A group induced four-circulant construction for self-dual codes and new extremal binary self-dual codes

Joe Gildea
Department of Computing Sciences and Mathematics
School of Informatics and Creative Arts
Dundalk Institute of Technology, Ireland

Abidin Kaya

Harmony School of Technology
Houston, TX 77038, U.S.A.
Alexander Tylyshchak*
Ferenc Rákóczi II Transcarpathian Hungarian College of Higher Education Ukraine

Bahattin Yildiz ${ }^{\dagger}$
Department of Mathematics \& Statistics and School of Informatics, Computing and Cyber Systems Northern Arizona University, Flagstaff, AZ 86011, U.S.A. bahattin.yildiz@nau.edu

Abstract

We introduce an altered version of the four-circulant construction over group rings for self-dual codes. We consider this construction over the binary field, the rings $\mathbb{F}_{2}+u \mathbb{F}_{2}$ and $\mathbb{F}_{4}+u \mathbb{F}_{4}$ using groups of orders 3,7 , 9,13 , and 15 . Through these constructions and their extensions, we find binary self-dual codes of lengths $32,40,56,64,68$ and 80 , all of which are extremal or optimal. In particular, we find five new self-dual codes with parameters [56, 28, 10], twenty-three extremal binary self-dual codes of length 68 with new weight enumerators and fifteen new self-dual codes with parameters [80, 40, 14].

[^0]
1 Introduction

Constructions coming from group rings that have emerged in recent works have extended the tools for binary self-dual codes. Many of the classical constructions have been found to be related to certain groups and considering different group rings have brought new construction methods into the literature. This connection was first highlighted in [15], where a connection between certain group ring elements called unitary units and self-dual codes was established and the connection was used to produce many self-dual codes. The main idea is to take a matrix of the form $\left[I_{n} \mid A\right]$, where A is an $n \times n$ matrix that has a special structure depending on the group rings used.

Previously, group ring elements were used in a different way to construct certain special codes. In [1], an ideal of the group algebra $\mathbb{F}_{2} S_{4}$ was used to construct the well-known binary extended Golay code where S_{4} is the symmetric group on 4 elements. In [21], an isomorphism between a group ring and a certain subring of the $n \times n$ matrices over the ring was established. This isomorphism was used to produce special self-dual codes in [22, 24].

The inspiration for this work comes from modifying the four-circulant construction, which was first introduced in [2]. Let G be the matrix

$$
\left[\begin{array}{c|cc}
I_{2 n} & A & B \\
-B^{T} & A^{T}
\end{array}\right]
$$

where A and B are circulant matrices. Then the code generated by G over \mathbb{F}_{p} is self-dual if and only if $A A^{T}+B B^{T}=-I_{n}$. Note that when the alphabet is a ring of characteristic 2 , then the matrix and the conditions can be written in an alternative form, where the negative signs disappear.

In this work, we will consider constructing self-dual codes from the following variation of the four-circulant matrix. Consider the matrix

$$
\left[\begin{array}{c|cc}
I_{2 n} & A & B \\
B^{T} & A^{T}
\end{array}\right],
$$

where both A and B are matrices that arise from group rings. Depending on the groups, the matrices will usually not be circulant matrices, which is a variation from the usual four-circulant construction. Under this construction, we establish the link between units/non-units in the group ring and corresponding self-dual codes. Using this connection for some particular examples of groups over the field \mathbb{F}_{2} and the rings $\mathbb{F}_{2}+u \mathbb{F}_{2}$ and $\mathbb{F}_{4}+u \mathbb{F}_{4}$, we are able to construct many extremal and optimal binary selfdual codes of different lengths. In particular, we construct five new self-dual codes with parameters [56, 28, 10], twenty-three extremal binary self-dual codes of length 68 with new weight enumerators, and fifteen new self-dual codes with parameters [$80,40,14]$.

The rest of the work is organized as follows. In Section 2, we give the necessary background on codes, the alphabets we use and the group rings. In Section 3, we
give the constructions and the theoretical results about the group ring elements that lead to self-dual codes. In Sections 4 and 5, we apply the construction methods to produce the numerical results, using MAGMA [3]. The paper ends with concluding remarks and possible further research directions.

2 Preliminaries

In this section we will define self-dual codes over Frobenius rings of characteristic 2. We will recall some of the properties of the family of rings called R_{k} and the ring $\mathbb{F}_{4}+$ $u \mathbb{F}_{4}$. This section concludes with an introduction to group rings and an established isomorphism between a group ring and a certain subring of the $n \times n$ matrices over a ring.

2.1 Self-dual codes

Throughout this work, all rings are assumed to be commutative, finite Frobenius rings with a multiplicative identity.

A code over a finite commutative ring R is said to be any subset C of R^{n}. When the code is a submodule of the ambient space then the code is said to be linear. To the ambient space, we attach the usual inner-product, specifically $[\mathbf{v}, \mathbf{w}]=\sum v_{i} w_{i}$. The dual code with respect to this inner-product is defined as $C^{\perp}=\{\mathbf{w} \mid \mathbf{w} \in$ $\left.R^{n},[\mathbf{w}, \mathbf{v}]=0, \forall \mathbf{v} \in C\right\}$. Since the ring is Frobenius we have that for all linear codes over $R,|C|\left|C^{\perp}\right|=|R|^{n}$. If a code satisfies $C=C^{\perp}$ then the code C is said to be self-dual. If $C \subseteq C^{\perp}$ then the code is said to be self-orthogonal.

For binary codes, a self-dual code where all weights are divisible by 4 is said to be Type II, and otherwise the code is said to be Type I. The bounds on the minimum distances for binary self-dual codes are given in the following theorem:
Theorem 2.1. ([25]) Let $d(n)$ denote the minimum distance of a binary self-dual code of length n. Then we have

$$
d(n) \leq\left\{\begin{array}{lll}
4\left\lfloor\frac{n}{24}\right\rfloor+4 & \text { if } n \not \equiv 22 & (\bmod 24) \\
4\left\lfloor\frac{n}{24}\right\rfloor+6 & \text { if } n \equiv 22 & (\bmod 24) .
\end{array}\right.
$$

Self-dual codes that meet these bounds are called extremal. In Sections 4 and 5 we will construct extremal binary self-dual codes of different lengths.

$2.2 \quad R_{k}$ family of rings

An important class of rings that has been used extensively in constructing codes is the ring family of R_{k}, which has been introduced in [12]. We will be mainly using $R_{0}=\mathbb{F}_{2}$ and $R_{1}=\mathbb{F}_{2}+u \mathbb{F}_{2}$ in this work; however, some of the theoretical results will be true for all R_{k}, which is why we would like to give a brief description of the rings, mainly from [12] and [13]. For $k \geq 1$, define

$$
R_{k}=\mathbb{F}_{2}\left[u_{1}, u_{2}, \ldots, u_{k}\right] /\left\langle u_{i}^{2}, u_{i} u_{j}-u_{j} u_{i}\right\rangle,
$$

which can also be defined recursively as

$$
R_{k}=R_{k-1}\left[u_{k}\right] /\left\langle u_{k}^{2}, u_{k} u_{j}-u_{j} u_{k}\right\rangle=R_{k-1}+u_{k} R_{k-1} .
$$

For any subset $A \subseteq\{1,2, \ldots, k\}$ we will fix

$$
u_{A}:=\prod_{i \in A} u_{i}
$$

with the convention that $u_{\emptyset}=1$. Then any element of R_{k} can be represented as

$$
\sum_{A \subseteq\{1, \ldots, k\}} c_{A} u_{A}, \quad c_{A} \in \mathbb{F}_{2} .
$$

With this representation of the elements, we have

$$
u_{A} u_{B}= \begin{cases}0 & \text { if } A \cap B \neq \emptyset \\ u_{A \cup B} & \text { if } A \cap B=\emptyset\end{cases}
$$

and

$$
\left(\sum_{A} c_{A} u_{A}\right)\left(\sum_{B} d_{B} u_{B}\right)=\sum_{A, B \subseteq\{1, \ldots, k\}, A \cap B=\emptyset} c_{A} d_{B} u_{A \cup B} .
$$

It is shown in [12] that the ring family R_{k} is a commutative ring with $\left|R_{k}\right|=2^{\left(2^{k}\right)}$.
A Gray map from R_{k} to $\mathbb{F}_{2}^{2^{k}}$ was defined inductively starting with the map on $R_{1}: \phi_{1}\left(a+b u_{1}\right)=(b, a+b)$. We recall that if $c \in R_{k}$, then c can be written as $c=a+b u_{k-1}, a, b \in R_{k-1}$. Then

$$
\phi_{k}(c)=\left(\phi_{k-1}(b), \phi_{k-1}(a+b)\right) .
$$

The map ϕ_{k} is a distance preserving map and the following is shown in 13.
Theorem 2.2. Let C be a self-dual code over R_{k}. Then $\phi_{k}\left(R_{k}\right)$ is a binary self-dual code of length $2^{k} n$.

The following lemma describes a property of units and non-units in R_{k}.
Lemma 2.3. ([12]) For an element $\alpha \in R_{k}$ we have

$$
\alpha^{2}= \begin{cases}1 & \text { if } \alpha \text { is a unit } \\ 0 & \text { otherwise } .\end{cases}
$$

The next result, which was introduced in [11, can easily be extended to be true for R_{k} as well.
Theorem 2.4. Let \mathcal{C} be a self-dual code over R_{k} of length n and $G=\left(r_{i}\right)$ be a $j \times n$ generator matrix for \mathcal{C}, where r_{i} is the i-th row of $G, 1 \leq i \leq j$. Let c be a unit in R_{k} and X be a vector in $R_{k}{ }^{n}$ with $\langle X, X\rangle=1$. Let $y_{i}=\left\langle r_{i}, X\right\rangle$ for $1 \leq i \leq j$. Then the matrix

$$
\left(\begin{array}{cc|c}
1 & 0 & X \\
\hline y_{1} & c y_{1} & r_{1} \\
\vdots & \vdots & \vdots \\
y_{j} & c y_{j} & r_{j}
\end{array}\right)
$$

generates a self-dual code \mathcal{C}^{\prime} over R_{k} of length $n+2$.

2.3 The ring $\mathbb{F}_{4}+u \mathbb{F}_{4}$

Let $\mathbb{F}_{4}=\mathbb{F}_{2}(\omega)$ be the quadratic field extension of \mathbb{F}_{2}, where $\omega^{2}+\omega+1=0$. The ring $\mathbb{F}_{4}+u \mathbb{F}_{4}$ is defined via $u^{2}=0$. Note that $\mathbb{F}_{4}+u \mathbb{F}_{4}$ can be viewed as an extension of $R_{1}=\mathbb{F}_{2}+u \mathbb{F}_{2}$ and so we can describe any element of $\mathbb{F}_{4}+u \mathbb{F}_{4}$ in the form $\omega a+\bar{\omega} b$ uniquely, where $a, b \in \mathbb{F}_{2}+u \mathbb{F}_{2}$.

A linear code C of length n over $\mathbb{F}_{4}+u \mathbb{F}_{4}$ is an $\left(\mathbb{F}_{4}+u \mathbb{F}_{4}\right)$-submodule of $\left(\mathbb{F}_{4}+u \mathbb{F}_{4}\right)^{n}$. In [14] and [8] the following Gray maps were introduced:

$$
\begin{array}{l||l}
\psi_{\mathbb{F}_{4}}:\left(\mathbb{F}_{4}\right)^{n} \rightarrow\left(\mathbb{F}_{2}\right)^{2 n} & \varphi_{\mathbb{F}_{2}+u \mathbb{F}_{2}}:\left(\mathbb{F}_{2}+u \mathbb{F}_{2}\right)^{n} \rightarrow \mathbb{F}_{2}^{2 n} \\
a \omega+b \bar{\omega} \mapsto(a, b), a, b \in \mathbb{F}_{2}^{n} & a+b u \mapsto(b, a+b), a, b \in \mathbb{F}_{2}^{n} .
\end{array}
$$

Note that $\varphi_{\mathbb{F}_{2}+u \mathbb{F}_{2}}$ is the same map as ϕ_{1} described before. Those were generalized to the following maps in [23]:

$$
\begin{aligned}
& \psi_{\mathbb{F}_{4}+u \mathbb{F}_{4}}:\left(\mathbb{F}_{4}+u \mathbb{F}_{4}\right)^{n} \rightarrow\left(\mathbb{F}_{2}+u \mathbb{F}_{2}\right)^{2 n} \\
& a \omega+b \bar{\omega} \mapsto(a, b), a, b \in\left(\mathbb{F}_{2}+u \mathbb{F}_{2}\right)^{n}
\end{aligned} \| \begin{aligned}
& \varphi_{\mathbb{F}_{4}+u \mathbb{F}_{4}}:\left(\mathbb{F}_{4}+u \mathbb{F}_{4}\right)^{n} \rightarrow \mathbb{F}_{4}^{2 n} \\
& a+b u \mapsto(b, a+b), a, b \in \mathbb{F}_{4}^{n}
\end{aligned}
$$

These maps preserve orthogonality in the corresponding alphabets. The binary images $\varphi_{\mathbb{F}_{2}+u \mathbb{F}_{2}} \circ \psi_{\mathbb{F}_{4}+u \mathbb{F}_{4}}(C)$ and $\psi_{\mathbb{F}_{4}} \circ \varphi_{\mathbb{F}_{4}+u \mathbb{F}_{4}}(C)$ are equivalent. The Lee weight of an element is defined to be the Hamming weight of its binary image.

Proposition 2.5. ([23]) Let C be a code over $\mathbb{F}_{4}+u \mathbb{F}_{4}$. If C is self-orthogonal, so are $\psi_{\mathbb{F}_{4}+u \mathbb{F}_{4}}(C)$ and $\varphi_{\mathbb{F}_{4}+u \mathbb{F}_{4}}(C)$. Also C is a Type I (respectively, Type II) code over $\mathbb{F}_{4}+u \mathbb{F}_{4}$ if and only if $\varphi_{\mathbb{F}_{4}+u \mathbb{F}_{4}}(C)$ is a Type I (respectively, Type II) \mathbb{F}_{4}-code, if and only if $\psi_{\mathbb{F}_{4}+u \mathbb{F}_{4}}(C)$ is a Type I (respectively, Type II) $\mathbb{F}_{2}+u \mathbb{F}_{2}$-code. Furthermore, the minimum Lee weight of C is the same as the minimum Lee weight of $\psi_{\mathbb{F}_{4}+u \mathbb{F}_{4}}(C)$ and $\varphi_{\mathbb{F}_{4}+u \mathbb{F}_{4}}(C)$.

Corollary 2.6. Suppose that C is a self-dual code over $\mathbb{F}_{4}+u \mathbb{F}_{4}$ of length n and minimum Lee distance d. Then $\varphi_{\mathbb{F}_{2}+u \mathbb{F}_{2}} \circ \psi_{\mathbb{F}_{4}+u \mathbb{F}_{4}}(C)$ is a binary $[4 n, 2 n, d]$ self-dual code. Moreover, C and $\varphi_{\mathbb{F}_{2}+u \mathbb{F}_{2}} \circ \psi_{\mathbb{F}_{4}+u \mathbb{F}_{4}}(C)$ have the same weight enumerator. If C is Type I (Type II), then so is $\varphi_{\mathbb{F}_{2}+u \mathbb{F}_{2}} \circ \psi_{\mathbb{F}_{4}+u \mathbb{F}_{4}}(C)$.

2.4 Shorthand notation for elements of $\mathbb{F}_{2}+u \mathbb{F}_{2}$ and $\mathbb{F}_{4}+u \mathbb{F}_{4}$

In subsequent sections we will be writing tables in which vectors with elements from the rings $\mathbb{F}_{2}+u \mathbb{F}_{2}$ and $\mathbb{F}_{4}+u \mathbb{F}_{4}$ will appear. In order to avoid writing long vectors with elements that can be confused with other elements, we will be describing the elements of these rings in a shorthand way, which will make the tables more compact.

For elements of $\mathbb{F}_{2}+u \mathbb{F}_{2}$, elements $0,1, u$ will be written as they are, while $1+u$ will be replaced by 3 . So, for example, a vector of the form $(1,1+u, 0,0, u, 1+u)$ will be described as (1300u3).

For the elements of $\mathbb{F}_{4}+u \mathbb{F}_{4}$, we use the ordered basis $\{u \omega, \omega, u, 1\}$ to express the elements of $\mathbb{F}_{4}+u \mathbb{F}_{4}$ as binary strings of length 4 . Then we will use the hexadecimal number system to describe each element:
$0 \leftrightarrow 0000,1 \leftrightarrow 0001,2 \leftrightarrow 0010,3 \leftrightarrow 0011,4 \leftrightarrow 0100,5 \leftrightarrow 0101,6 \leftrightarrow 0110$, $7 \leftrightarrow 0111,8 \leftrightarrow 1000,9 \leftrightarrow 1001, A \leftrightarrow 1010, B \leftrightarrow 1011, C \leftrightarrow 1100, D \leftrightarrow 1101$, $E \leftrightarrow 1110, F \leftrightarrow 1111$.

For example, $1+u \omega$ corresponds to 1001 , which is represented by the hexadecimal 9 , while $\omega+u \omega$ corresponds to 1100 , which is represented by C.

2.5 Certain matrices and group rings

We start with a description of circulant matrices and block circulant matrices, the details for which can be found in [6].

Definition 1. A circulant matrix over a ring R is a square $n \times n$ matrix, which takes the form

$$
\operatorname{circ}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left(\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & \ldots & a_{n} \\
a_{n} & a_{1} & a_{2} & \ldots & a_{n-1} \\
a_{n-1} & a_{n} & a_{1} & \ldots & a_{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{2} & a_{3} & a_{4} & \ldots & a_{1}
\end{array}\right)
$$

where $a_{i} \in R$.
Definition 2. A block circulant matrix over a ring R is a square $k n \times k n$ matrix, which takes the form

$$
\operatorname{CIRC}\left(A_{1}, A_{2}, \ldots, A_{n}\right)=\left(\begin{array}{ccccc}
A_{1} & A_{2} & A_{3} & \ldots & A_{n} \\
A_{n} & A_{1} & A_{2} & \ldots & A_{n-1} \\
A_{n-1} & A_{n} & A_{1} & \ldots & A_{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
A_{2} & A_{3} & A_{4} & \ldots & A_{1}
\end{array}\right)
$$

where each A_{i} is a $k \times k$ matrix over R.

Let G be a finite group of order n. Then the group ring $R G$ consists of $\sum_{i=1}^{n} \alpha_{i} g_{i}$, $\alpha_{i} \in R, g_{i} \in G$. Addition in the group ring is done by coordinate addition, namely

$$
\sum_{i=1}^{n} \alpha_{i} g_{i}+\sum_{i=1}^{n} \beta_{i} g_{i}=\sum_{i=1}^{n}\left(\alpha_{i}+\beta_{i}\right) g_{i}
$$

The product of two elements in a group ring is given by

$$
\left(\sum_{i=1}^{n} \alpha_{i} g_{i}\right)\left(\sum_{j=1}^{n} \beta_{j} g_{j}\right)=\sum_{i, j} \alpha_{i} \beta_{j} g_{i} g_{j}
$$

It follows that the coefficient of g_{k} in the product is $\sum_{g_{i} g_{j}=g_{k}} \alpha_{i} \beta_{j}$.

The following construction of a matrix was first given by Hurley in [21]. Let R be a finite commutative Frobenius ring of characteristic 2 and let $G=\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$ be a group of order n. Let $v=\sum_{i=1}^{n} \alpha_{g_{i}} g_{i} \in R G$. Define the matrix $\sigma(v) \in M_{n}(R)$ to be $\sigma(v)=\left(\alpha_{g_{i}^{-1} g_{j}}\right)$ where $i, j \in\{1, \ldots, n\}$. We note that the elements $g_{1}^{-1}, g_{2}^{-1}, \ldots, g_{n}^{-1}$ are the elements of the group G in a given order.

Recall the canonical involution $*: R G \rightarrow R G$ on a group ring $R G$ is given by $v^{*}=\sum_{g} a_{g} g^{-1}$, for $v=\sum_{g} a_{g} g \in R G$. An important connection between v^{*} and v appears when we take their images under the σ map:

$$
\sigma\left(v^{*}\right)=\sigma(v)^{T}
$$

We will now describe $\sigma(v)$ for the following group rings $R G$ where $G \in\left\{C_{n}, C_{m} \times\right.$ $\left.C_{n}, C_{m, n}\right\}$.

- Let $G=\left\langle x \mid x^{n}=1\right\rangle \cong C_{n}$. If $v=\sum_{i=0}^{n-1} \alpha_{i+1} x^{i} \in R C_{n}$, then $\sigma(v)=\operatorname{circ}\left(a_{0}, a_{1}\right.$, $\left.\ldots, a_{n-1}\right)$.
- Let $G=\left\langle x, y \mid x^{n}=y^{m}=1, x y=y x\right\rangle \cong C_{m} \times C_{n}$. If

$$
v=\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} a_{1+i+m j} x^{i} y^{j} \in R\left(C_{m} \times C_{n}\right)
$$

then $\sigma(v)=\operatorname{CIRC}\left(A_{1}, \ldots, A_{n}\right)$ where $A_{j+1}=\operatorname{circ}\left(a_{1+m j}, a_{2+m j}, \ldots, a_{m+m j}\right)$, $a_{i} \in R$ and $m, n \geq 2$.

- Let $G=C_{m, n}=\left\langle x \mid x^{m n}=1\right\rangle$. If $v=\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} a_{1+i+m j} x^{n i+j} \in R C_{m, n}$, then

$$
\sigma(v)=\left(\begin{array}{cccccc}
A_{1} & A_{2} & A_{3} & \cdots & A_{n-1} & A_{n} \\
A_{n}^{\prime} & A_{1} & A_{2} & \cdots & A_{n-2} & A_{n-1} \\
A_{n-1}^{\prime} & A_{n}^{\prime} & A_{1} & \cdots & A_{n-3} & A_{n-2} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots A_{2}^{\prime} & \vdots A_{3}^{\prime} & A_{4}^{\prime} & \cdots & A_{n}^{\prime} & A_{1}
\end{array}\right),
$$

where $A_{j+1}=\operatorname{circ}\left(a_{1+m j}, a_{2+m j}, \ldots, a_{m+m j}\right), A_{j+1}^{\prime}=\operatorname{circ}\left(a_{m+m j}, a_{1+m j}, \ldots\right.$, $\left.a_{(m-1)+m j}\right), a_{i} \in R$ and $m, n \geq 2$. Note that $C_{m, n}$ is the same as the cyclic group $C_{m n}$; however, we give a different labeling to the elements, which makes $\sigma(v)$ different from the matrix that we obtain from the standard labeling of cyclic groups.

3 The construction

Let $v_{1}, v_{2} \in R G$ where R is a finite commutative Frobenius ring of characteristic $2, G$ is a finite group of order p (where p is odd) and $\gamma_{i} \in R$. Define the following matrix:

$$
\begin{aligned}
& =\left[\begin{array}{c|c|c|c|c}
\gamma_{1} & \gamma_{2} \cdots \gamma_{2} & \gamma_{3} & \gamma_{4} \cdots \gamma_{4} \\
\hline \gamma_{2} & & \gamma_{4} & \\
\vdots & \sigma\left(v_{1}\right) & \vdots & \sigma\left(v_{2}\right) \\
\gamma_{2} & & \gamma_{4} & \\
\hline \gamma_{3} & \gamma_{4} \cdots \gamma_{4} & \gamma_{1} & \gamma_{2} \cdots \gamma_{2} \\
\hline \gamma_{4} & & \gamma_{2} & \\
\vdots & \sigma\left(v_{2}\right)^{T} & \vdots & \sigma\left(v_{1}\right)^{T}
\end{array}\right]
\end{aligned}
$$

Let C_{σ} be a code that is generated by the matrix $M(\sigma)$. Then the code C_{σ} has length $4 p+4$. We aim to establish some restrictions when this construction yields self-dual codes.

Theorem 3.1. Let R be a finite commutative Frobenius ring of characteristic 2 and let $G=\left\{g_{1}, g_{2}, \ldots, g_{p}\right\}$ be a finite group of order p (where p is odd). If

1. $v_{1} v_{2}=v_{2} v_{1}$,
2. $\sum_{i=1}^{4} \gamma_{i}^{2}=1$,
3. $v_{1} v_{1}^{*}+v_{2} v_{2}^{*}+\left(\gamma_{2}+\gamma_{4}\right)^{2} \widehat{g}+1=0$,
4. $v_{1}^{*} v_{1}+v_{2}^{*} v_{2}+\left(\gamma_{2}+\gamma_{4}\right)^{2} \widehat{g}+1=0$, and
5. $\gamma_{1}=\delta_{1}$ and $\gamma_{3}=\delta_{2}$,
then C_{σ} is a self-dual code of length $4 p+4$ where $\widehat{g}=\sum_{i=1}^{p} g_{i}, v_{1}=\sum_{g \in G} \alpha_{g} g$, $v_{2}=\sum_{g \in G} \beta_{g} g, \delta_{1}=\sum_{g \in G} \alpha_{g}$, and $\delta_{2}=\sum_{g \in G} \beta_{g}$.

Proof. Clearly, C_{σ} has free rank $2 p+2$, because the left-hand side of the generator matrix is the $2 p+2$ by $2 p+2$ identity matrix. Let us consider $M(\sigma) M(\sigma)^{T}$.
 $A=\left(\begin{array}{c|ccc}\gamma_{1} & \gamma_{2} & \cdots & \gamma_{2} \\ \hline \gamma_{2} & & \\ \vdots & & \sigma\left(v_{1}\right) & \\ \gamma_{2} & & \end{array}\right)$ and $B=\left(\begin{array}{c|ccc}\gamma_{3} & \gamma_{4} & \cdots & \gamma_{4} \\ \hline \gamma_{4} & & \\ \vdots & & \sigma\left(v_{2}\right) \\ \gamma_{4} & & \end{array}\right)$.

Let $A=\left(\begin{array}{cc}B_{1} & B_{2} \\ B_{2}^{T} & B_{3}\end{array}\right)$ and $B=\left(\begin{array}{cc}B_{4} & B_{5} \\ B_{5}^{T} & B_{6}\end{array}\right)$ where $B_{1}=\gamma_{1}, B_{2}=\left(\gamma_{2} \cdots \gamma_{2}\right), B_{3}=\sigma\left(v_{1}\right)$, $B_{4}=\gamma_{3}, B_{5}=\left(\gamma_{4} \cdots \gamma_{4}\right)$ and $B_{6}=\sigma\left(v_{2}\right)$. Now,

$$
\begin{aligned}
B_{2}^{T} B_{4}+B_{3} B_{5}+B_{5}^{T} B_{1}+B_{6} B_{2}^{T} & =\left(\begin{array}{c}
\gamma_{2} \\
\vdots \\
\gamma_{2}
\end{array}\right) \gamma_{3}+\sigma\left(v_{1}\right)\left(\begin{array}{c}
\gamma_{4} \\
\vdots \\
\gamma_{4}
\end{array}\right)+\left(\begin{array}{c}
\gamma_{4} \\
\vdots \\
\gamma_{4}
\end{array}\right) \gamma_{1}+\sigma\left(v_{2}\right)\left(\begin{array}{c}
\gamma_{2} \\
\vdots \\
\gamma_{2}
\end{array}\right) \\
& =\gamma_{2} \gamma_{3}\left(\begin{array}{c}
1 \\
\vdots \\
i
\end{array}\right)+\delta_{1} \gamma_{4}\left(\begin{array}{c}
1 \\
\vdots \\
i
\end{array}\right)+\gamma_{4} \gamma_{1}\left(\begin{array}{c}
1 \\
\vdots \\
i
\end{array}\right)+\delta_{2} \gamma_{2}\left(\begin{array}{c}
1 \\
\vdots \\
i
\end{array}\right) \\
& =\left(\gamma_{2} \gamma_{3}+\delta_{1} \gamma_{4}+\gamma_{4} \gamma_{1}+\delta_{2} \gamma_{2}\right)\left(\begin{array}{c}
1 \\
\vdots \\
i
\end{array}\right)=0,
\end{aligned}
$$

$$
B_{2}^{T} B_{5}+B_{3} B_{6}+B_{5}^{T} B_{2}+B_{6} B_{3}
$$

$$
=\left(\begin{array}{c}
\gamma_{2} \\
\vdots \\
\gamma_{2}
\end{array}\right)\left(\begin{array}{ccc}
\gamma_{4} & \cdots & \gamma_{4}
\end{array}\right)+\sigma\left(v_{1}\right) \sigma\left(v_{2}\right)+\left(\begin{array}{c}
\gamma_{4} \\
\vdots \\
\gamma_{4}
\end{array}\right)\left(\begin{array}{lll}
\gamma_{2} & \cdots & \gamma_{2}
\end{array}\right)+\sigma\left(v_{2}\right) \sigma\left(v_{1}\right)
$$

$$
=\gamma_{2} \gamma_{4}\left(\begin{array}{ccc}
1 & \cdots & 1 \\
\vdots & \ddots & \vdots \\
1 & \cdots & 1
\end{array}\right)+\sigma\left(v_{1} v_{2}\right)+\gamma_{4} \gamma_{2}\left(\begin{array}{ccc}
1 & \cdots & 1 \\
\vdots & \ddots & \vdots \\
1 & \cdots & 1
\end{array}\right)+\sigma\left(v_{2} v_{1}\right)
$$

$$
=\sigma\left(v_{1} v_{2}\right)+\sigma\left(v_{2} v_{1}\right)=0
$$

Also,

$$
\begin{aligned}
& A A^{T}+B B^{T}+I= \\
&\left(\begin{array}{cc}
B_{1}^{2}+B_{2} B_{2}^{T}+B_{4}^{2}+B_{5} B_{5}^{T}+1 & B_{1} B_{2}+B_{2} B_{3}^{T}+B_{4} B_{5}+B_{5} B_{6}^{T} \\
B_{2}^{T} B_{1}+B_{3} B_{2}^{T}+B_{5}^{T} B_{4}+B_{6} B_{5}^{T} & B_{2}^{T} B_{2}+B_{3} B_{3}^{T}+B_{5}^{T} B_{5}+B_{6} B_{6}^{T}+I
\end{array}\right) \\
& B_{1}^{2}+B_{2} B_{2}^{T}+B_{4}^{2}+B_{5} B_{5}^{T}+1= \\
&= \\
& \gamma_{1}^{2}+\left(\gamma_{2} \cdots \gamma_{2}\right)\left(\begin{array}{c}
\gamma_{2} \\
\vdots \\
\gamma_{2}
\end{array}\right)+\gamma_{3}^{2}+\left(\gamma_{4} \cdots \gamma_{4}\right)\left(\begin{array}{c}
\gamma_{4} \\
\vdots \\
\gamma_{4}
\end{array}\right)=0 \\
&= \\
&\left(\gamma_{1}+\gamma_{3}\right)^{2}+p\left(\gamma_{2}+\gamma_{4}\right)^{2}+1 \\
& 4=1 \\
& \gamma_{i}^{2}+1
\end{aligned}
$$

$$
\begin{aligned}
& A B+B A=\left(\begin{array}{cc}
B_{1} B_{4}+B_{2} B_{5}^{T}+B_{4} B_{1}+B_{5} B_{2}^{T} & B_{1} B_{5}+B_{2} B_{6}+B_{4} B_{2}+B_{5} B_{3} \\
B_{2}^{T} B_{4}+B_{3} B_{5}^{T}+B_{5}^{T} B_{1}+B_{6} B_{2}^{T} & B_{2}^{T} B_{5}+B_{3} B_{6}+B_{5}^{T} B_{2}+B_{6} B_{3}
\end{array}\right), \\
& B_{1} B_{4}+B_{2} B_{5}^{T}+B_{4} B_{1}+B_{5} B_{2}^{T}=\gamma_{1} \gamma_{3}+\left(\begin{array}{lll}
\gamma_{2} & \cdots & \gamma_{2}
\end{array}\right)\left(\begin{array}{c}
\gamma_{4} \\
\vdots \\
\gamma_{4}
\end{array}\right)+\gamma_{3} \gamma_{1}+\left(\begin{array}{llll}
\gamma_{4} & \cdots & \gamma_{4}
\end{array}\right)\left(\begin{array}{c}
\gamma_{2} \\
\vdots \\
\gamma_{2}
\end{array}\right) \\
& =\gamma_{1} \gamma_{3}+\gamma_{2} \gamma_{4}+\gamma_{3} \gamma_{1}+\gamma_{4} \gamma_{2}=0, \\
& B_{1} B_{5}+B_{2} B_{6}+B_{4} B_{2}+B_{5} B_{3} \\
& =\gamma_{1}\left(\gamma_{4} \cdots \gamma_{4}\right)+\left(\gamma_{2} \cdots \gamma_{2}\right) \sigma\left(v_{2}\right)+\gamma_{3}\left(\gamma_{2} \cdots \gamma_{2}\right)+\left(\gamma_{4} \cdots \gamma_{4}\right) \sigma\left(v_{1}\right) \\
& =\gamma_{1} \gamma_{4}(1 \cdots 1)+\gamma_{2} \delta_{2}\left(1 \cdots l_{1}\right)+\gamma_{3} \gamma_{2}\left(\begin{array}{lll}
1 \cdots & 1
\end{array}\right)+\gamma_{4} \delta_{1}\left(\begin{array}{lll}
1 \cdots & 1
\end{array}\right) \\
& =\left(\gamma_{1} \gamma_{4}+\gamma_{2} \delta_{2}+\gamma_{3} \gamma_{2}+\gamma_{4} \delta_{1}\right)(1 \cdots 1)=0 \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& B_{1} B_{2}+B_{2} B_{3}^{T}+B_{4} B_{5}+B_{5} B_{6}^{T} \\
& \quad=\gamma_{1}\left(\gamma_{2} \cdots \gamma_{2}\right)+\left(\gamma_{2} \cdots \gamma_{2}\right) \sigma\left(v_{1}\right)^{T}+\gamma_{3}\left(\gamma_{4} \cdots \gamma_{4}\right)+\left(\gamma_{4} \cdots \gamma_{4}\right) \sigma\left(v_{2}\right)^{T} \\
& \quad=\left(\gamma_{1} \gamma_{2} \cdots \gamma_{1} \gamma_{2}\right)+\left(\gamma_{2} \delta_{1} \cdots \gamma_{2} \delta_{1}\right)+\left(\gamma_{3} \gamma_{4} \cdots \gamma_{3} \gamma_{4}\right)+\left(\gamma_{4} \delta_{2} \cdots \delta_{2} \gamma_{4}\right) \\
& \quad=\left(\gamma_{1} \gamma_{2}+\gamma_{2} \delta_{1}+\gamma_{3} \gamma_{4}+\gamma_{4} \delta_{2}\right)\left(\begin{array}{lll}
1 & \cdots
\end{array}\right)=0,
\end{aligned}
$$

where $v_{1}=\sum_{g \in G} \alpha_{g} g, v_{2}=\sum_{g \in G} \beta_{g} g, \delta_{1}=\sum_{g \in G} \alpha_{g}$ and $\delta_{2}=\sum_{g \in G} \beta_{g}$, and

$$
\begin{aligned}
& B_{2}^{T} B_{2}+B_{3} B_{3}^{T}+B_{5}^{T} B_{5}+B_{6} B_{6}^{T}+I \\
& \quad=\left(\begin{array}{c}
\gamma_{2} \\
\vdots \\
\gamma_{2}
\end{array}\right)\left(\gamma_{2} \ldots \gamma_{2}\right)+\sigma\left(v_{1}\right) \sigma\left(v_{1}\right)^{T}+\left(\begin{array}{c}
\gamma_{4} \\
\vdots \\
\gamma_{4}
\end{array}\right)\left(\gamma_{4} \ldots \gamma_{4}\right)+\sigma\left(v_{2}\right) \sigma\left(v_{2}\right)^{T}+I \\
& \quad=\sigma\left(v_{1} v_{1}^{*}\right)+\sigma\left(v_{2} v_{2}^{*}\right)+\left(\gamma_{2}+\gamma_{4}\right)^{2}\left(\begin{array}{ccc}
1 & \cdots & 1 \\
\vdots & \ddots & \vdots \\
1 & \cdots & 1
\end{array}\right)+I .
\end{aligned}
$$

Additionally,

$$
\begin{aligned}
& B^{T} B+A^{T} A+I \\
& =\left(\begin{array}{cc}
B_{1}^{2}+B_{2} B_{2}^{T}+B_{4}^{2}+B_{5} B_{5}^{T}+1 & B_{1} B_{2}+B_{2} B_{3}+B_{4} B_{5}+B_{5} B_{6} \\
B_{2}^{T} B_{1}+B_{3}^{T} B_{2}^{T}+B_{5}^{T} B_{4}+B_{6}^{T} B_{5}^{T} & B_{2}^{T} B_{2}+B_{3}^{T} B_{3}+B_{5}^{T} B_{5}+B_{6}^{T} B_{6}+I
\end{array}\right), \\
& B_{1} B_{2}+B_{2} B_{3}+B_{4} B_{5}+B_{5} B_{6} \\
& =\gamma_{1}\left(\gamma_{2} \cdots \gamma_{2}\right)+\left(\gamma_{2} \cdots \gamma_{2}\right) \sigma\left(v_{1}\right)+\gamma_{3}\left(\gamma_{4} \cdots \gamma_{4}\right)+\left(\gamma_{4} \cdots \gamma_{4}\right) \sigma\left(v_{2}\right) \\
& =\left(\gamma_{1} \gamma_{2} \cdots \gamma_{1} \gamma_{2}\right)+\left(\gamma_{2} \delta_{1} \cdots \gamma_{2} \delta_{1}\right)+\left(\gamma_{3} \gamma_{4} \cdots \gamma_{3} \gamma_{4}\right)+\left(\gamma_{4} \delta_{2} \cdots \gamma_{4} \delta_{2}\right) \\
& =\left(\gamma_{1} \gamma_{2}+\gamma_{2} \delta_{1}+\gamma_{3} \gamma_{4}+\gamma_{4} \delta_{2}\right)(1 \ldots 1)=0 \text {, }
\end{aligned}
$$

and
$B_{2}^{T} B_{2}+B_{3}^{T} B_{3}+B_{5}^{T} B_{5}+B_{6}^{T} B_{6}+I=\sigma\left(v_{1}^{*} v_{1}\right)+\sigma\left(v_{2}^{*} v_{2}\right)+\left(\gamma_{2}+\gamma_{4}\right)^{2}\left(\begin{array}{ccc}1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1\end{array}\right)+I$.
Finally, $M(\sigma) M(\sigma)^{T}$ is a symmetric matrix and C_{σ} is self-orthogonal when $\sigma\left(v_{1} v_{2}\right)=$ $\sigma\left(v_{2} v_{1}\right), \sum_{i=1}^{4} \gamma_{i}^{2}=1, \gamma_{1}=\delta_{1}, \gamma_{3}=\delta_{2}, v_{1} v_{1}^{*}+v_{2} v_{2}^{*}+\left(\gamma_{2}+\gamma_{4}\right)^{2} \widehat{g}+1=0$ and $v_{1}^{*} v_{1}+v_{2}^{*} v_{2}+\left(\gamma_{2}+\gamma_{4}\right)^{2} \widehat{g}+1=0$.
Corollary 3.2. Let $R=R_{k}, G$ be a finite group of order p (where p is odd), $\gamma_{2}+\gamma_{4}$ be a non-unit in R_{k} and C_{σ} be self-dual. Then either

- $v_{1} \in R G$ is a unitary unit and v_{2} is a non-unit, or
- $v_{2} \in R G$ is a unitary unit and v_{1} is a non-unit.

Proof. Let $v_{1} \in R G$ be a unitary unit and $\gamma_{2}+\gamma_{4}$ be a non-unit in R_{k}. Then $v_{1} v_{1}^{*}=1$ and $\left(\gamma_{2}+\gamma_{4}\right)^{2}=0$. Clearly $v_{2} v_{2}^{*}=0, \operatorname{det}\left(\sigma\left(v_{2} v_{2}^{*}\right)\right)=0$ is a non-unit by Corollary 3 in [21]. Therefore v_{2} is a non-unit in $R G$. Similarly, if $v_{2} \in R G$ is unitary and $\gamma_{2}+\gamma_{4}$ is a non-unit in R_{k}, then v_{1} is a non-unit in $R G$.

Corollary 3.3. Let $R=R_{k}$, G be a finite group of order p (where p is odd), $\gamma_{2}+\gamma_{4}$ be a non-unit in R_{k} and C_{σ} be self-dual. Then $v_{1}^{*} v_{1}+v_{2}^{*} v_{2}$ is a non-unit in $R G$.

Proof. Let $\gamma_{2}+\gamma_{4}$; then $\left(\gamma_{2}+\gamma_{4}\right)^{2}=1$. Now

$$
\begin{aligned}
& \sigma\left(v_{1}^{*} v_{1}\right)+\sigma\left(v_{2}^{*} v_{2}\right)+\left(\gamma_{2}+\gamma_{4}\right)^{2}\left(\begin{array}{ccc}
1 & \cdots & 1 \\
\vdots & \ddots & \vdots \\
1 & \cdots & 1
\end{array}\right)+I=0 \\
& \sigma\left(v_{1}^{*} v_{1}\right)+\sigma\left(v_{2}^{*} v_{2}\right)+\left(\begin{array}{ccc}
1 & \cdots & 1 \\
\vdots & \ddots & \vdots \\
1 & \cdots & 1
\end{array}\right)+I=0 \\
& \sigma\left(v_{1}^{*} v_{1}+v_{2}^{*} v_{2}\right)=\left(\begin{array}{ccccc}
0 & 1 & 1 & \cdots & 1 \\
1 & 0 & 1 & \cdots & 1 \\
1 & 1 & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & 1 \\
1 & 1 & 1 & \cdots & 0
\end{array}\right) .
\end{aligned}
$$

Now,

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{ccccc}
0 & 1 & 1 & \cdots & 1 \\
1 & 0 & 1 & \cdots & 1 \\
1 & 1 & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & 1 \\
1 & 1 & 1 & \cdots & 0
\end{array}\right) & =\operatorname{det}\left(\begin{array}{ccccc}
p-1 & p-1 & p-1 & \cdots & p-1 \\
1 & 0 & 1 & \cdots & 1 \\
1 & 1 & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & 1 \\
1 & 1 & 1 & \cdots & 0
\end{array}\right) \\
& =(p-1)(-1)^{p-1}=0
\end{aligned}
$$

since p is odd. Therefore $\sigma\left(v_{1}^{*} v_{1}+v_{2}^{*} v_{2}\right)=0$ and $v_{1}^{*} v_{1}+v_{2}^{*} v_{2}$ is a non-unit by Corollary 3 in 21.

4 Extremal binary self-dual codes from the constructions

In this section, we will present the results obtained using the construction described in Section 3, to construct self-dual codes for certain groups over different alphabets.

4.1 Constructions coming from C_{3}

We apply the constructions over the rings \mathbb{F}_{4} and $\mathbb{F}_{4}+u \mathbb{F}_{4}$. The Gray images of the self-dual codes are binary self-dual codes of lengths 32 and 64 respectively. We only list the extremal ones of length 64.

Recall that the possible weight enumerators for a self-dual Type I [64, 32, 12]-code are given in [5, 10] as:

$$
\begin{aligned}
& W_{64,1}=1+(1312+16 \beta) y^{12}+(22016-64 \beta) y^{14}+\cdots, 14 \leq \beta \leq 284 \\
& W_{64,2}=1+(1312+16 \beta) y^{12}+(23040-64 \beta) y^{14}+\cdots, 0 \leq \beta \leq 277
\end{aligned}
$$

With the most updated information, the existence of codes is known for $\beta=14$, $18,22,25,29,32,35,36,39,44,46,53,59,60,64$ and 74 in $W_{64,1}$ and for $\beta=0,1$, $2,4,5,6,8,9,10,12,13,14,16, \ldots, 25,28,19,30,32,33,34,36,37,38,40,41,42$, $44,45,48,50,51,52,56,58,64,72,80,88,96,104,108,112,114,118,120$ and 184 in $W_{64,2}$.

Table 1: Extremal binary self-dual codes of length 64 from self-dual codes over $\mathbb{F}_{4}+u \mathbb{F}_{4}$ of length 16 via C_{3}.

\mathcal{C}_{i}	$\left(\gamma_{1}, \gamma_{2}\right)$	v_{1}	$\left(\gamma_{3}, \gamma_{4}\right)$	v_{2}	$\left\|\operatorname{Aut}\left(\mathcal{C}_{i}\right)\right\|$	$W_{64,2}$
1	$(1,8)$	$(2, A, 9)$	$(6,6)$	$(0,9, F)$	$2^{2} \cdot 3$	$\beta=13$
2	$(0, A)$	$(2,9, B)$	$(6,5)$	$(8, B, 5)$	$2^{3} \cdot 3$	$\beta=13$
3	$(0, A)$	$(A, 2,9)$	$(4,7)$	$(9,6,1)$	$2^{4} \cdot 3$	$\beta=16$
4	$(0, A)$	$(A, 1,6)$	$(6,5)$	$(4, D, F)$	$2^{2} \cdot 3$	$\beta=19$
5	$(1,8)$	$(B, 4, E)$	$(4,4)$	$(0,2,6)$	$2^{2} \cdot 3$	$\beta=22$
6	$(9,2)$	$(2, A, 1)$	$(6,6)$	$(8,3, D)$	$2^{2} \cdot 3$	$\beta=25$
7	$(1,8)$	$(A, A, 1)$	$(4,4)$	$(8, B, 7)$	$2^{3} \cdot 3$	$\beta=25$
8	$(1,8)$	$(A, 6, D)$	$(4,4)$	$(E, 5, F)$	$2^{2} \cdot 3$	$\beta=37$
9	$(2,9)$	$(1, E, D)$	$(4, E)$	$(4, F, F)$	$2^{3} \cdot 3$	$\beta=37$
10	$(0, A)$	$(0,9,9)$	$(4,7)$	$(0,1,5)$	$2^{4} \cdot 3^{2}$	$\beta=40$
11	$(0, A)$	$(0,9,9)$	$(4,7)$	$(2,9, F)$	$2^{4} \cdot 3$	$\beta=64$

4.2 Constructions coming from C_{7}

We apply the constructions coming from C_{7} over the binary field and the ring $R_{1}=$ $\mathbb{F}_{2}+u \mathbb{F}_{2}$, as a result of which we obtain extremal binary self-dual codes of lengths 32 and 64 respectively. We tabulate the ones of length 64:

Table 2: Extremal binary self-dual codes of length 64 from self-dual codes over $\mathbb{F}_{2}+u \mathbb{F}_{2}$ of length 32 via C_{7}.

$\left(\gamma_{1}, \gamma_{2}\right)$	v_{1}	$\left(\gamma_{3}, \gamma_{4}\right)$	v_{2}	$\|\operatorname{Aut}(\mathcal{C})\|$	$W_{64,2}$
(u, u)	$(u, 0,0, u, 0,1,3)$	$(1,1)$	$(u, 1,1,0, u, 3,1)$	$2^{2} \cdot 7$	$\beta=16$
(u, u)	$(u, u, 0,0,0,1,3)$	$(1,1)$	$(u, 1,1, u, 0,3,1)$	$2^{2} \cdot 7$	$\beta=30$
(u, u)	$(u, 0,1,0,1,1,1)$	$(u, 1)$	$(u, 1,1,3,1,1,3)$	$2^{2} \cdot 7$	$\beta=37$
(u, u)	$(u, u, 1, u, 1,1,1)$	$(u, 1)$	$(u, 1,1,3,3,1,1)$	$2^{3} \cdot 3 \cdot 7$	$\beta=37$
(u, u)	$(u, 0, u, 0,0,1,3)$	$(1,1)$	$(u, 1,1, u, 0,1,3)$	$2^{2} \cdot 7$	$\beta=44$
(u, u)	$(u, u, 0,0, u, 1,1)$	$(u, 1)$	$(u, 1,3, u, u, 1,3)$	$2^{3} \cdot 7$	$\beta=44$
(u, u)	$(u, 0,1,0,1,3,3)$	$(1,1)$	$(u, 1,1,1,3,3,1)$	$2^{2} \cdot 7$	$\beta=51$
(u, u)	$(u, u, u, u, u, 1,1)$	$(u, 1)$	$(u, 1,3, u, u, 1)$	$2^{4} \cdot 3 \cdot 7$	$\beta=72$

4.3 Constructions coming from groups of order 9

We apply the constructions $C_{9}, C_{3,3}$ and $C_{3} \times C_{3}$ over the binary field and the ring $R_{1}=\mathbb{F}_{2}+u \mathbb{F}_{2}$, as a result of which we obtain binary self-dual codes of lengths 40 and 80 . For length 40 we get extremal self-dual codes, and for length 80 we get the best Type I codes, i.e., self-dual codes that have parameters [80, 40, 14].

Table 3: Extremal binary self-dual codes of length 40 from $C_{9}, C_{3,3}$ and $C_{3} \times C_{3}$

Const	$\left(\gamma_{1}, \gamma_{2}\right)$	v_{1}	$\left(\gamma_{3}, \gamma_{4}\right)$	v_{2}	\mid Aut $(C) \mid$	Type
C_{9}	$(0,0)$	$(0,0,0,0,0,0,0,1,1)$	$(0,1)$	$(0,0,1,1,1,0,1,1,1)$	$2^{11} \cdot 3^{2}$	$[40,20,8]_{I}$
C_{9}	$(0,0)$	$(0,0,0,0,1,0,1,1,1)$	$(0,1)$	$(0,0,1,0,1,0,0,1,1)$	$2^{2} \cdot 3^{2}$	$[40,20,8]_{I}$
C_{9}	$(0,0)$	$(0,0,0,1,1,1,1,1,1)$	$(0,1)$	$(0,0,1,1,0,1,1,1,1)$	$2^{2} \cdot 3^{2}$	$[40,20,8]_{I}$
C_{9}	$(1,0)$	$(0,0,0,0,0,0,1,1,1)$	$(1,1)$	$(0,0,0,0,1,0,0,1,1)$	$2^{2} \cdot 3^{2}$	$[40,20,8]_{I I}$
C_{9}	$(1,0)$	$(0,0,0,0,0,0,1,1,1)$	$(1,1)$	$(0,1,0,1,1,1,1,1,1)$	$2^{11} \cdot 3^{2}$	$[40,20,8]_{I I}$
C_{9}	$(1,0)$	$(0,0,0,1,0,1,1,1,1)$	$(1,1)$	$(0,0,1,1,0,1,0,1,1)$	$2^{3} \cdot 3^{2} \cdot 5 \cdot 19$	$[40,20,8]_{I I}$
$C_{3,3}$	$(0,0)$	$(0,0,0,0,0,1,0,0,1)$	$(0,1)$	$(0,1,1,0,1,1,1,0,1)$	$2^{11} \cdot 3^{2}$	$[40,20,8]_{I}$
$C_{3,3}$	$(0,0)$	$(0,0,0,0,1,1,0,1,1)$	$(0,1)$	$(0,0,1,0,1,1,1,0,0)$	$2^{2} \cdot 3^{2}$	$[40,20,8]_{I}$
$C_{3,3}$	$(0,0)$	$(0,0,1,0,1,1,1,1,1)$	$(0,1)$	$(0,1,1,1,0,1,0,1,1)$	$2^{2} \cdot 3^{2}$	$[40,20,8]_{I}$
$C_{3,3}$	$(1,0)$	$(0,0,0,0,0,1,0,1,1)$	$(1,1)$	$(0,0,1,0,1,0,0,0,1)$	$2^{2} \cdot 3^{2}$	$[40,20,8]_{I I}$
$C_{3,3}$	$(1,0)$	$(0,0,1,0,0,1,0,0,1)$	$(1,1)$	$(0,1,1,1,1,0,1,1,1)$	$2^{11} \cdot 3^{2}$	$[40,20,8]_{I I}$
$C_{3,3}$	$(1,0)$	$(0,0,1,0,0,1,1,1,1)$	$(1,1)$	$(0,0,1,0,1,1,1,0,1)$	$2^{3} \cdot 3^{2} \cdot 5 \cdot 19$	$[40,20,8]_{I I}$
$C_{3} \times C_{3}$	$(0,0)$	$(0,0,0,0,1,1,0,1,1)$	$(0,1)$	$(0,0,1,0,0,1,1,1,0)$	$2^{15} \cdot 3^{2} \cdot 5$	$[40,20,8]_{I}$
$C_{3} \times C_{3}$	$(1,0)$	$(0,0,0,0,0,0,1,1,1)$	$(1,1)$	$(0,0,1,0,0,1,0,1,0)$	$2^{4} \cdot 3^{4}$	$[40,20,8]_{I I}$
$C_{3} \times C_{3}$	$(1,0)$	$(0,0,1,0,0,1,1,1,1)$	$(1,1)$	$(0,0,1,1,1,0,1,1,0)$	$2^{1^{5} \cdot 3^{2} \cdot 5}$	$[40,20,8]_{I I}$

The possible weight enumerators for a self-dual Type I [80, 40, 14]-code are given in [26] as:

$$
W_{80,2}=1+(3200+4 \alpha) y^{14}+(47645-8 \alpha+256 \beta) y^{16}+\cdots,
$$

where α and β are integers. An [80, 40, 14] was constructed in [7] (its weight enumerator was not stated), and an [80, 40, 14] code was constructed in [18] with $\alpha=-280$, $\beta=10$. In [26], $[80,40,14]$ codes were constructed for $\beta=0$ and $\alpha=-17 k$ where $k \in\{2, \ldots, 25,27\}$.

4.4 Constructions coming from C_{13}

The best known Type I binary codes of length 56 have minimum weight 10. The possible weight enumerators for such a $[56,28,10]$-code are given in [20] as:

$$
\begin{aligned}
& W_{56,1}=1+(308+4 \alpha) y^{10}+(4246-8 \alpha) y^{12}+(40852-28 \alpha) y^{14}+\cdots, \\
& W_{56,2}=1+(308+4 \alpha) y^{10}+(3990-8 \alpha) y^{12}+(42900-28 \alpha) y^{14}+\cdots
\end{aligned}
$$

where α is an integer. In [20], codes were constructed for the values of $\alpha=-18,-22$, -24 in $W_{56,1}$ and $\alpha=0,-2,-4,-6,-8,-10,-12,-14,-16,-18,-20,-22$ and -24 in $W_{56,2}$.

Table 4: Binary $[80,40,14]$-codes from self-dual codes over $\mathbb{F}_{2}+u \mathbb{F}_{2}$ via $C_{9}, C_{3,3}$, $C_{3} \times C_{3}$.

| Const | $\left(\gamma_{1}, \gamma_{2}\right)$ | v_{1} | $\left(\gamma_{3}, \gamma_{4}\right)$ | v_{2} | $\|A u t(\mathcal{C})\|$ | $W_{80,2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C_{9} | (u, u) | $(u, u, 0, u, u, 0, u, 1,1)$ | $(0,1)$ | $(0,0,1,1,1,0,3,1,3)$ | $2^{2} \cdot 3^{2}$ | $\alpha=-330, \beta=10$ |
| C_{9} | $(1, u)$ | $(u, 0,0,3, u, 1,3,3,3)$ | $(1,1)$ | $(u, 0,1,3,0,3, u, 1,1)$ | $2^{2} \cdot 3^{2}$ | $\alpha=-258, \beta=1$ |
| C_{9} | $(u, 0)$ | $(0,0,0, u, 1, u, 3,3,3)$ | $(u, 1)$ | $(0, u, 1,0,1, u, 0,1,3)$ | $2^{2} \cdot 3^{2}$ | $\alpha=-240, \beta=1$ |
| C_{9} | (u, u) | $(u, 0,0,0,1,0,1,3,3)$ | $(0,1)$ | $(u, u, 1, u, 3,0, u, 3,1)$ | $2^{2} \cdot 3^{2}$ | $\alpha=-204, \beta=1$ |
| C_{9} | (u, u) | $(0,0,0, u, 1,0,3,3,1)$ | $(0,1)$ | $(0, u, 1, u, 3,0,0,3,1)$ | $2^{2} \cdot 3^{2}$ | $\alpha=-186, \beta=1$ |
| C_{9} | $(u, 0)$ | $(u, u, 0, u, 1,0,1,1,1)$ | $(u, 1)$ | $(u, u, 1, u, 1, u, u, 3,3)$ | $2^{3} \cdot 3^{2}$ | $\alpha=-168, \beta=1$ |
| C_{9} | $(u, 0)$ | $(0,0,0, u, 1,0,3,3,1)$ | $(u, 1)$ | $(u, u, 1,0,3,0, u, 3,1)$ | $2^{2} \cdot 3^{2}$ | $\alpha=-150, \beta=1$ |
| C_{9} | (u, u) | $(u, u, 0, u, 1,0,1,1,1)$ | $(0,1)$ | $(0,0,1,0,1,0,0,3,3)$ | $2^{3} \cdot 3^{2}$ | $\alpha=-96, \beta=1$ |
| $C_{3,3}$ | $(u, 0)$ | $(u, u, u, u, u, 1,0,0,1)$ | $(u, 1)$ | $(u, 1,1, u, 3,1,3, u, 1)$ | $2^{2} \cdot 3^{2}$ | $\alpha=-366, \beta=10$ |
| $C_{3,3}$ | $(u, 0)$ | $(u, u, u, u, u, 1, u, 0,3)$ | $(u, 1)$ | $(u, 1,3,0,1,3,1, u, 3)$ | $2^{2} \cdot 3^{2}$ | $\alpha=-348, \beta=10$ |
| $C_{3,3}$ | $(1, u)$ | $(0, u, u, 0, u, 3, u, 3,1)$ | $(1,1)$ | $(u, u, 1, u, 3, u, u, u, 3)$ | $2^{3} \cdot 3^{2}$ | $\alpha=-312, \beta=1$ |
| $C_{3,3}$ | $(0, u)$ | $(0,0,0, u, u, 1,0,0,1)$ | $(u, 1)$ | $(u, 1,1, u, 3,1,3, u, 1)$ | $2^{2} \cdot 3^{2}$ | $\alpha=-294, \beta=10$ |
| $C_{3,3}$ | $(1, u)$ | $(u, 0, u, 0, u, 3, u, 1,3)$ | $(1,1)$ | $(0,0,3, u, 1, u, u, u, 3)$ | $2^{2} \cdot 3^{2}$ | $\alpha=-222, \beta=1$ |
| $C_{3,3}$ | $(1, u)$ | $(0,0, u, 0, u, 3,0,3,1)$ | $(1,1)$ | $(0,0,3, u, 1, u, u, u, 3)$ | $2^{2} \cdot 3^{2}$ | $\alpha=-168, \beta=1$ |
| $C_{3,3}$ | $(0, u)$ | $(0,0, u, u, 1,1,0,3,3)$ | $(u, 1)$ | $(0,0,1,0,3,1,3, u, 0)$ | $2^{2} \cdot 3^{2}$ | $\alpha=-186, \beta=1$ |
| $C_{3} \times C_{3}$ | (u, u) | $(0, u, 0,0,1,1,0,3,3)$ | $(1,1)$ | $(u, u, 1, u, 0,3,3,1, u)$ | $2^{2} \cdot 3^{2}$ | $\alpha=-276, \beta=10$ |
| $C_{3} \times C_{3}$ | $(1, u)$ | $(u, u, 3,0,0,3,1,3,3)$ | $(1,1)$ | $(u, 0,3,3,3, u, 1,3,0)$ | $2^{3} \cdot 3^{2}$ | $\alpha=-276, \beta=10$ |
| $C_{3} \times C_{3}$ | $(1, u)$ | $(u, u, u, u, 0,0,1,1,1)$ | $(1,1)$ | $(u, 0,1, u, 0,1,0,1,0)$ | $2^{3} \cdot 3^{2}$ | $\alpha=-240, \beta=1$ |
| $C_{3} \times C_{3}$ | $(1, u)$ | $(u, u, 3,0,0,3,1,3,3)$ | $(1,1)$ | $(u, 0,3,3,3,0,3,1, u)$ | $2^{3} \cdot 3^{2}$ | $\alpha=-204, \beta=10$ |

In Table 5 we give a list of Type I self-dual codes with parameters [56, 28, 10] by applying the construction C_{13} over the binary field. The codes listed below all have new weight enumerators.

Table 5: $[56,28,10]$ codes over \mathbb{F}_{2} from C_{13}.

$\left(\gamma_{1}, \gamma_{2}\right)$	v_{1}	$\left(\gamma_{3}, \gamma_{4}\right)$	v_{2}	$\|A u t(C)\|$	α	$W_{56, i}$
$(0,0)$	$(0,0,0,0,0,0,0,1,0,1,0,1,1)$	$(0,1)$	$(0,0,0,0,1,1,1,0,1,1,1,1,1)$	$2 \cdot 13$	-51	1
$(0,0)$	$(0,0,0,0,1,1,0,1,1,1,1,1,1)$	$(0,1)$	$(0,1,0,1,0,1,1,0,1,0,1,1,1)$	$2 \cdot 13$	-38	1
$(0,0)$	$(0,0,0,0,0,0,1,1,0,1,1,1,1)$	$(0,1)$	$(0,0,0,0,1,1,0,1,0,0,1,1,1)$	$2 \cdot 13$	-25	1
$(0,0)$	$(0,0,0,0,0,0,0,0,0,1,1,1,1)$	$(0,1)$	$(0,0,1,1,0,1,0,1,0,1,1,1,1)$	$2^{2} \cdot 13$	-38	1
$(0,0)$	$(0,0,0,0,0,0,0,0,0,0,0,1,1)$	$(0,1)$	$(0,0,0,1,0,0,1,0,1,1,1,0,1)$	$2^{2} \cdot 13$	-12	1
$(0,0)$	$(0,0,0,0,1,0,0,1,1,0,1,1,1)$	$(0,1)$	$(0,0,0,0,1,1,0,1,0,1,0,1,1)$	$2^{2} \cdot 3 \cdot 13$	-38	1
$(0,0)$	$(0,0,1,1,0,1,1,1,1,1,1,1,1)$	$(0,1)$	$(0,1,0,1,1,1,1,0,1,1,1,1,1)$	$2^{2} \cdot 3 \cdot 13$	-64	1

4.5 Constructions coming from C_{15}

We apply the constructions C_{15} and $C_{3} \times C_{5}$ over the binary field to obtain a number of extremal binary self-dual codes of length 64 . We only tabulate the codes obtained from construction C_{15}; however, we note that we have obtained the exact same codes from $C_{3} \times C_{5}$ as well.

Table 6: Binary self-dual codes of length 64 from C_{15}.

| $\left(\gamma_{1}, \gamma_{2}\right)$ | v_{1} | $\left(\gamma_{3}, \gamma_{4}\right)$ | v_{2} | \mid Aut $(C) \mid$ | Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $(0,0)$ | $(0,0,0,0,0,0,0,0,0,1,0,1,0,1,1)$ | $(0,1)$ | $(0,0,0,0,1,0,1,0,1,0,0,0,1,1,1)$ | $2 \cdot 3 \cdot 5$ | $[64,32,12]_{I I}$ |
| $(0,0)$ | $(0,0,0,0,0,0,0,0,0,0,0,1,0,0,1)$ | $(0,1)$ | $(0,0,0,0,1,1,0,1,1,0,0,1,1,1,1)$ | $2^{2} \cdot 3 \cdot 5$ | $[64,32,12]_{I I}$ |
| $(0,0)$ | $(0,0,0,0,1,1,0,1,1,0,0,1,1,1,1)$ | $(0,1)$ | $(0,0,0,1,0,0,0,1,0,0,0,1,1,1,1)$ | $2^{3} \cdot 3 \cdot 5$ | $[64,32,12]_{I I}$ |
| $(0,0)$ | $(0,0,0,0,1,0,0,1,1,0,1,0,0,1,1)$ | $(0,1)$ | $(0,0,0,1,1,0,1,0,1,1,0,1,0,1,1)$ | $2^{12} \cdot 3 \cdot 5$ | $[64,32,12]_{I I}$ |
| $(1,0)$ | $(0,0,0,0,0,0,0,0,0,1,0,1,1,1,1)$ | $(1,1)$ | $(0,0,0,1,0,0,1,0,1,0,1,1,1,0,1)$ | $2 \cdot 3 \cdot 5$ | $W_{64,1}(\beta=14)$ |
| $(1,0)$ | $(0,0,0,0,0,0,0,1,0,1,1,0,0,1,1)$ | $(1,1)$ | $(0,0,0,0,1,0,0,1,1,0,1,1,0,1,1)$ | $2^{2} \cdot 3 \cdot 5$ | $W_{64,1}(\beta=14)$ |
| $(1,0)$ | $(0,0,0,0,0,0,0,0,0,0,1,0,0,1,1)$ | $(1,1)$ | $(0,0,0,0,1,1,1,0,1,1,1,0,1,1,1)$ | $2^{3} \cdot 3 \cdot 5$ | $W_{64,1}(\beta=14)$ |
| $(1,0)$ | $(0,0,0,0,0,0,0,0,0,1,0,1,1,1,1)$ | $(1,1)$ | $(0,0,0,0,0,1,0,1,0,0,1,1,1,1,1)$ | $2 \cdot 3 \cdot 5$ | $W_{64,1}(\beta=29)$ |
| $(1,0)$ | $(0,0,0,0,0,0,0,0,1,0,1,0,1,1,1)$ | $(1,1)$ | $(0,0,0,1,0,1,0,0,0,1,0,1,1,1,1)$ | $2 \cdot 3 \cdot 5$ | $W_{64,1}(\beta=44)$ |
| $(1,0)$ | $(0,0,0,0,0,0,0,0,0,0,0,0,1,1,1)$ | $(1,1)$ | $(0,0,0,1,0,1,1,1,1,1,0,1,0,1,1)$ | $2^{2} \cdot 3 \cdot 5$ | $W_{64,1}(\beta=44)$ |
| $(1,0)$ | $(0,0,0,0,0,1,0,0,0,1,0,1,0,1,1)$ | $(1,1)$ | $(0,0,1,1,1,1,0,1,1,0,1,1,1,1,1)$ | $2 \cdot 3 \cdot 5$ | $W_{64,1}(\beta=59)$ |
| $(1,0)$ | $(0,0,0,0,0,0,0,0,0,0,1,0,0,1,1)$ | $(1,1)$ | $(0,0,0,1,0,0,1,1,1,1,1,1,0,1,1)$ | $2^{2} \cdot 3 \cdot 5$ | $W_{64,1}(\beta=74)$ |

5 New codes of length 68

In this section, we construct new extremal self-dual codes of length 68 by extending certain previously constructed codes of length 64 (using Theorem 2.4) from Table 1 . In particular, we use \mathcal{C}_{11} that was listed in Table [1.

5.1 New codes of length 68 from $\left(\mathbb{F}_{4}+u \mathbb{F}_{4}\right) C_{4}$

The possible weight enumerator of a self-dual $[68,34,12]_{2}$-code is in one of the following forms by [4, 19]:

$$
\begin{aligned}
& W_{68,1}=1+(442+4 \beta) y^{12}+(10864-8 \beta) y^{14}+\cdots, 104 \leq \beta \leq 1358 \\
& W_{68,2}=1+(442+4 \beta) y^{12}+(14960-8 \beta-256 \gamma) y^{14}+\cdots
\end{aligned}
$$

where $0 \leq \gamma \leq 9$. Recently, Yankov et al. constructed the first examples of codes with a weight enumerator for $\gamma=7$ in $W_{68,2}$. In [9] and [16], more unknown $W_{68,2}$ codes were constructed. Together with these, the existence of the codes in $W_{68,2}$ is known for:

$$
\begin{aligned}
& \gamma=0, \beta \in\{2 m \mid m=0,7,11,14,17,21, \ldots, 99,102,105,110,119,136,165\} \text { or } \\
& \beta \in\{2 m+1 \mid m=3,5,8,10,15,16,17,18,20, \ldots, 82,87,93,94,101,104,110,115\} ; \\
& \gamma=1, \beta \in\{2 m \mid m=22,24, \ldots, 99,102\} \text { or } \beta \in\{2 m+1 \mid m=24, \ldots, 85,87\} ; \\
& \gamma=2, \beta \in\{2 m \mid m=29, \ldots, 100,103,104\} \text { or } \beta \in\{2 m+1 \mid m=32,34, \ldots, 79\} ; \\
& \gamma=3, \beta \in\{2 m \mid m=40, \ldots, 98,101,102\} \text { or } \\
& \beta \in\{2 m+1 \mid m=41,43, \ldots, 77,79,80,83,96\} ; \\
& \gamma=4, \beta \in\{2 m \mid m=43,44,48, \ldots, 92,97,98\} \text { or } \\
& \beta \in\{2 m+1 \mid m=48, \ldots, 55,58,60, \ldots, 78,80,83,84,85\} ; \\
& \gamma=5 \text { with } \beta \in\{m \mid m=113,116, \ldots, 181\} ; \\
& \gamma=6 \text { with } \beta \in\{2 m \mid m=69,77,78,79,81,88\} ; \\
& \gamma=7 \text { with } \beta \in\{7 m \mid m=14, \ldots, 39,42\} .
\end{aligned}
$$

Recall that the previously constructed codes of length 64 (from Table 11) are codes over $\mathbb{F}_{4}+u \mathbb{F}_{4}$. In order to apply Theorem [2.4, it requires the codes to be over $\mathbb{F}_{2}+u \mathbb{F}_{2}$. Before considering extensions of these codes, we need to use the Gray map $\psi_{\mathbb{F}_{4}+u \mathbb{F}_{4}}$ to convert them to a code over $\mathbb{F}_{2}+u \mathbb{F}_{2}$. The following table details the new extremal self-dual codes of length 68. For each new code constructed we note the original code of length 64 from Table 亿 the unit $c \in \mathbb{F}_{2}+u \mathbb{F}_{2}$, the vector X required to apply Theorem [2.4. The codes listed all have new weight enumerators.

| Table 7: Type I Extremal Self-dual code of length 68 from C_{3} over $\mathbb{F}_{4}+u \mathbb{F}_{4}$. | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathcal{C}_{68, i}$ | \mathcal{C}_{i} | c | X | γ | β |
| $\mathcal{C}_{68,1}$ | 11 | 1 | $(1, u, u, 3,3,0,1,3, u, 3,0,1,0,0,0,1, u, 0,3,3,0,1,1, u, u, u, 3,3,0, u, u, 3)$ | $\mathbf{4}$ | $\mathbf{1 9 0}$ |
| $\mathcal{C}_{68,2}$ | 11 | 1 | $(0,1,0,1,3,1,0,0, u, u, 1, u, u, 0,1,1,1,0, u, 1, u, 1,1,0,1,0,3,3, u, 1, u, u)$ | $\mathbf{4}$ | $\mathbf{1 9 2}$ |
| $\mathcal{C}_{68,3}$ | 11 | $u+1$ | $(1, u, u, 3,3,0,1,3, u, 3,0,3, u, 0, u, 3, u, 0,3,1,0,1,3,0,0, u, 1,3,0, u, u, 1)$ | $\mathbf{4}$ | $\mathbf{2 0 4}$ |
| $\mathcal{C}_{68,4}$ | 11 | $u+1$ | $(u, 1,0,3,0,0,0, u, 1, u, u, 0,0,0,3,3,1,3, u, 0,0, u, 3,1,0,0, u, 0,0,0,1,3)$ | $\mathbf{4}$ | $\mathbf{2 0 8}$ |
| $\mathcal{C}_{68,5}$ | 11 | 1 | $(0,3, u, 3,0,0, u, 0,1, u, u, 0,0, u, 3,3,1,3,0,0, u, u, 1,3, u, u, 0, u, u, 0,3,1)$ | $\mathbf{4}$ | $\mathbf{2 1 0}$ |
| $\mathcal{C}_{68,6}$ | 11 | $u+1$ | $(u, 1, u, 1,0,0, u, 0,3,0, u, 0,0, u, 1,1,3,3,0,0,0, u, 3,3,0,0,0,0, u, 0,1,1)$ | $\mathbf{4}$ | $\mathbf{2 1 4}$ |

5.2 New self-dual codes of length 68 from neighboring construction

Two self-dual binary codes of dimension k are said to be neighbors if their intersection has dimension $k-1$. Without loss of generality, we consider the standard form of the generator matrix of C. Let $x \in \mathbb{F}_{2}^{n}-C$ then $D=\left\langle\langle x\rangle^{\perp} \cap C, x\right\rangle$ is a neighbor of C. The first 34 entries of x are set to be 0 , the rest of the vectors are listed in Table 8 , As neighbors of codes in Table 7 we obtain 17 new codes with weight enumerators in $W_{68,2}$, which are listed in Table 8, All the codes have an automorphism group of order 2.

Table 8: New codes of length 68 as neighbors of codes in Table 7

$\mathcal{N}_{68, i}$	$\mathcal{C}_{68, i}$	$\left(x_{35}, x_{36}, \ldots, x_{68}\right)$	γ	β	$\mathcal{N}_{68, i}$	$\mathcal{C}_{68, i}$	$\left(x_{35}, x_{36}, \ldots, x_{68}\right)$	γ
1	6	$(1111101001010000101110100001111010)$	3	165	2	6	$(0011101000011001110010111010000011)$	3
3	6	$(0110001110010110101000100011111101)$	3	171	4	6	$(0100010010100011000110000110001010)$	3
5	6	$(0110010001110000000011011110010100)$	4	163	6	6	$(1110111111010101100001011001111011)$	4
7	6	$(1000101111011011101011010101110100)$	4	173	8	6	$(0100101010011010111001000111111100)$	4
9	6	$(1101110100111100110010000111001100)$	4	179	10	6	$(1001010100010110110000010011000000)$	4
1181								
11	2	$(1000101100010110000101111000010010)$	4	183	12	6	$(0010111011011111100101111101000100)$	4
13	6	$(1011011110010100011001011011001111)$	4	187	14	6	$(0010010001110100011000001010000110)$	4
18	188							
15	6	$(1001100011010110110101011110010001)$	4	189	16	6	$(0111110011011110010101111010001100)$	4
193								
17	5	$(0101101101011000110011101010001000)$	5	201				

6 Conclusion

In this work, we have introduced a new construction for self-dual codes using group rings. We have provided certain conditions when this construction produces selfdual codes and have established a link between units/non-units and self-dual codes. We have demonstrated the relevance of this new construction by constructing many
binary self-dual codes, including new self-dual codes of lengths 56, 68 and 80. The following is a summary of our results:

- Codes of length 56: $[56,28,10]$ codes with new weight enumerators in $W_{56,1}$ with $\alpha \in\{-12,-25,-38,-51,-64\}$.
- Codes of length 68: Extremal binary self-dual codes with new weight enumerators in $W_{68,2}$:

$$
\begin{aligned}
(\gamma=3, & \beta \in\{165,169,171,173\}) \\
(\gamma=4, & \beta \in\{163,165,173,177,179,181,183,185,187,188,189,190,192,193 \\
& 204,208,210,214\}) \\
(\gamma=5, & \beta=201)
\end{aligned}
$$

The binary generator matrices of these codes are available online at [17].

- Codes of length 80: [80, 40, 14]-codes with new weight enumerators in $W_{80,2}$:

$$
\begin{array}{ll}
(\beta=1, & \alpha \in\{-96,-150,-168,-186,-204,-222,-240,-258,-312\}) \\
(\beta=10, & \alpha \in\{-204,-276,-294,-330,-348,-366\})
\end{array}
$$

We should point out that we have considered specific lengths that are suitable for the constructions over some special alphabets. A possible direction for future research could be considering other families of rings or groups of higher orders, which might require a considerable computational power.

Acknowledgements

The authors would like to thank the anonymous referees for their comments and feedback, which helped improve the paper.

References

[1] F. Bernhardt, P. Landrock and O. Manz, The extended Golay codes considered as ideals, J. Combin. Theory Ser. A 55 (2) (1990), 235-246.
[2] K. Betsumiya, S. Georgiou, T. A. Gulliver, M. Harada and C. Koukouvinos, On self-dual codes over some prime fields, Discrete Math. 262 (1-3) (2003), 37-58.
[3] W. Bosma, J. J. Cannon, C. Fieker and A. Steel (eds.), "Handbook of Magma functions", Edition 2.16, 2010.
[4] S. Buyuklieva and I. Boukliev, Extremal self-dual codes with an automorphism of order 2, IEEE Trans. Inform. Theory 44 (1998), 323-328.
[5] J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory 36 (6) (1990), 1319-1333.
[6] P. J. Davis, "Circulant Matrices", Chelsea Publishing New York, 1979.
[7] G. Dorfer and H. Maharaj, Generalized AG codes and generalized duality, Finite Fields Appl. 9 (2018), 194-210.
[8] S. T. Dougherty, P. Gaborit, M. Harada and P. Sole, Type II codes over $\mathbb{F}_{2}+u \mathbb{F}_{2}$, IEEE Trans. Inform. Theory 45 (1999), 32-45.
[9] S.T. Dougherty, J. Gildea and A. Kaya, Quadruple Bordered Constructions of Self-Dual Codes from Group Rings, Cryptography and Communications 12 (2020), 127-146.
[10] S. T. Dougherty, M. Harada, and T. A. Gulliver, Extremal Binary Self-dual Codes, IEEE Trans. Inform. Theory 43 (6) (1997), 2036-2047.
[11] S. T.Dougherty, J.-L.Kim, H. Kulosman and H. Liu, Self-dual codes over commutative Frobenius rings, Finite Fields Appl. 16 (2010), 14-26.
[12] S.T. Dougherty, B. Yildiz and S. Karadeniz, Codes over R_{k}, Gray maps and their Binary Images, Finite Fields Appl. 17 (3) (2011), 205-219.
[13] S. T. Dougherty, B. Yildiz and S. Karadeniz, Self-dual Codes over R_{k} and Binary Self-Dual Codes, European J. Pure and Appl. Math. 6 (1) (2013), 89-106.
[14] P. Gaborit, V. Pless, P. Sole and O. Atkin, Type II codes over \mathbb{F}_{4}, Finite Fields Appl. 8 (2) (2002), 171-183.
[15] J. Gildea, A. Kaya, R. Taylor and B. Yildiz, Constructions for self-dual codes induced from group rings, Finite Fields Appl. 51 (2018), 71-92.
[16] J. Gildea, A. Kaya and B. Yildiz, An Altered Four-Circulant Construction for Self-Dual codes from Group Rings and new extremal binary self-dual codes I, Discrete Math. 342 (12) (2019), 111620.
[17] J. Gildea, A. Kaya, A. Tylyshchak and B. Yildiz "Binary generator matrices for extremal binary self-dual codes of length 68 ", available online at http://abidinkaya.wixsite.com/math/research5.
[18] T. A. Gulliver and M. Harada, Classification of extremal double circulant selfdual codes of lengths 74-88, Discrete Math. 306 (2006), 2064-2072.
[19] M. Harada and A. Munemasa, Some restrictions on weight enumerators of singly even self-dual codes, IEEE Trans. Inform. Theory 52 (2006), 1266-1269.
[20] M. Harada and K. Saito, Singly even self-dual codes constructed from Hadamard matrices of order 28, Australas. J. Combin. 70 (2) (2018), 288-296.
[21] T. Hurley, Group Rings and Rings of Matrices, Int. J. Pure Appl. Math. 31 (3) (2006), 319-335.
[22] T. Hurley, Self-dual, dual-containing and related quantum codes from group rings, arXiv:0711.3983, 2007.
[23] S. Ling and P. Sole, Type II codes over $\mathbb{F}_{4}+u \mathbb{F}_{4}$, Europ. J. Combin. 22 (2001), 983-997.
[24] I. McLoughlin and T. Hurley, A group ring construction of the extended binary Golay code, IEEE Trans. Inform. Theory 54 (9) (2008), 4381-4383.
[25] E. M. Rains, Shadow Bounds for Self Dual Codes, IEEE Trans. Inform. Theory 44 (1998), 134-139.
[26] N. Yankov, D Anev and M. Gurel, Self-Dual codes with an automorphism of order 13, Adv. Math. of Communications 11 (3) (2017), 635-645.
(Received 11 Nov 2020; revised 25 Aug 2021)

[^0]: * This author's visit was partially supported by the London Mathematical Society (International Short Visits-Scheme 5).
 \dagger Corresponding author

