girth g =4 and d > 2. Let
X be a \3-superatom of G. Then the cardinality of X is at least 2d — 3.

Proof: Let |X| = x; then g =4 <z < @ Since X is a connected component with
at least three vertices, it follows that X contains at least two edges, which implies
that A3 < 3d — 4.

From Theorem 2.1, we have |E(G[X])| < |2%/4]. So then

33'2

C(X)| = dr —2B(GIX))| = do — 2(a” /4~ 1) = dz — 5 +2.
Since Az-superatom satisfies |C'(X)| = A3, we have

1.2
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which leads to the following inequality:
2? — 2dx + 6d — 12 > 0, (1)

A =b* — dac = (2d)* — 4(6d — 12) = 4d* — 24d + 48,

where a, b, c are the coefficients of 2%, x, and the constant term in inequality (1),
respectively.

Clearly, when d > 2, A > 0. From the roots of the quadratic function we know
that inequality (1) is true when

x<d—+/(d—3)%+3,
or x>d++/(d—3)*+3.

Observe that a As-superatom has to contain at least four vertices, and thus we
have x > 2d — 2. O

Using the same approach, we have the following.

Corollary 2.1 Let G be a connected d-reqular graph with girth g = 4 and d > 8.
Let X be a A\y-superatom of G. Then the cardinality of X is at least 2d — 4.
Proof: Let | X| = x; then 5 <z < @ and Ay < 4d — 8.

From Theorem 2.1, we have |E(G[X])| < [2%/4], and then we have

l’2
2® — 2dx + 8d — 20 > 0, (2)
A =V — dac = (2d)* — 4(8d — 20) = 4d* — 32d + 80,

where a, b, c are the coefficients of 2%, x, and the constant term in inequality (2),
respectively.

Clearly, when d > 2 then A > 0. From the roots of the quadratic function we
know that inequality (1) is true when:

r<d—1—+/(d—472+4,

or x>d—1++/(d—4)?%+4.

Clearly the \s-superatom has to contain at least five vertices, and thus we have
x> 2d— 3. O

Similarly, we can obtain the following result.

Corollary 2.2 Let G be a connected d-reqular graph with girth g = 4 and d > 2.
Let X be a As-superatom of G. Then the cardinality of X is at least 2d — 5.
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Furthermore, using the symmetric property of H(n,k), we can get some more
information on the superatoms. We know that:

Theorem 2.3 [9] Let G be a graph, with X, and X5 subsets of V(G). Then

|C(X1 N Xo)| 4+ |C(X1 UXy)| < [C(X0)] + |C(Xa)].
Therefore we have the following results.

Lemma 2.1 Let X; and X5 be two p-restricted fragments of G. If X1 N Xy is
connected, then C(X1NXy) < \,. If X1NXy =CiUCLU---UCY, where C; is a set
of components, then C(C1UCyU---UCY) <A, for1 <i<t.

Proof: Since A, is non-decreasing in p, if there is a component X in GG which has less
than p vertices, then C'(X) < A, and if X has more than p vertices, then C(X) > A,.

Suppose that X;MN X5 is connected, and |C'(X;NX5)| > A,. Clearly | X;UX5| > p,
and thus |C(X; U Xy)| > A,. Therefore we have

2, < [C(X1NXo)| +|C(X1 U X)| < |C(X0)] + |C(X2)] <2,

which is a contradiction.

If X; N Xs is a set of disconnected components, it is straightforward to see that
C(CLUCyU---UCy) <\, following the same line of reasoning. O

Lemma 2.2 Let X; and Xy be two p-restricted superatoms of G with X, # Xs. If
X1 N Xy is connected, then | X1 NXs| < p. If X1NXy=CLUCU---UCy, where C;
is a set of components, then |C;| < p for 1 <i<t.

Proof: From Lemma 2.1 we know that C'(X;NX5) < A,. Because X; # X, we have
| X1 N X, < Xy and | X7 N Xs| < Xo. If | X7 N Xy| > p, this means that X; N X5 is a
smaller p-restricted fragment, a contradiction.

If X; N Xs is a set of disconnected components, it is straightforward to see that
no component contains more than p vertices following the same line of reasoning. [

The above lemma tell us that two superatoms could overlap on at most p vertices.

3 Super-connectivity of H(n,k)

Let the two partite sets of H(n, k) be A and B. Let X be a p-restricted edge cut and
C1, Cy be the components of H(n, k) — X. Clearly, each component is a bipartite
graph. Let the two partite sets of C; be A; and B; for i = 1, 2, respectively. Assume
that |C}] < |Cs| and A; < B;. We have the following results.

Lemma 3.1 Let n > 3k. Then the distance between any two vertices in the same
partite set of H(n, k) is 2.
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Proof: Let x = {1,...k} and z = {ai,...,ax} be two vertices in A of H(n,k) and
N(z) ¢ B. If y € N(z), then y = {1,...,k,x}, where % are n — 2k labels in
{k+1,...n}. Since the vertices in N(x) have n — 2k > k labels from {k+1,...n},
there must be a vertex v = {1,...,k,a1,...ax,...} € N(x), and ¢ is adjacent to z.
Thus the distance between x and z is 2. Moreover, we have N(N(x)) = A. O

However, when 3k > n > 2k + 1, such a property does not hold. In this case, the
vertices from A — N(N(z)) will have at least n — 2k + 1 labels from {k +1,...,n}
and the number of vertices in A — N(NN(z)) is not zero, as shown in the following.

(it [ i) B (o [ oy
" (k=Dl(n —<22kk;11))!!(3k —n+ 1)

When n > 3k + 1 we have the following results.

Theorem 3.1 The bipartite Kneser graph H(n, k) is 3-restricted edge connected and
super-3-restricted edge connected if n > 3k +1 and k > 7.

Proof: Let us assume F' is a 3-restricted edge cut of H(n,k). Then the graph
H(n,k) — F has two components; let the smaller component be C; which is a su-
peratom. Clearly, C; is a bipartite graph with partite sets A; and B;. Based on
Theorem 2.2, the size of C} is at least 2d—2. Also it is easy to see that |A;|—|B;| < 1,
or otherwise d|A;| — d|By| > 2d — 4, which is larger than the upper bound of As,
a contradiction. This also implies that |A;| < |A|/2; recall, A is a partite set of
H(n,k).

Let the vertex x € A;p; there are two cases to consider. First, assume that
N(z) C Bj, which also implies that d < |A]/2. As we have N(N(z)) = A,
it follows that there are at least |A — A;| edges inbetween N(X) and A — A,
which is at least (})/2. Now take an edge connecting N(z) and A — Aj; as-
sume that the two end vertices are a € A — Ay and b € N(z) € B;. Assume
b={1,2,...,k, by,by,...bg,t}, and a is {b1,bo,... b }. It is easy to see that ¢ could
be any label in n — {1,2,... k, by, bs,...bt}; in other words, there are up to n — 2k
options, which implies that a is adjacent to n — 2k vertices in N(x). Thus we know
that between A — A; and N(z) there are at least (n—2k)(})/2 edges, which is larger
than 3d — 4.

Suppose N(x) C Bj is not true. If every vertex of C has more than 2 edges
connected to vertices not in Cf, then clearly the edge cut set is more than 4d — 4 >
3d — 4. Thus there must be a vertex x such that N(z) U B; > d — 1. Following the
same line of reasoning, take an edge that connects N(z) and A — A;; the end vertex
a € A— Ay is adjacent to k + 1 vertices in N(z), of which there is at most one edge
which is not in By. Thus there are more than (n—2k—1)(})/2 edges, which is larger
than 3d — 4 edges, inbetween C; and H — (1, a contradiction.

As there is no superatom, it follows that H(n, k) is super 4-restricted edge con-
nected. ([l
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Following the same proof, it is straightforward to see that (n — 2k —2)(})/2 >
4d — 8 when k > 10 and (n — 2k — 3)(})/2 > 4d — 8 when k > 13. We have the
following results.

Corollary 3.1 The bipartite Kneser graph H(n,k) is 4-restricted edge connected
and super-4-restricted edge connected if n > 3k + 1 and k > 10.

Corollary 3.2 The bipartite Kneser graph H(n,k) is 5-restricted edge connected
and super-5-restricted edge connected if n > 3k + 1 and k > 13.

4 Discussion

As shown in this paper, the bipartite Kneser graph H (n, k) is super-\, for p < 5 and
n > 3k + 1. Using the same approach, it is not hard to obtain similar results for
p = 6 or p = 7, which is relatively close to the girth g. When p gets larger, estimating
a tight upper bound of the p-restricted edge cut becomes a difficult problem, thus
requiring a different approach.

The case n < 3k is still open, because the nice property of N(N(X)) = A
no longer holds, and the graph is indeed less dense compared to the case where
n >3k + 1.

Also of interest is the structure of the superatoms. As we have shown in this
paper that the superatoms might overlap on a number of vertices, knowledge of
the symmetric property of the superatoms would greatly help in investigating the
connectivity of symmetric graphs.
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