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Abstract

Let G be a simple graph containing distinct vertices x, y, z, w such that
the edges {x, y}, {z, w} ∈ G and {x, z}, {y, w} �∈ G. The process of
deleting the edges {x, y}, {z, w} from G and adding {x, z}, {y, w} to
G is referred to as a switch (or 2-switch) in G. Let G1 and G2 be two
connected simple graphs with the same vertex set V such that for all
v ∈ V , the degree of v in G1 is the same as in G2. It is well known
that G2 can be obtained from G1 by a sequence of switches. Moreover,
there is one such sequences of switches with only connected graphs. For
some classes of graphs, we study the problem of finding bounds for the
minimum number of switches required for transforming G1 into G2 such
that all graphs in the sequence are connected.

1 Introduction

Let G = (V (G), E(G)) be an undirected graph without loops and parallel edges; that
is, a simple graph where V (G) denotes the set of vertices of G and E(G) denotes
the set of its edges (set of unordered pairs of elements of V (G)). Let x, y, z, w be
distinct vertices such that the edges {x, y}, {z, w} ∈ G and {x, z}, {y, w} �∈ G. The
process of deleting the edges {x, y}, {z, w} from G and adding {x, z}, {y, w} to G
is referred to as a switch (or 2-switch) in G.

Many researchers have studied this switch operation in simple graphs and papers
have been written in many contexts, [2–4, 6–12].

Since the switch operation does not change the degree of each vertex, it preserves
the degree sequence of the graph. Hakimi [14] proved that two graphs have the same

∗ This work was partially supported by the Fundação para a Ciência e a Tecnologia through the
project UIBD/MAT/00297/2020

ISSN: 2202-3518 c©The author(s). Released under the CC BY 4.0 International License



R. FERNANDES /AUSTRALAS. J. COMBIN. 83 (1) (2022), 87–100 88

degree sequence if and only if there is a finite sequence of switches that transforms
one into another (see also [5, 13]).

Let G1 and G2 be two simple graphs on the same set of vertices V such that
dG1(v) = dG2(v), for all v ∈ V . In these conditions, we say that G1 and G2 have the
same V-degree sequence. Since there is a finite sequence of switches that transforms
G1 into G2, Will [17] and, separately Bereg and Ito [1], studied the minimum number
of switches required for this transformation and obtained similar results. Moreover,
Will showed that the computation of this number is NP-complete. In this paper, we
use the notation of [1]. They defined a new graph

F (G1, G2) = (V,E(F )),

where E(F ) = (E(G1) ∪ E(G2)) \ (E(G1) ∩ E(G2)) and its edges are colored with
red if the edge belongs to E(G1) \ E(G2) and with blue if the edge belongs to
E(G2) \ E(G1). They proved that there is a disjoint decomposition of the edges of
F (G1, G2) into red-blue alternating circuits and defined the number ρ(G1, G2) as the
maximum number of circuits for which there is one such edge disjoint decomposition
of F (G1, G2).

If C1, . . . , Cρ(G1,G2) is an edge disjoint decomposition of the edges of F (G1, G2)
into disjoint red-blue alternating circuits, then we say that C1, . . . , Cρ(G1,G2) is a
ρ(G1, G2)-decomposition of F (G1, G2).

More recently, Jaume et al. [15] defined the concept of t-switch as a switch that
transforms a tree to another tree. Generalizing the notion of t-switch we define a
c-switch in a connected graph G as a switch that transforms G into a connected
graph. Note that if G is a tree, then a t-switch is the same as a c-switch.

Let G1 and G2 be two simple connected graphs with the same V-degree sequence.
Taylor [16] proved that there is a sequence of c-switches for transforming G1 into G2.

We denote the minimum number of c-switches that transform G1 into G2 by
ψc(G1, G2).

The main focus of this paper is to study, for some classes of graphs, bounds for
the minimum number of c-switches required for transforming one graph of this class
into another one of the same class.

Through this paper we consider G1 and G2 to be two simple connected graphs
with the same V-degree sequence. For every v ∈ V (G1) we denote by NG1(v) the set
of all vertices adjacent to v in G1. The degree of v in G1 is denoted by dG1(v). If v
and w are two distinct vertices of G1, then we denote a path between them by v−w.
We denote by |V | (respectively, |E(G1)|) the number of elements of V (respectively,
E(G1)). We will also consider the set

Λ(G1, G2) = {� ∈ V : dG1(�) = 1 and NG1(�) = NG2(�)}.

It is well known that ifG1 andG2 are two simple connected graphs with n vertices,
then they have at least n−1 edges. Moreover, if they have n−1 edges, then they are
trees. On the other hand, if they have n edges, then they are unicycle graphs (they
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have one cycle) and if they have n+1 edges, then they are bicycle graphs (they have
at least two cycles).

The main results of this paper are the next theorems.

Theorem 1.1 Let G1 and G2 be two connected unicycle graphs with the same V-
degree sequence. If G1 has at least one pendant vertex, then there is a unicycle graph
Q obtained from G1 by at most one c-switch such that Λ(Q,G2) �= ∅.

Theorem 1.2 Let G1 and G2 be two connected graphs with the same V-degree se-
quence such that |V | = n, |E(G1)| = n + 1. If G1 has at least one pendant vertex,
then there is a bicycle graph Q obtained from G1 by at most one c-switch such that
Λ(Q,G2) �= ∅.

Theorem 1.3 Let G1 and G2 be two connected unicycle graphs with the same V-
degree sequence. Then ψc(G1, G2) ≤ |E(G1)| − 2.

Theorem 1.4 Let G1 and G2 be two bicycle graphs with the same V-degree sequence.
Then ψc(G1, G2) ≤ |E(G1)|.

The paper is organized as follows. In Section 2, we state known results in the
literature related with the problem we study, which we also describe in detail. In
Section 3 we prove Theorem 1.1. In Section 4, we consider bicycle graphs G1 and G2

and prove Theorem 1.2. In Section 5, we give an upper bound for ψc(G1, G2) when
G1 is a tree or a unicycle graph or a bicycle graph, generalizing Theorems 1.3 and 1.4.
Section 6 is dedicated to the circuits of a ρ(G1, G2)-decomposition of F (G1, G2) and
their consequences. Finally, in Section 7, we give some concluding remarks and open
problems.

2 Background

Let G1 and G2 be two simple connected graphs with the same V-degree sequence.
Since the number of red edges in F (G1, G2) is equal to the number of its blue edges,
Bereg and Ito [1] defined the number r(G1, G2) as |E(G1) \ E(G2)| and proved the
following result.

Theorem 2.1 [1] Let G1 and G2 be two simple connected graphs with the same
V-degree sequence. Then the minimum number of switches for transforming G1 into
G2 is equal to

r(G1, G2)− ρ(G1, G2).

The proof of Theorem 2.1 presented a process for transforming G1 into G2 by
r(G1, G2)− ρ(G1, G2) switches, as follows.
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Process 1 [1]

Step 1. Between all ρ(G1, G2)-decompositions of F (G1, G2), choose one with a circuit
C having the minimum number of edges. Let a, b, c, d be a path of C such
that {a, b} and {c, d} are red edges (elements of E(G1) \ E(G2)).

Step 2. • If C has four edges, then R is the graph obtained from G1 by deleting
the edges {a, b} and {c, d} and adding the edges {b, c} and {a, d}. Go
to Step 3.

• Else if C has more than four edges and {a, d} �∈ E(G1) ∪ E(G2), then
R is the graph obtained from G1 by deleting the edges {a, b} and {c, d}
and adding the edges {b, c} and {a, d}. Go to Step 3.

• Else if C has more than four edges and {a, d} ∈ E(G1) ∩ E(G2), then
R′ is the graph obtained from G2 by deleting the edges {b, c} and {a, d}
and adding the edges {a, b} and {c, d}. Go to Step 3.

Step 3. • If R is different from G2, then J = R. Go to Step 1 with J and G2.

• Else if R′ is different from G1, then K = R′. Go to Step 1 with G1 and
K.

• Otherwise, stop.

Let T1 and T2 be two trees with the same V-degree sequence. By Theorem 2.1,
the minimum number of switches for transforming T1 into T2 is equal to r(T1, T2)−
ρ(T1, T2). However, Theorem 2.1 did not mention which graphs appeared in the
sequence of r(T1, T2) − ρ(T1, T2) switches for transforming T1 into T2. Jaume et
al. [15] considered the following process for t-switches.

Process 2 [15]

Step 1. • If Λ(T1, T2) = ∅, then consider Q1 = T1 and Q2 = T2 and go to Step 3.

• Otherwise, consider P1 = T1, P2 = T2 and go to Step 2.

Step 2. • If E(P1) = E(P2), then stop.

• Otherwise, remove from P1 and P2 the vertices of Λ(P1, P2). We obtain
two trees, K1 from P1 and K2 from P2. Go to Step 1 with K1 and K2.

Step 3. Let x be a pendant vertex of Q1, y be its adjacent vertex in Q1 and z be its
adjacent vertex in Q2. Let w be a vertex adjacent to z in Q1 such that w
does not belong to the path x − z, in Q1. Let K be the tree obtained from
Q1 by deleting the edges {x, y} and {z, w} and adding the edges {x, z} and
{y, w}. Consider R1 = K and R2 = Q2 and go to Step 1 with R1 and R2.



R. FERNANDES /AUSTRALAS. J. COMBIN. 83 (1) (2022), 87–100 91

Since in Process 1 we can use edges not incident to pendant vertices and in
Process 2 we must have edges incident to a pendant vertex (one in T1 and another in
T2), a natural question arises: “Can we say that the minimum number of t-switches
for transforming T1 into T2 is equal to r(T1, T2)− ρ(T1, T2)?”

As we can see in the next example, sometimes this happens and sometimes it
does not. Note that Process 2 does not give the minimum number of t-switches.

Example 2.2 Consider the trees T1 and T2

�� �� � �� �� � �

v3v2 v10v4 v5 v11v6 v7v1 v8 v9

T2

T1

�� �� � �� �� � �

v9v8 v4v10 v5 v11v6 v7v1 v2 v3

Drawing the edges of E(T1) \E(T2) by continuous lines and the edges of E(T2) \
E(T1) by discontinuous lines, the graph F (T1, T2) is

� �

� � �

� �

�

v8 v7

v1 v2 v4 v5

v11 v10

F (T1, T2)

Hence the minimum number of switches for transforming T1 into T2 is

r(T1, T2)− ρ(T1, T2) = 4− 2 = 2.

However, if we make the switch represented by the first circuit of F (T1, T2), then we
get a disconnected graph with a cycle. On the other hand, if we make the switch
represented by the second circuit of F (T1, T2), then we get a disconnected graph with
a cycle. Consequently, we need at least three t-switches for transforming T1 into T2.
For example, the tree T3

T3

�� �� � �� �� � �

v5v6 v10v4 v3 v11v2 v7v1 v8 v9

is obtained from T1 by deleting the edges {v1, v2} and {v6, v7} and adding the edges
{v1, v6} and {v2, v7}. Let T4 be the tree
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�� �� � �� �� � �

v5v6 v4v10 v9 v11v8 v7v1 v2 v3

T4

obtained from T3 by deleting the edges {v4, v5} and {v10, v11} and adding the edges
{v5, v10} and {v4, v11}. The tree T2 is obtained from the tree T4 by deleting the edges
{v1, v6} and {v8, v7} and adding the edges {v1, v8} and {v6, v7}. Thus, ψc(T1, T2) = 3.

In the same way, drawing the edges of E(T1) \E(T3) by continuous lines and the
edges of E(T3) \ E(T1) by discontinuous lines, the graph F (T1, T3) is

� �

� �

v6 v7

v1 v2
F (T1, T3)

Therefore the minimum number of switches for transforming T1 into T3 is
r(T1, T3) − ρ(T1, T3) = 2 − 1 = 1. In fact, as we saw, T3 is obtained from T1 by
one t-switch.

3 Connected unicycle graphs

Let G1 and G2 be two unicycle graphs. The main important result of this section
is Theorem 1.1.

Let
Ω(G1, G2) = {� ∈ V : dG1(�) �= 1 and NG1(�) ∩NG2(�) �= ∅}.

Note that if c ∈ Ω(G1, G2) and b ∈ NG1(c) ∩ NG2(c) has degree at least 2, then
b ∈ Ω(G1, G2).

First, we will consider the case when G1 and G2 are cycles.

Proposition 3.1 Let G1 and G2 be two cycles with the same V-degree sequence.
Then there is a cycle P obtained from G1 by at most one c-switch such that E(P ) ∩
E(G2) �= ∅.

Proof. If Ω(G1, G2) �= ∅, then there exist �, p ∈ Ω(G1, G2) such that {�, p} ∈
E(G1) ∩ E(G2).

Now, suppose that Ω(G1, G2) = ∅. Let {a, b} ∈ E(G1) and c ∈ V be adjacent to
a in G2. Thus, c �= b, c �= a and {a, c} �∈ E(G1). Let d ∈ V such that {c, d} ∈ E(G1)
and d does not belong to the path a − c that contains b, in G1. If we remove the
edges {a, b} and {c, d} from G1 and add the edges {a, c} and {b, d}, then we get a
cycle P obtained from G1 by one c-switch. Moreover, {a, c} ∈ E(P ) ∩ E(G2). �

Now, we can prove Theorem 1.1.
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Proof of Theorem 1.1. If Λ(G1, G2) �= ∅ then the result follows.

Suppose that Λ(G1, G2) = ∅. Let a be a pendant vertex in G1 and b, c be its
adjacent vertices in G1 and G2, respectively. Since dG2(c) ≥ 2, let d be a vertex of
G1 such that {c, d} ∈ E(G1) and there is a path a− c in G1, without d. If we remove
the edges {a, b} and {c, d} from G1 and add the edges {a, c} and {b, d}, then we get
a connected graph P obtained from G1 by one c-switch. This implies that P is a
unicycle graph and Λ(P,G2) �= ∅. �

4 Connected bicycle graphs

Let G1 and G2 be two connected bicycle graphs. Let

Υ(G1, G2) = {{�, p} ∈ E(G1) ∩ E(G2) : dG1(�) = 2 = dG1(p) and
G1 − {�, p} and G2 − {�, p} are connected graphs}.

There are three types of connected bicycle graphs without any pendant vertices:

• The tight handcuff which is formed by two cycles sharing a vertex.

• The loose handcuff which is formed by two disjoint cycles connected by a path.

• The theta which has two vertices with degree three that are connected by three
disjoint paths and the other vertices have degree two.

We first show that if G1 and G2 are connected bicycle graphs without any pendant
vertices, then there are bicycle graphs Q1 and Q2 obtained, respectively, from G1 and
G2 by c-switches such that Υ(Q1, Q2) �= ∅.

Lemma 4.1 Let G1 and G2 be two connected graphs with the same V-degree sequence
and without any pendant vertices. If G1 is a tight handcuff graph, then there is a
bicycle graph Q obtained from G1 by at most one c-switch such that Υ(Q,G2) �= ∅.

Proof. Since G1, G2 are connected graphs with the same V-degree sequence and G1

is a tight handcuff graph, G2 is also a tight handcuff graph. If Υ(G1, G2) �= ∅, then
we get the result.

Suppose that Υ(G1, G2) = ∅. Since G1 has two cycles, C1 and C2, shared by one
vertex and each cycle has at least three vertices, there exist a, b ∈ V such that a, b
are vertices of C1, {a, b} ∈ E(G1) and dG1(a) = dG1(b) = 2. Let c ∈ V adjacent to
a in G2 such that dG2(c) = 2. As G2 is a tight handcuff graph, {a, c} belongs to a
cycle in G2. Moreover, c �= b, c �= a and {a, c} �∈ E(G1).

If c belongs to C1, then there is a vertex d ∈ V such that {c, d} ∈ E(G1) and d
does not belong to any path a − c that contains b, in G1. If we remove the edges
{a, b} and {c, d} from G1 and add the edges {a, c} and {b, d}, then we get a tight
handcuff graph P obtained from G1 by one c-switch and {a, c} belongs to a cycle in
P . Since {a, c} ∈ E(P ) ∩ E(G2), we have Υ(P,G2) �= ∅.
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If c belongs to C2, then there is a vertex g ∈ V such that {c, g} ∈ E(G1) and
dG1(g) = 2. If we remove the edges {a, b} and {c, g} from G1 and add the edges
{a, c} and {b, g}, then we get a tight handcuff graph J obtained from G1 by one
c-switch and {a, c} belongs to a cycle in J . Since {a, c} ∈ E(J) ∩ E(G2), we get
Υ(J,G2) �= ∅. �

Lemma 4.2 Let G1 and G2 be two theta graphs with the same V-degree sequence.
Then there is a bicycle graph Q obtained from G1 by at most one c-switch such that
Υ(Q,G2) �= ∅.
Proof. Since G1 is a simple graph, G1 has at least two vertices of degree two. If G1

has at most three vertices of degree two, then it is easy to conclude that G1 and G2

are the same graph or G2 is obtained from G1 by one c-switch. Consequently, we get
the result. Thus, we can suppose that G1 has at least four vertices of degree two.

If Υ(G1, G2) �= ∅, then we get the result.

Suppose that Υ(G1, G2) = ∅. Let d and f be the two vertices of G1 with degree
three and let P1, P2 and P3 be the three disjoint paths d− f in G1.

Case 1. Suppose that there are a, b, c ∈ V such that {a, b} ∈ E(G1), {a, c} ∈
E(G2) and dG1(a) = dG1(b) = dG1(c) = 2. This implies that {a, c} belongs to a cycle
in G2 Moreover, c �= b, c �= a and {a, c} �∈ E(G1). Suppose that a, b belong to P1.
We have two possibilities; c ∈ P1 or not.

First, assume that c belongs to P1. Let g be the vertex in P1 such that {c, g} ∈
E(G1) and, one and only one of the vertices g and b belong to the path a − c,
in P1. If we remove the edges {a, b} and {c, g} from G1 and add the edges {a, c}
and {b, g}, then we get a theta graph S obtained from G1 by one c-switch. Since
{a, c} ∈ E(S) ∩ E(G2) and {a, c} belongs to a cycle in S, we get Υ(S,G2) �= ∅.

Now, assume that c does not belong to P1 and b belongs to the path d− a, in P1.
Suppose that c belongs to P2. Let z ∈ V adjacent to c in G1 and such that z does
not belong to the path d − c, in P2. If we remove the edges {a, b} and {c, z} from
G1 and add the edges {a, c} and {b, z}, then we get a theta graph R obtained from
G1 by one c-switch. Since {a, c} ∈ E(R)∩E(G2) and {a, c} belongs to a cycle in R,
we get Υ(R,G2) �= ∅.

Case 2. Suppose that there are not a, b, c ∈ V such that {a, b} ∈ E(G1),
{a, c} ∈ E(G2) and dG1(a) = dG1(b) = dG1(c) = 2. Then G1 has four vertices of
degree 2. Let x, y, z, w be these four vertices. Therefore, if we suppose that in G1,
x, y are vertices of P1, then z is a vertex of P2 and w is a vertex of P3. Moreover, G2

is a theta graph with three paths between d and f , R1, R2 and R3. Then, in G2, x is
a vertex of R1, y is a vertex of R2 and z, w are vertices of R3. It is easy to conclude
that the result follows. �

Lemma 4.3 Let G be a loose handcuff graph. Then there is a theta graph K obtained
from G by one c-switch.

Proof. Let C1 and C2 be the cycles of G. Let a, b, c, d ∈ V (G) such that dG(a) =
dG(b) = dG(c) = dG(d) = 2, {a, b} ∈ C1 and {c, d} ∈ C2. If we remove the edges
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{a, b} and {c, d} from G and add the edges {a, c} and {b, d}, then we get a theta
graph K obtained from G by one c-switch. �

Lemma 4.4 Let G1 and G2 be connected graphs with the same V-degree sequence
and without any pendant vertices. If G1 is a loose handcuff graph, then there are
bicycle graphs Q1 and Q2 obtained, respectively, from G1 and G2 by at most three
c-switches such that Υ(Q1, Q2) �= ∅.

Proof. By Lemma 4.3, there is a theta graph K1 obtained from G1 by one c-
switch and there is a theta graph K2 obtained from G2 by at most one c-switch. By
Lemma 4.2, we get the result. �

Now we can prove Theorem 1.2.

Proof of Theorem 1.2.
If Λ(G1, G2) �= ∅, then the result follows.

Suppose that Λ(G1, G2) = ∅. Let a be a pendant vertex of G1, b be its adjacent
vertex in G1 and c be its adjacent vertex in G2. Since dG2(c) ≥ 2, let d be a vertex of
G1 such that {c, d} ∈ E(G1) and so that there is a path a− c in G1, without d. If we
remove the edges {a, b} and {c, d} from G1 and add the edges {a, c} and {b, d}, then
we get a connected graph P obtained from G1 by one c-switch, and Λ(P,G2) �= ∅. �

5 Upper bound for the number of c-switches

In the Introduction we mentioned the number ψc(G1, G2) as the minimum number
of c-switches for transforming G1 into G2, when G1 and G2 are connected graphs.
The focus of this section is to describe an upper bound for this number.

Theorem 5.1 Let T1 and T2 be two trees with at least three vertices and the same
V-degree sequence. Then ψc(T1, T2) ≤ |E(T1)| − 2.

Proof. As T1 has at least three vertices, |E(T1)| − 2 ≥ 0. Assume that T1 and T2
are two trees with Λ(T1, T2) = ∅. In each round of Process 2 we get at least one
pendant vertex that is adjacent to a same vertex in the two trees considered and,
consequently, we get a new common edge in the two trees. On the other hand, if
each one of our two trees only have three edges in a path, then applying Process 2
once, we get two equal trees. Therefore the result follows. �

By Theorem 5.1 and the results of Sections 3 and 4 we can prove Theorems 1.3
and 1.4.

Proof of Theorem 1.3. Suppose that G1 is a cycle. By Proposition 3.1, there is
a cycle P obtained from G1 by at most one c-switch such that E(P ) ∩ E(G2) �= ∅.
Removing a common edge from P and G2 we obtain two trees, T1 and T2. By
Theorem 5.1, ψc(T1, T2) ≤ |E(T1)| − 2. Consequently,

ψc(G1, G2) ≤ ψc(T1, T2) + 1 ≤ |E(T1)| − 1 = |E(G1)| − 2.
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Suppose thatG1 has a pendant vertex. By Theorem 1.1, there is an unicycle graph
Q obtained from G1 by at most one c-switch such that Λ(Q,G2) �= ∅. Removing a
common pendant vertex from Q and G2 we have two unicycle graphs. Repeating
this argument we obtain two cycles. By the above arguments we conclude the result.

�

Proof of Theorem 1.4. Suppose that G1 has no pendant vertices. By Lemmas
4.1, 4.2 and 4.4, there are bicycle graphs Q1, Q2 obtained, respectively, from G1 and
G2 by at most three c-switches such that Υ(Q1, Q2) �= ∅. Removing an element of
Υ(Q1, Q2) from Q1 and Q2 we obtain two connected unicycle graphs, H1 and H2.
By Theorem 1.3, ψc(H1, H2) ≤ |E(H1)| − 2. Consequently,

ψc(G1, G2) ≤ ψc(H1, H2) + 3 ≤ |E(H1)|+ 1 = |E(G1)|.

Suppose that G1 has a pendant vertex. By Theorem 1.2, there is a bicycle graph
Q obtained from G1 by at most one c-switch such that Λ(Q,G2) �= ∅. Removing
an element of Λ(Q,G2) from Q and G2 we have two bicycle graphs. Repeating this
argument we obtain two bicycle graphs with no pendant vertices. By the above
arguments we conclude the result. �

Proposition 5.2 Let G1 and G2 be two trees or two connected unicycle graphs with
at least three vertices and the same V-degree sequence. Then r(G1, G2)−ρ(G1, G2) ≤
|E(G1)| − 2.

Proof. By Theorem 2.1, the minimum number of switches for transforming G1 into
G2 is equal to

r(G1, G2)− ρ(G1, G2).

Hence r(G1, G2) − ρ(G1, G2) ≤ ψc(G1, G2). By Theorems 5.1 and 1.3, the result
follows. �

Using Theorems 5.1 and 1.3, and Proposition 5.2, we get the following result.

Corollary 5.3 There do not exist two trees, nor two connected unicycle graphs G1

and G2, with the same V-degree sequence such that ρ(G1, G2) = 1, and having no
common edge.

Proof. Suppose there are graphs G1 and G2 satisfying the conditions of this corollary
such that ρ(G1, G2) = 1 and having no common edge. Consequently,

|E(G1)| − 1 = |E(G1) \ E(G2)| − 1 = r(G1, G2)− ρ(G1, G2).

This is impossible by Proposition 5.2. �
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6 The ρ(G1, G2)-decomposition

In this section we obtain some results about the circuits of a ρ(G1, G2)-decompos-
ition of F (G1, G2), where G1 and G2 are two simple connected graphs with the same
V-degree sequence.

Proposition 6.1 Let G1 and G2 be two simple connected graphs with the same V-
degree sequence. Let a, b, c be three distinct elements of V such that

{a, b} ∈ E(G1) \ E(G2) and {b, c} ∈ E(G2) \ E(G1).

Let C be a circuit of a ρ(G1, G2)-decomposition of F (G1, G2), to which {a, b} and
{b, c} belong. Then there is a disjoint red-blue alternating circuit C ′ of F (G1, G2)
with the same edges as C and the path a, b, c.

Moreover, C ′ is a circuit of a ρ(G1, G2)-decomposition of F (G1, G2).

Proof. If a, b, c is a path in C, then the result follows. Suppose that a, b, c is not
a path in C. Let f and g be the vertices such that a, b, f and g, b, c are paths in
C. Suppose that a, b, f, . . . , g, b, c is the walk in C, without repeated edges, from a
to c where the two referred paths belong. Denote by bf and bg the vertex b next to
f and g in this walk, respectively. If W is obtained from C by deleting the edges
{bf , f} and {bg, c} and adding the edges {bf , c} and {bg, f}, then W is the union
of two red-blue alternating circuits of the edges of F (G1, G2). This contradicts the
hypothesis. Thus, a, b, f, . . . , c, b, g is the walk in C, without repeated edges, from
a to g where the two referred paths belong. If C ′ is the circuit obtained from C by
deleting the edges {bf , f} and {bg, c} and adding the edges {bf , c} and {bg, f}, then
a, b, c is a path in C ′ and we get the result. �

As we can see in the next example, Proposition 6.1 does not hold when there
is not a circuit in a ρ(G1, G2)-decomposition of F (G1, G2) where {a, b} and {b, c}
belong.

Example 6.2 Consider the trees T1 and T2

�� �� � ��� � �

� � � �

br �� c gau r b

a g u c

�
�

�

�
�
�

�
�

�

�
�
�

T2T1
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Drawing the edges of E(T1)\E(T2) with continuous lines and the edges of E(T2)\
E(T1) with discontinuous lines, the unique ρ(T1, T2)-decomposition of F (T1, T2) is

� �

� � �

� �

�

r u

a b b g

c �

Therefore, there is no ρ(T1, T2)-decomposition having a circuit with the edges
{a, b} and {b, c}.

Proposition 6.3 Let G1 and G2 be two simple connected graphs with the same
V-degree sequence. Let a, b, c, d be four distinct elements of V such that

{a, b}, {c, d} ∈ E(G1) \ E(G2) and {b, c} ∈ E(G2) \ E(G1).

Let C be a circuit of a ρ(G1, G2)-decomposition of F (G1, G2) to which {a, b}, {b, c}
and {c, d} belong. Then there is a disjoint red-blue alternating circuit C ′′ of F (G1, G2)
with the same edges as C and the path a, b, c, d.

Moreover, C ′′ is a circuit of a ρ(G1, G2)-decomposition of F (G1, G2).

Proof. By Proposition 6.1, let C ′ be a disjoint red-blue alternating circuit of
F (G1, G2) with the same edges as C and the path a, b, c. If a, b, c, d is a path in
C ′, then the result follows. Suppose that a, b, c, d is not a path in C ′. Let f be
the vertex such that a, b, c, f is a path of C ′. Let r, c, d be the path in C ′ where
the edge {c, d} belongs. Suppose that d, c, r, . . . , a, b, c, f is the walk in C ′, without
repeated edges, from d to f where the two referred paths belong. Denote by cr and
cf the vertex c next to r and f in this walk, respectively. If W is obtained from C ′

by deleting the edges {cr, r} and {cf , f} and adding the edges {cf , r} and {cr, f},
then W is the union of two red-blue alternating circuits of the edges of F (G1, G2).
This contradicts the hypothesis. Hence r, c, d, . . . , a, b, c, f is the walk in C ′, without
repeated edges, from d to f where the two referred paths belong. Let C ′′ be the
circuit obtained from C ′ by deleting the edges {cr, r} and {cf , f} and adding the
edges {cf , r} and {cr, f}. Then a, b, c, d is a path in C ′′ and we get the result. �

Proposition 6.4 Let G1 and G2 be two connected graphs, with the same V-degree
sequence, such that ρ(G1, G2) = 1 and there is a sequence of c-switches for trans-
forming G1 into G2. Let a, b, c, d be four distinct elements of V such that

{a, b}, {c, d} ∈ E(G1) \ E(G2), {b, c} ∈ E(G2) \ E(G1), {a, d} �∈ E(G1)

and there is a path a− d in G1, to which b belongs and c does not.
Let H be the graph obtained from G1 by removing the edges {a, b} and {c, d} and
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adding the edges {b, c} and {a, d}. Then H is a connected graph. Moreover, if there
is a sequence of c-switches for transforming H into G2, then

ψc(G1, G2) ≤ ψc(H,G2) + 1.

Proof. Since ρ(G1, G2) = 1 by Proposition 6.3 we can assume that a, b, c, d is a path
in the circuit C of a ρ(G1, G2) decomposition of F (G1, G2). Let x, y ∈ V . As G1

is connected, there is a path x − y in G1. If {a, b} and {c, d} do not belong to this
path, then the mentioned path is a path x − y in H . Suppose that {a, b} or {c, d}
belong to the path x − y in G1. As there is a path a − d in G1, to which b belongs
and c does not, there is a path b − d in G1, without a and c. Hence, if we remove
the edge {a, b} from the path x − y in G1 and add the path a, d − b, then we get a
walk x− y without the edge {a, b}. If we remove the edge {c, d} from this last walk
x − y in G1 and add the path c, b − d, then we get a walk x − y without the edges
{a, b} and {c, d}. Consequently, there is a path x − y in H and H is a connected
graph obtained from G1 by one c-switch.

If there is a sequence of c-switches for transforming H into G2, then there is a
sequence of c-switches for transforming G1 into G2 and the graph H is obtained from
G1 by the first c-switch. Therefore, ψc(G1, G2) ≤ ψc(H,G2) + 1. �

7 Conclusions

We have defined graphs with the same V-degree sequence as graphs on the same set
of vertices V such that the degree of each v ∈ V is the same in all these graphs.
We also have defined a c-switch in a connected graph as a switch that transforms a
connected graph into another connected graph.

Let G1 and G2 be two connected graphs with n vertices, at most n+1 edges and
the same V-degree sequence. We have studied bounds for the minimum number of
switches required for transforming G1 into G2.

We conclude with some open questions.

1. Describe all pairs, (G1, G2), of connected graphs with n vertices and at most
n + 1 edges such that ψc(G1, G2) = r(G1, G2)− ρ(G1, G2).

2. Describe all pairs, (G1, G2), of connected graphs with n vertices and at most
n + 1 edges such that ψc(G1, G2) = |E(G1)| − 2.

Acknowledgements

The author would like to thank the referees for the valuable comments that helped
improving the first version of this paper.



R. FERNANDES /AUSTRALAS. J. COMBIN. 83 (1) (2022), 87–100 100

References

[1] S. Bereg and H. Ito, Transforming graphs with the same graphic sequence, J. Inf.
Process 25 (2017), 627–633.

[2] R.A. Brualdi, Combinatorial Matrix Classes, Encyclopedia of Mathematics and its
Applications vol. 108, Cambridge Univ. Press, Cambridge (2006).

[3] R.A. Brualdi and S.-G. Hwang, A Bruhat order for the class of (0, 1)-matrices with
row sum vector R and column sum vector S, Electron. J. Linear Alg. 12 (2004), 6–16.

[4] R.A. Brualdi, R. Fernandes and S. Furtado, On the Bruhat order of labeled graphs,
Discrete Appl. Math. 258 (2019), 49–64.

[5] V. Chungphaisan, Conditions for sequences to be r-graphic, Discrete Math. 7 (1974),
31–39.

[6] H. F. Cruz, R. Fernandes and S. Furtado, Minimal matrices in the Bruhat order for
symmetric (0, 1)-matrices, Lin. Alg. Appl. 530 (2017), 160–184.

[7] R. Fernandes and H.F. da Cruz, On the term rank partition, Lin. Alg. Appl. 458
(2014), 134–148.

[8] R. Fernandes, H. F. da Cruz and D. Salomão, Classes of (0, 1)-matrices where the
Bruhat order and the Secondary Bruhat order coincide, Order 37 (2020), 207–221.

[9] R. Fernandes and S. Furtado, Extremal matrices for the Bruhat-graph order, Lin.
Multilin. Algebra 69 (2020), 1–20.

[10] R. Fernandes, H. F. da Cruz and D. Salomão, On a conjecture concerning the Bruhat
order, Lin. Alg. Appl. 600 (2020), 82–95.

[11] R. Fernandes, H. F. da Cruz and D. Salomão, On the little Bruhat order, Electron. J.
Lin. Alg. 37 (2021), 113–126.

[12] R. Fernandes, H. F. da Cruz and D. Salomão, The Bruhat Order on classes of isotopic
Latin Squares, Port. Math. 77 (2020), 111–131.

[13] D.R. Fulkerson, A. J. Hoffman and M.H. McAndrew, Some properties of graphs with
multiple edges, Canad. J. Math. 17 (1965), 166–177.

[14] S. L. Hakimi, On realizability of a set of integers as degrees of the vertices of a linear
graph—I, J. Soc. Indust. Appl. Math. 10 (1962), 135–147.
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