
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 83(2) (2022), Pages 265–273

On the p-restricted edge connectivity of the
bipartite Kneser graph H(n, k)

Yuqing Lin
∗

School of Electrical Engineering
The University of Newcastle

Australia
yuqing.lin@newcastle.edu.au

Weigen Yan
†

School of Sciences
Jimei University, Xiamen 361021

Chinaa
weigenyan@jmu.edu.cn

Zhangdong Ouyang

Department of Mathematics
Hunan First Normal University, Changsha

China
oymath@163.com

Abstract

Given a simple graph G, a p-restricted edge cut is a subset of edges of
G whose removal disconnects G, and such that the number of vertices
in each component of the resulting graph is at least p. The p-restricted
edge connectivity is denoted by λp, which is the minimum cardinality
over all p-restricted edge cuts. If a p-restricted edge cut (also called a
λp-cut) exists, then the graph is called p-restricted edge connected, or, for
short, λp-connected. Obviously, for any λp-cut F , G−F has exactly two
components, and each component has at least p vertices. If the deletion of
any λp-cut results in at least one component containing exactly p vertices
in the resulting graph, then the graph is called super-λp. In this paper, we
examine the p-restricted edge connectivity of the bipartite Kneser graph
H(n, k) when n ≥ 3k + 1 and show that the graph is super-λp for p ≤ 5.
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1 Introduction

Given a graph G with vertex set V (G) and edge set E(G), let F ⊂ E(G). Then F
is an edge cut if the resulting graph G − F is disconnected. Fàbrega and Fiol [4]
proposed the concept of p-restricted edge connectivity. We call F a p-restricted edge
cut if each component of the resulting graph G−F has at least p vertices, where p is
a positive integer. The minimum cardinality over all p-restricted edge cuts, denoted
by λp, is the p-restricted edge connectivity. If p-restricted edge cuts exist, then the
graph is called p-restricted edge connected. A graph is called super-λp (sometimes it
is also called optimal-λp) if the deletion of every minimum p-restricted edge cut will
result in a component with exactly p vertices. Clearly, 1-restricted edge connectivity
is the edge connectivity of G, and 2-restricted edge connectivity is also known as the
super edge connectivity of G.

Let A,B be two proper subsets of V (G). We denote by E[A,B] the edges with
one end in A and the other end in B. If B = V (G) \ A, then we denote E[A,B]
by C(A). Let F be a p-restricted edge cut. If |F | = λp then F is called a λp-cut of
G. In this case, the graph G− F contains two components A and B. Let A be the
smaller component; then C(A) is the λp-cut and A is called a λp-fragment of G. If A
is a λp-fragment and |A| = p, then A is called trivial and is also known as a λp-atom.
The non-trivial λp-fragment with minimum cardinality is called a λp-superatom of
G. It is easy to see that every λp-superatom A satisfies p+ 1 ≤ |A| ≤ |V (G)|/2.

The Kneser graph was proposed by Kneser in 1955 [7]. Structural properties of
Kneser graphs, such as hamiltonicity, chromatic number and matchings, have been
studied extensively. Only recently, a conjecture was made [3] in relation to the super-
connectivity of Kneser graphs; some progress was made in [2]. Apparently this is not
an easy problem to settle. In this paper we will study the connectivity of a closely
related graph, which is the bipartite Kneser graph.

The vertices of the bipartite Kneser graphH(n, k) are all k-subsets and all (n−k)-
subsets of [n] = {1, . . . , n}, such that there is an edge between vertices u and v in
H(n, k) if and only if u ⊂ v or v ⊂ u. So clearly H(n, k) is regular. The degree of
H(n, k) is

(
n−k
n−2k

)
=

(
n−k
k

)
and the order ofH(n, k) is 2

(
n
k

)
. A graph is vertex-transitive

if its automorphism group acts transitively on its vertices. Similarly, a graph is
edge-transitive if its automorphism group acts transitively on its edges. A graph is
symmetric if its automorphism group acts transitively on ordered pairs of adjacent
vertices. Mirafzal and Zafari [10] showed that H(n, k) are vertex transitive, edge-
transitive and symmetric. As H(n, k) are symmetric, it is clear that the connectivity
of H(n, k) is

(
n−k
k

)
, which is equal to its degree. When k = 1, H(n, 1) is a Cayley

graph.

Since when n = 2k, H(n, k) is a null graph, so in this paper we assume that
n ≥ 2k+1. Clearly, when n = 2k+1, the girth of H(n, k) is 6, and when n ≥ 2k+2,
the girth of H(n, k) is 4.

Mütze and Su [14] showed that the bipartite Kneser graph H(n, k) has a hamilton
cycle when k ≥ 1 and n ≥ 2k + 1. Mirafazal [12] proved that the automorphism
group of the bipartite Kneser graph Aut(H(n, k)) ∼= Sym([n]) × Z2 when k ≥ 1
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and n ≥ 2k + 1, where Z2 is the cyclic group of order 2. Kim, Cheng, Liptak and
Li [6] and Mirafazal [11] showed that the bipartite Kneser graph H(2k + 1, k) is a
regular hyperstar graph HS(2(n+1), n+1). Jin [5] constructed some 1-factorizations
of bipartite Kneser graphs by perpendicular arrays when k = 2 and n is an odd
prime. Mohammadyari and Darafsheh [13] used the transitivity property of the
automorphism group of the bipartite Kneser graph to calculate its Wiener, Szeged
and Pl indices.

There are many results in p-restricted edge connectivity. Wang et al. [18] studied
some sufficient conditions for super p-restricted edge connectivity of graphs with
diameter 2. Yuan et al. [20] proved that a bipartite graph with n vertices is super
p-restricted edge connected if δ(G) ≥ (n + 2p + 3)/4, where δ(G) is the minimum
degree of G. Yang et al. [21] gave a sufficient condition for an optimal 3-restricted
edge connected vertex transitive graph to be a super 3-restricted edge connected
graph. Balbuena et al. [1] gave some sufficient conditions for super p-restricted
edge connectivity of permutation graphs when p = 2, 3. Shang and Zhang [15]
presented some degree conditions for any triangle free and bipartite graph to be super
3-restricted edge connected. Wang and Zhao [19] presented some degree conditions
for graphs to be super 3-restricted edge connected. Sun et al. [16] proved that
a connected vertex transitive graph with degree d > 5 and girth g > 5 is super
p-restricted edge connected for any positive integer p with p ≤ 2g or p ≤ 10 if
d = g = 6.

The following results are for graphs which are symmetric.

Theorem 1.1 [8] The only connected regular edge-symmetric graphs which are not
super edge-connected are the cycles Cn.

Since H(n, k) is edge-symmetric, by Theorem 1.1 we know that the edge-connectivity
of the bipartite Kneser graph H(n, k) is λ(H(n, k)) =

(
n−k
k

)
. Furthermore, we know

that H(n, k) is optimal super edge connected, or in other words, super-λ2.

An edge cut F is a cyclic edge cut if G − F is disconnected and has at least
two components containing cycles. A graph G has a cyclic edge cut if and only if
it has at least two disjoint cycles. The cyclic edge connectivity, denoted by λ(c), is
the minimum cardinality of a cyclic edge cut over all cyclic edge cuts. Denote by ζ
the minimum cardinality over all edge cuts of shortest cycles. A graph is cyclically
optimal if λ(c) = ζ . A graph is super cyclically edge connected if when removing any
minimum cyclic edge cut, there is at least one component which is a shortest cycle
of the graph.

Theorem 1.2 [17] Let G be a connected edge-transitive graph with the number of
vertices in G being at least 6 and the minimum degree being 4. Then G is cyclically
optimal.

Theorem 1.3 [16] Let G be a cyclically optimal d-regular graph with d ≥ 3 and
girth g at least 3. Let p be a positive integer satisfying p < g − 2

d−2
. Then G is

super-λp.
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From the above results, it is clear for n = 2k+1 that H(n, k) is cyclically optimal
when k ≥ 3. Therefore H(n, k) is super-λp for p ≤ 5 when n = 2k + 1 and k ≥ 3.

In the next section, we will first look at some properties of λp-superatom. And
in Section 3 we will investigate the p-restricted edge connectivity of H(n, k) when
n > 3k. In the approach we have employed in this paper, we are looking at the
possible size of λp superatom. Such an approach will rely on a good upper bound
of the maximum number of edges in a λp fragment. In general, given a graph with
girth g, it is hard to know exactly the maximum number of edges in the graph, and
thus it is hard to obtain a bound on the edge cut set; so in this paper, we assume
that p is close to the girth g. Further discussion on this can be found in the last
section of the paper.

2 The Bound of λp-superatom

Given a d-regular graph G with girth g, if p < g, clearly we have an upper bound on
the cardinality of a p-restricted edge cut of the graph G. Considering a λp fragment
which is a tree of order p, the cardinality of the edge cut corresponding to the λp

fragment is p(d − 2) + 2, which is the upper bound of the p-restricted edge cut. In
the case that p = g, the component could be a cycle of order p, and then the upper
bound on the cardinality of the p-restricted edge cut is p(d− 2).

Next, we look at the bound on the number of vertices in a λp-superatom. Clearly,
a λp-superatom will contain more than p vertices if it exists. If there are no λp-
superatoms, then the size of a p-restricted edge cut is determined.

Mantel’s theorem stated that:

Theorem 2.1 If a graph G on n vertices contains no triangle, then it contains at
most �n2/4� edges.

Then we have the following result.

Theorem 2.2 Let G be a connected d-regular graph with girth g = 4 and d ≥ 2. Let
X be a λ3-superatom of G. Then the cardinality of X is at least 2d− 3.

Proof: Let |X| = x; then g = 4 ≤ x ≤ V (G)
2

. Since X is a connected component with
at least three vertices, it follows that X contains at least two edges, which implies
that λ3 ≤ 3d− 4.

From Theorem 2.1, we have |E(G[X ])| ≤ �x2/4�. So then

|C(X)| = dx− 2|E(G[X])| ≥ dx− 2(x2/4− 1) = dx− x2

2
+ 2.

Since λ3-superatom satisfies |C(X)| = λ3, we have

3d− 4 ≥ dx− x2

2
+ 2,
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which leads to the following inequality:

x2 − 2dx+ 6d− 12 ≥ 0, (1)

Δ = b2 − 4ac = (2d)2 − 4(6d− 12) = 4d2 − 24d+ 48,

where a, b, c are the coefficients of x2, x, and the constant term in inequality (1),
respectively.

Clearly, when d ≥ 2, Δ > 0. From the roots of the quadratic function we know
that inequality (1) is true when

x ≤ d−
√
(d− 3)2 + 3,

or x ≥ d+
√

(d− 3)2 + 3.

Observe that a λ3-superatom has to contain at least four vertices, and thus we
have x ≥ 2d− 2. �

Using the same approach, we have the following.

Corollary 2.1 Let G be a connected d-regular graph with girth g = 4 and d ≥ 8.
Let X be a λ4-superatom of G. Then the cardinality of X is at least 2d− 4.

Proof: Let |X| = x; then 5 ≤ x ≤ V (G)
2

and λ4 ≤ 4d− 8.

From Theorem 2.1, we have |E(G[X ])| ≤ �x2/4�, and then we have

4d− 8 ≥ dx− x2

2
+ 2,

x2 − 2dx+ 8d− 20 ≥ 0, (2)

Δ = b2 − 4ac = (2d)2 − 4(8d− 20) = 4d2 − 32d+ 80,

where a, b, c are the coefficients of x2, x, and the constant term in inequality (2),
respectively.

Clearly, when d ≥ 2 then Δ > 0. From the roots of the quadratic function we
know that inequality (1) is true when:

x ≤ d− 1−
√

(d− 4)2 + 4,

or x ≥ d− 1 +
√
(d− 4)2 + 4.

Clearly the λ4-superatom has to contain at least five vertices, and thus we have
x ≥ 2d− 3. �

Similarly, we can obtain the following result.

Corollary 2.2 Let G be a connected d-regular graph with girth g = 4 and d ≥ 2.
Let X be a λ5-superatom of G. Then the cardinality of X is at least 2d− 5.
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Furthermore, using the symmetric property of H(n, k), we can get some more
information on the superatoms. We know that:

Theorem 2.3 [9] Let G be a graph, with X1 and X2 subsets of V (G). Then

|C(X1 ∩X2)|+ |C(X1 ∪X2)| ≤ |C(X1)|+ |C(X2)|.

Therefore we have the following results.

Lemma 2.1 Let X1 and X2 be two p-restricted fragments of G. If X1 ∩ X2 is
connected, then C(X1 ∩X2) ≤ λp. If X1 ∩X2 = C1 ∪C2 ∪ · · · ∪Ct, where Ci is a set
of components, then C(C1 ∪ C2 ∪ · · · ∪ Ct) ≤ λp for 1 ≤ i ≤ t.

Proof: Since λp is non-decreasing in p, if there is a component X in G which has less
than p vertices, then C(X) ≤ λp, and if X has more than p vertices, then C(X) ≥ λp.

Suppose that X1∩X2 is connected, and |C(X1∩X2)| > λp. Clearly |X1∪X2| ≥ p,
and thus |C(X1 ∪X2)| ≥ λp. Therefore we have

2λp < |C(X1 ∩X2)|+ |C(X1 ∪X2)| ≤ |C(X1)|+ |C(X2)| ≤ 2λp,

which is a contradiction.

If X1 ∩X2 is a set of disconnected components, it is straightforward to see that
C(C1 ∪ C2 ∪ · · · ∪ Ct) ≤ λp, following the same line of reasoning. �

Lemma 2.2 Let X1 and X2 be two p-restricted superatoms of G with X1 �= X2. If
X1 ∩X2 is connected, then |X1 ∩X2| ≤ p. If X1 ∩X2 = C1 ∪C2 ∪ · · · ∪Ct, where Ci

is a set of components, then |Ci| ≤ p for 1 ≤ i ≤ t.

Proof: From Lemma 2.1 we know that C(X1∩X2) ≤ λp. Because X1 �= X2, we have
|X1 ∩X2| ≤ X1 and |X1 ∩X2| ≤ X2. If |X1 ∩X2| > p, this means that X1 ∩X2 is a
smaller p-restricted fragment, a contradiction.

If X1 ∩X2 is a set of disconnected components, it is straightforward to see that
no component contains more than p vertices following the same line of reasoning. �

The above lemma tell us that two superatoms could overlap on at most p vertices.

3 Super-connectivity of H(n, k)

Let the two partite sets of H(n, k) be A and B. Let X be a p-restricted edge cut and
C1, C2 be the components of H(n, k) − X . Clearly, each component is a bipartite
graph. Let the two partite sets of Ci be Ai and Bi for i = 1, 2, respectively. Assume
that |C1| ≤ |C2| and Ai ≤ Bi. We have the following results.

Lemma 3.1 Let n ≥ 3k. Then the distance between any two vertices in the same
partite set of H(n, k) is 2.
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Proof: Let x = {1, . . . k} and z = {a1, . . . , ak} be two vertices in A of H(n, k) and
N(x) ⊂ B. If y ∈ N(x), then y = {1, . . . , k, ∗}, where ∗ are n − 2k labels in
{k + 1, . . . n}. Since the vertices in N(x) have n− 2k > k labels from {k + 1, . . . n},
there must be a vertex y′ = {1, . . . , k, a1, . . . ak, . . . } ∈ N(x), and y′ is adjacent to z.
Thus the distance between x and z is 2. Moreover, we have N(N(x)) = A. �

However, when 3k > n > 2k+1, such a property does not hold. In this case, the
vertices from A− N(N(x)) will have at least n − 2k + 1 labels from {k + 1, . . . , n}
and the number of vertices in A−N(N(x)) is not zero, as shown in the following.(

n− k

n− 2k + 1

)(
n− (n− 2k + 1)

k − (n− 2k + 1)

)
=

(
n− k

k − 1

)(
2k − 1

n− k

)

=
(2k − 1)!

(k − 1)!(n− 2k + 1)!(3k − n + 1)!
.

When n ≥ 3k + 1 we have the following results.

Theorem 3.1 The bipartite Kneser graph H(n, k) is 3-restricted edge connected and
super-3-restricted edge connected if n ≥ 3k + 1 and k ≥ 7.

Proof: Let us assume F is a 3-restricted edge cut of H(n, k). Then the graph
H(n, k) − F has two components; let the smaller component be C1 which is a su-
peratom. Clearly, C1 is a bipartite graph with partite sets A1 and B1. Based on
Theorem 2.2, the size of C1 is at least 2d−2. Also it is easy to see that |A1|−|B1| ≤ 1,
or otherwise d|A1| − d|B1| > 2d − 4, which is larger than the upper bound of λ3,
a contradiction. This also implies that |A1| ≤ |A|/2; recall, A is a partite set of
H(n, k).

Let the vertex x ∈ A1; there are two cases to consider. First, assume that
N(x) ⊂ B1, which also implies that d < |A|/2. As we have N(N(x)) = A,
it follows that there are at least |A − A1| edges inbetween N(X) and A − A1,
which is at least

(
n
k

)
/2. Now take an edge connecting N(x) and A − A1; as-

sume that the two end vertices are a ∈ A − A1 and b ∈ N(x) ∈ B1. Assume
b = {1, 2, . . . , k, b1, b2, . . . bk, t}, and a is {b1, b2, . . . bk}. It is easy to see that t could
be any label in n− {1, 2, . . . , k, b1, b2, . . . bk}; in other words, there are up to n− 2k
options, which implies that a is adjacent to n− 2k vertices in N(x). Thus we know
that between A−A1 and N(x) there are at least (n−2k)

(
n
k

)
/2 edges, which is larger

than 3d− 4.

Suppose N(x) ⊂ B1 is not true. If every vertex of C1 has more than 2 edges
connected to vertices not in C1, then clearly the edge cut set is more than 4d− 4 >
3d − 4. Thus there must be a vertex x such that N(x) ∪ B1 ≥ d− 1. Following the
same line of reasoning, take an edge that connects N(x) and A−A1; the end vertex
a ∈ A−A1 is adjacent to k + 1 vertices in N(x), of which there is at most one edge
which is not in B1. Thus there are more than (n−2k−1)

(
n
k

)
/2 edges, which is larger

than 3d− 4 edges, inbetween C1 and H − C1, a contradiction.

As there is no superatom, it follows that H(n, k) is super 4-restricted edge con-
nected. �
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Following the same proof, it is straightforward to see that (n − 2k − 2)
(
n
k

)
/2 >

4d − 8 when k ≥ 10 and (n − 2k − 3)
(
n
k

)
/2 > 4d − 8 when k ≥ 13. We have the

following results.

Corollary 3.1 The bipartite Kneser graph H(n, k) is 4-restricted edge connected
and super-4-restricted edge connected if n ≥ 3k + 1 and k ≥ 10.

Corollary 3.2 The bipartite Kneser graph H(n, k) is 5-restricted edge connected
and super-5-restricted edge connected if n ≥ 3k + 1 and k ≥ 13.

4 Discussion

As shown in this paper, the bipartite Kneser graph H(n, k) is super-λp for p ≤ 5 and
n ≥ 3k + 1. Using the same approach, it is not hard to obtain similar results for
p = 6 or p = 7, which is relatively close to the girth g. When p gets larger, estimating
a tight upper bound of the p-restricted edge cut becomes a difficult problem, thus
requiring a different approach.

The case n ≤ 3k is still open, because the nice property of N(N(X)) = A
no longer holds, and the graph is indeed less dense compared to the case where
n ≥ 3k + 1.

Also of interest is the structure of the superatoms. As we have shown in this
paper that the superatoms might overlap on a number of vertices, knowledge of
the symmetric property of the superatoms would greatly help in investigating the
connectivity of symmetric graphs.
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