Corrigendum and extension to "Hamiltonicity in directed Toeplitz graphs $T_n\langle 1, 2; t_1, t_2 \rangle$ "

Shabnam Malik

Faculty of Mathematics Forman Christian College (A Chartered University) Lahore, Pakistan shabnam.malik@gmail.com

We use [1] for notation and terminology not defined here. In Theorem 3.3 [1], we proved that $T_n\langle 1,2;3,t\rangle$ is hamiltonian for all n and t. Unfortunately, this theorem does not hold for n = 8 when t = 5. Here, we correct this error by proving that $T_8\langle 1,2;3,5\rangle$ is non-hamiltonian. i Then we generalize Theorem 3.9 of [1], for all t_1 . Finally, we address the conjecture stated in [1], which completes the hamiltonicity investigation in directed Toeplitz graphs $T_n\langle 1,2;t_1,t_2\rangle$.

The corrected version of Theorem 3.3 in [1] can be restated as follows.

Theorem 1 $T_n(1,2;3,t)$ is hamiltonian if and only if $n \neq 8$ and $t \neq 5$.

Proof. Let $n \neq 8$ and $t \neq 5$, then by Theorem 3.3 in [1], $T_n(1, 2; 3, t)$ is hamiltonian.

Conversely, we prove that $T_8(1,2;3,5)$ is non-hamiltonian. Assume, to the contrary, that $T_8(1,2;3,5)$ is hamiltonian. Let $H = H_{1\to8} \cup H_{8\to1}$ be a hamiltonian cycle in $T_8(1,2;3,5)$. Then, for every vertex v in H, we have $d^-(v) = 1 = d^+(v)$. Since the path $H_{1\to 8}$ is hamiltonian in the subgraph of $T_8(1,2;3,5)$ induced by $V(H_{8\to 1}\setminus\{1,8\})$, the vertices which are not covered by $H_{1\to8}$ would be covered by $H_{8\to1}$. Since increasing edges in $H_{1\rightarrow 8}$ are of length one, and two only, $H_{8\rightarrow 1}$ contains no pair of successive vertices different from $\{1,2\}$ or $\{7,8\}$. Thus $H_{8\to 1}$ would not be using any increasing edge of length one. The set of all decreasing edges in $T_8(1,2;3,5)$ is $\{(8,3), (7,2), (6,1), (8,5), (7,4), (6,3), (5,2), (4,1)\}$. Now $d^{-}(1) = d^{+}(8) = 2$ in $T_8(1,2;3,5)$, so $\{(8,3), (4,1)\} \subseteq E(H_{8\to 1})$ or $\{(8,3), (6,1)\} \subseteq E(H_{8\to 1})$ or $\{(8,5), (6,1)\} \subseteq E(H_{8\to 1})$ or $\{(8,5), (6,1)\} \subseteq E(H_{8\to 1})$ $\{(4,1)\} \subseteq E(H_{8\to 1})$ or $\{(8,5), (6,1)\} \subseteq E(H_{8\to 1})$. The only possible case is $\{(8,3), (6,1)\} \subseteq E(H_{8\to 1})$. $(6,1) \subseteq E(H_{8\to 1})$, because all the others will result in a pair of successive vertices in $H_{8\to 1}$. But then again $\{(8,3), (6,1)\}$ cannot be the case, because the edge (8,3)would be stuck at vertex 3 as it can use only the edge of length two which results in successive vertices in $H_{8\to 1}$, say $\{5, 6\}$; see Figure 1. This is a contradiction.

There was a conjecture stated in [1] that, for odd $t_1 \ge 7$ and odd $t_2 < 2t_1 + 1$, $T_n\langle 1, 2; t_1, t_2 \rangle$ is non-hamiltonian for $n \in \{t_2 + 3, t_2 + 5, \ldots, 2t_1 + 2\}$. Here we prove this conjecture in Theorem 2.

Figure 1.

Theorem 2 For odd $t_1 \ge 7$ and odd $t_2 < 2t_1 + 1$, if $n \in \{t_2 + 3, t_2 + 5, ..., 2t_1 + 2\}$, then $T_n \langle 1, 2; t_1, t_2 \rangle$ is non-hamiltonian

Proof. Theorem 2.10 in [1], asserts that, for odd $t_2 \ge 7$, $T_n \langle 1, 2; t_2 \rangle$ is non-hamiltonian if $n \in \{t_2 + 3, t_2 + 5, \dots, 2t_2 + 2\}$. For odd t_1 and t_2 such that $t_1 < t_2 < 2t_1 + 1$, we have $t_2 + 3 \le 2t_1 + 2$ (because $t_2 < 2t_1 + 1$ implies that $t_2 + 3 < 2t_1 + 4 \le 2t_1 + 2$) and $2t_1 + 2 < 2t_2 + 2$ (because $t_1 < t_2$). So by Theorem 2.10 in [1], for odd t_1 and t_2 such that $t_1 < t_2 < 2t_1 + 1$ and $t_2 \ge 7$, $T_n \langle 1, 2; t_2 \rangle$ is non-hamiltonian if $n \in \{t_2 + 3, t_2 + 5, \dots, 2t_1 + 2\}$. Now we show that for odd t_1 and t_2 such that $t_1 < t_2 <$ $2t_1 + 1$ and $t_2 \ge 7$, $T_n \langle 1, 2; t_1, t_2 \rangle$ is non-hamiltonian if $n \in \{t_2 + 3, t_2 + 5, \dots, 2t_1 + 2\}$.

Assume, to the contrary, that for odd $t_1 \ge 7$ and odd $t_2 < 2t_1 + 1$, $T_n \langle 1, 2; t_1, t_2 \rangle$ is hamiltonian if $n \in \{t_2+3, t_2+5, \ldots, 2t_1+2\}$. Let $H = H_{1 \to n} \cup H_{n \to 1}$ be a hamiltonian cycle in $T_n(1,2;t_1,t_2)$. This hamiltonian cycle H in $T_n(1,2;t_1,t_2)$ cannot have all the decreasing edges of the same length, say t_1 or t_2 , because by Theorem 2.10 in [1], for odd $t_{i \in \{1,2\}} \ge 7$, $T_n \langle 1,2;t_i \rangle$ is non-hamiltonian if $n \in \{t_i + 3, t_i + 5, \dots, 2t_i + 2\}$. Thus H needs to use the decreasing edges of both length t_1 and t_2 . Since $n \leq 2t_1 + 2$ and $n \leq t_1 + t_2$ (because $n \leq 2t_1 + 2 = t_1 + t_1 + 2 \leq t_1 + t_2$, as $t_1 + 2 \leq t_2$), $H_{n \to 1}$ cannot use more than two decreasing edges, because otherwise $H_{n\to 1}$ contains pairs of successive vertices but, as explained in the proof of Theorem 3.3, $H_{n\to 1}$ contains no pair of successive vertices. Thus $H_{n\to 1}$ can have exactly two decreasing edges of different lengths. Since $d^{-}(v) = 1 = d^{+}(v)$, for every vertex v in H, we have either $(n, n - t_2), (t + 1, 1) \in E(H_{n \to 1})$ or $(n, n - t_1), (t + 2, 1) \in E(H_{n \to 1})$. Since the increasing edges in $H_{n\to 1}$ are of length two only, but $n-t_2$ is odd while t_1+1 is even, it follows that there is no path $P_{n-t_2 \to t_1+1}$ in $H_{n \to 1}$ between $n-t_2$ and t_1+1 . Similarly there is no path $P_{n-t_1 \to t_2+1}$ in $H_{n \to 1}$ between $n-t_1$ and t_2+1 . This is a contradiction.

Now by using Theorems 1 and 2, along with Theorem 3.8 in [1], and using some results in [2, 3], we can generalize Theorem 3.9 in [1] for all t_1 , as follows.

Theorem 3 Let $G = T_n \langle 1, 2; t_1, t_2 \rangle$.

- 1. If t_1 and t_2 both are even, then G is hamiltonian if and only if n is odd.
- 2. If t_1 and t_2 are of opposite parity, then G is hamiltonian for all n.
- 3. If t_1 and t_2 both are odd, and
 - (a) if $t_2 \ge 2t_1 + 1$, then G is hamiltonian for all n.
 - (b) if $t_2 < 2t_1 + 1$, then G is hamiltonian if and only if $n \notin \{t_2 + 3, t_2 + 5, \dots, 2t_1 + 2\}.$

Proof. This is left to the reader.

References

- [1] S. Malik, Hamiltonicity in directed Toeplitz graphs $T_n\langle 1, 2, t_1, t_2 \rangle$, Australas. J. Combin. **78**(3) (2020), 434–449.
- [2] S. Malik and A. M. Qureshi, Hamiltonian Cycles in Directed Toeplitz Graphs, Ars Combin. CIX (2013), 511–526.
- [3] S. Malik, Hamiltonian Cycles in Directed Toeplitz Graphs $T_n \langle 1, 2; t_1 \leq 5, t_2 \rangle$, Util. Math. **99** (2016), 3–17.

(Received 15 Nov 2021; revised 22 Apr 2022)