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Abstract

In this note, we study a combinatorial avoidance game on Steiner triple
systems introduced by Clark, Fisk and Goren in 2016. In particular,
we prove that the first player wins the avoidance game on any 1-reverse
Steiner triple system, which generalizes the results by Clark et al. (2016)
and Johnson et al. (2017). Moreover, we completely determine the win-
ners of the avoidance games on all Steiner triple systems of order at most
fifteen.

1 Introduction

In the intersection of graph theory and combinatorial game theory, combinatorial
achievement/avoidance games on graphs have been well-studied. Such games are
inspired by Ramsey theory and so called Ramsey achievement/avoidance games. In
particular, the Ramsey avoidance game originally comes from a simple pencil game,
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called Sim [13]. For known results and further studies of combinatorial achieve-
ment/avoidance games on graphs or other game boards, see several relatively new
papers [3, 8, 14, 15] for example and books [1, 2]. In particular, [14] is a nice paper
which gives many results on the computational complexity of the games and surveys
the literature on Ramsey achievement/avoidance games.

On the other hand, very recently, an avoidance game on a Steiner triple system
was introduced in [4], where the game was also called anti-SET. A Steiner triple
system of order n, STS(n) for short, consists of an n-element set V whose elements
are called points, and a set B of triples of V , called blocks, with the property that
every pair of elements in V is contained in exactly one block. It is well known that
an STS(n) exists if and only if n ≡ 1 or 3 (mod 6). A combinatorial avoidance game
on Steiner triple systems is defined as follows.

Definition 1 (Avoidance game on Steiner triple systems). There are two players,
Alice and Bob, starting with Alice. For given an STS(n), (V,B), the two players
alternately color an uncolored point in V with their own color. The first player who
makes a monochromatic block loses, whose points are colored by the same color, and
the game ends in a draw if all points of V are colored without a monochromatic
block.

Clark, Fisk and Goren [4] considered the avoidance game on a special class of
STSs, called affine STSs. An affine STS is an STS(3k) on the k-dimensional vector
space V = F

k
3 over the three-element field F3 with block set B = {{x,y, z} ∈ (

V
3

)
:

x + y + z = 0}. Thus, all the blocks are lines of the k-dimensional affine space
AG(k, 3). This game is closely related to a famous mathematical problem, called the
cap set problem, that is, the problem on determining the maximum size of a set, called
a cap set, of points not containing any line of AG(k, 3). In particular, they proved that
Alice can win the avoidance game on every affine STS. This result was also proved
by Johnson, Leader and Walters in [9, Theorem 27] independently. Furthermore,
Clark, Mancini and Van Hook [5] showed that Bob can win the avoidance game on
every projective Steiner triple system with 2k − 1 points with k ≥ 3. It is natural
to study the problem on determining the spectrum of n such that there exists an
STS(n) on which Alice/Bob can win the avoidance game, since no draw is possible in
the avoidance game (Proposition 3) and STSs with some orders have both as winners
(Proposition 9).

An automorphism of an STS(n) is a permutation σ on V which fixes the set
of blocks, i.e., σ(B) ∈ B for any B ∈ B where σ(B) = {σ(b) : b ∈ B}. In this
note, we treat a 1-reverse STS, which admits an involution with exactly one fixed
point as its automorphism. It is known that a 1-reverse STS(n) exists if and only if
n ≡ 1, 3, 9 or 19 (mod 24) [7, 12, 16]. An affine STS is clearly an example of 1-reverse
STSs since the involution is given by σ(x) = −x for any x ∈ F

k
3 \ {0} and 0 is the

unique fixed point. One of the purposes of this note is to show that Alice wins the
avoidance game on any 1-reverse Steiner triple system, which generalizes the results
in [4, 9] though the idea of our proof essentially comes from theirs. However, note
that the authors in [4] (respectively, [9]) used the terminologies of STSs (respectively,
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automorphisms) but did not use the terminologies of automorphisms (respectively,
STSs). Thus, we unify and generalize their ideas and results. Another purpose of
this note is to determine the winners of the avoidance games on all nonisomorphic
Steiner triple systems of order 13 and 15 by a computer.

2 Avoidance games on Steiner triple systems

First, we give the following fundamental property of an STS(n).

Lemma 2. Let n = 2m+ 1 be an odd integer with n ≥ 7. Let V be the point set of
an STS(n). For any subsets X, Y of V with Y = V \X, |X| = m+ 1 and |Y | = m,
there exists a block B such that B ⊆ X or B ⊆ Y .

Proof. Let n = 2m+ 1 with m ≥ 3. Suppose to the contrary that there is no block
B such that B ⊆ X or B ⊆ Y .

Let a (respectively, b) be the number of blocks containing two points in X and
one point in Y (respectively, one point in X and two points in Y ). Observe that the
number of blocks in an STS(n) is n(n − 1)/6 = (2m + 1)m/3, and hence, a + b =
(2m + 1)m/3. On the other hand, the total number of pairs of points in X and Y
is m(m + 1)/2 and m(m − 1)/2, respectively. Thus we have a = m(m + 1)/2 and
b = m(m− 1)/2, that is, (2m+ 1)m/3 = a+ b = m(m+ 1)/2 +m(m− 1)/2 = m2,
which means that m = 1, a contradiction.

The following important proposition follows from Lemma 2, which was also de-
scribed in [4] but no proof was given.

Proposition 3. For all Steiner triple systems S with at least seven points, the avoid-
ance game on S never ends in a draw.

Proof. At the end of the avoidance game on every STS(n) with an odd integer n ≥ 7,
the point set V of the STS can be decomposed into two sets X and Y colored by
Alice and Bob, respectively; note that V = X ∪ Y and X ∩ Y = ∅. Thus, there
exists a monochromatic block by Lemma 2, which means the game did not end in a
draw.

Next, we give one lemma on a property of 1-reverse STSs, which was already
mentioned in [12].

Lemma 4. Let (V,B) be a 1-reverse STS(n) with n ≥ 9 having an involution σ with
one fixed point ∞. Then any block containing ∞ has the form {∞, x, σ(x)} for some
x ∈ V .

Proof. Suppose to the contrary that a block has the form B = {∞, x, y} with y �=
σ(x). Then the unique block containing x and σ(x) has the form B′ = {a, x, σ(x)}
with a �= ∞. Furthermore, σ(B′) = {σ(a), σ(x), x} must be a block different from
B′ since a �= σ(a). Then there are two blocks containing both x and σ(x), a contra-
diction.
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We now prove that Alice wins the game on every 1-reverse Steiner triple system.
The idea of the following result can be found in [4, 9] but they deal only with affine
Steiner triple systems.

Theorem 5. Let (V,B) be a 1-reverse STS(n) with n ≥ 9. Then Alice wins the
avoidance game on the Steiner triple system.

Proof. Let σ be an involution with fixed point ∞ ∈ V as an automorphism of (V,B).
We show that Alice wins the game by using the following strategy.

1. First she colors ∞ ∈ V .

2. If Bob colors x ∈ V , then she colors σ(x) ∈ V .

Suppose to the contrary that Alice loses by making a monochromatic block B =
{x, y, z} ∈ B.
Case 1 (x = ∞ ∈ B): By Lemma 4, we have z = σ(y). However, by Alice’s strategy,
either y or z must be colored by Bob, a contradiction.

Case 2 (∞ /∈ B): Let x′, y′ and z′ be points colored by Bob just before Alice colors
x, y and z, respectively. Then we have

{x′, y′, z′} = {σ(x), σ(y), σ(z)}
=σ({x, y, z}) ∈ B.

Therefore, Bob creates another monochromatic block {x′, y′, z′} ∈ B just before Alice
creates B, that is, Bob loses just before Alice does, a contradiction.

Recall that every affine Steiner triple system is 1-reverse. Thus, Theorem 5 leads
to the following corollary.

Corollary 6 ([4]). Alice wins the avoidance game on every affine STS(3k) with
k ≥ 2.

Furthermore, recalling that there exists a 1-reverse STS(n) for every n ≡ 1, 3, 9, 19
(mod 24), we have the following corollary.

Corollary 7. For any positive integer n ≡ 1, 3, 9, 19 (mod 24) with n ≥ 9, there
exists an STS(n) on which Alice wins the avoidance game.

It is known that Bob wins the avoidance game on the unique STS(7) [5] since the
STS belongs to projective STS(2k − 1)s. Hence, we next treat the avoidance games
on STS(n) for n = 13, 15. It is well-known that there are exactly two non-isomorphic
STS(13)s and eighty non-isomorphic STS(15)s. Note that it was already proved in
[5] that Bob wins the game on the projective STS(15). We checked the following by
computer1.

1We generated all non-isomorphic STS(n)s for n = 13, 15 by using the function SteinerLoop in
GAP [11]. We coded the program by using C++. For more details, see the Appendix.
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Proposition 8. Bob wins the avoidance games on both of the two non-isomorphic
STS(13)s.

Proposition 9. There are two non-isomorphic STS(15)s on which Alice wins the
avoidance games, and Bob wins the avoidance games on the remaining 78 non-
isomorphic STS(15)s.

The special two non-isomorphic STS(15)s on which Alice wins the games are
listed below. The point set is {1, 2, . . . , 15} and the block sets are

B1 = {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {1, 8, 9}, {1, 10, 11}, {1, 12, 13}, {1, 14, 15}, {2, 4, 6},
{2, 5, 7}, {2, 8, 10}, {2, 9, 11}, {2, 12, 14}, {2, 13, 15}, {3, 4, 7}, {3, 5, 6}, {3, 8, 12},
{3, 9, 14}, {3, 10, 13}, {3, 11, 15}, {4, 8, 15}, {4, 9, 12}, {4, 10, 14}, {4, 11, 13},
{5, 8, 13}, {5, 9, 10}, {5, 11, 14}, {5, 12, 15}, {6, 8, 11}, {6, 9, 15}, {6, 10, 12},
{6, 13, 14}, {7, 8, 14}, {7, 9, 13}, {7, 10, 15}, {7, 11, 12}};

B2 = {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {1, 8, 9}, {1, 10, 11}, {1, 12, 13}, {1, 14, 15}, {2, 4, 6},
{2, 5, 7}, {2, 8, 10}, {2, 9, 12}, {2, 11, 14}, {2, 13, 15}, {3, 4, 7}, {3, 5, 6}, {3, 8, 11},
{3, 9, 15}, {3, 10, 13}, {3, 12, 14}, {4, 8, 12}, {4, 9, 11}, {4, 10, 15}, {4, 13, 14},
{5, 8, 15}, {5, 9, 13}, {5, 10, 14}, {5, 11, 12}, {6, 8, 14}, {6, 9, 10}, {6, 11, 13},
{6, 12, 15}, {7, 8, 13}, {7, 9, 14}, {7, 10, 12}, {7, 11, 15}}.

Proposition 9 implies that the player who wins the avoidance game on an STS(n)
depends not only on n but also on its structure. In this section, we showed that
for any n ≡ 1, 3, 9, 19 (mod 24) with n ≥ 9 or n = 15, there exists an STS(n) on
which Alice wins the avoidance game while the number of such STS(15)s is small in
comparison to the total number of non-isomorphic STS(15)s. On the other hand,
there is no STS(n) on which Alice wins the game for n = 7, 13. Thus, we pose the
following problem. (A similar problem is proposed in [9] for the avoidance game on
the vertex-transitive hypergraph.)

Problem 10. For a fixed integer n �≡ 1, 3, 9, 19 (mod 24) with n > 15, does there
exist an STS(n) on which Alice wins the game? More generally, determine the spec-
trum of n such that there exists an STS(n) on which Alice/Bob wins the game.

Finally, we give some comments on avoidance games on other block designs.
We can naturally extend the definition of the avoidance game on STSs to that on
general t-(v, k, λ) designs. In particular, we determined by computer the winners of
the avoidance games on 2-(v, 3, 2) designs without repeated blocks for v = 6, 7 and
3-(v, 4, 1) designs for v = 8, 10 as listed below. Note that it is known that these
designs are unique [6, 10].

• Alice wins the avoidance game on the 2-(6, 3, 2) design without repeated blocks.

• Bob wins the avoidance game on the 2-(7, 3, 2) design without repeated blocks.



N. MATSUMOTO ET AL. /AUSTRALAS. J. COMBIN. 83 (2) (2022), 196–203 201

• The avoidance game on the 3-(8, 4, 1) design is drawn, i.e., both players can
force the game to end in a draw.

• Bob wins the avoidance game on the 3-(10, 4, 1) design.

We conclude the paper by giving the following problem for future work.

Problem 11. Find an infinite class of t-(v, k, λ) designs with t > 2, k > 3 or λ > 1
on which Alice (respectively, Bob) wins the avoidance game.
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Appendix

We describe our computer program written in C++ for checking which player wins
on each of the 80 nonisomorphic STS(15)s. We can use a similar program also
for STS(13) and SQS(10). The program and data sets are open to the public at
https://sites.google.com/view/naokimatsumoto/data. GAP [11] was used to
generate all STS(15), which was then input into the following algorithm.

Algorithm

The algorithm is based on a depth first search on the game tree of the avoidance
game on each STS(15). We give a pseudo-code of the algorithm below. (Note that
in fact, the program contains another function check. However, the function just
determines whether or not there is a monochromatic block in the current state of the
game. Thus, we omit the function in the following pseudo-code.)

By Proposition 3, it is guaranteed that the program avoid_game_en terminates
with outputting “Alice returns to her first move” t times and “Bob loses!” t′ times,
where t+ t′ = 15. Observe that if the message “Bob loses!” appears, then Alice can
win the avoidance game on the STS(15). Otherwise, Bob can win the game. Note
that the variable f in the algorithm search is a global variable.
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Algorithm 1 avoid game en

Set the label of all points v0, v1, . . . , vn−1 of a given STS(15) to be zero.
for i = 0 to n− 1 do
Set vi = 1 (this means that Alice’s first move is vi).
Call search(Bob) (see Algorithm 2).
Set vi = 0.

end for

Algorithm 2 search(Player)

for i = 0 to n− 1 do
if vi is a feasible move for Player, i.e., a move does not produce a monochromatic
block then
Set vi = 1 (resp., 2) if Player is Alice (resp., Bob).
Call search(X), where X is Alice (resp., Bob) if Player is Bob (resp., Alice)
Set vi = 0.
if f = 1 then
Set f = 0.
return

end if
end if

end for
Set f = 1.
if The current state is Alice’s second turn then
Output “Alice returns to her first move”.

else
if The current state is Bob’s first turn then
Output “Bob loses!”.

end if
end if
return
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