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Abstract

We propose an approach for asymptotic analysis of plane partition statis-
tics related to counts of parts whose sizes exceed a certain suitably chosen
level. In our study, we use the concept of conjugate trace of a plane par-
tition of the positive integer n, introduced by Stanley in 1973. We derive
generating functions and determine the asymptotic behavior of counts of
large parts using a general scheme based on the saddle point method. In
this way, we are able to prove a Poisson limit theorem for the number of
parts of a random and uniformly chosen plane partition of n, whose sizes
are greater than a function m = m(n) as n → ∞. An explicit expression
for m(n) is also given.

1 Introduction, Motivation and Statement of the Main Re-

sult

Plane partitions were originally introduced by Young [23] as a natural generalization
of integer partitions in the plane. Enumerative problems for plane partitions were
first studied via generating functions by MacMahon [13] (see also [14]). To describe
the problem, we will introduce first the concept of a linear integer partition. For a
positive integer n, by a partition λ = (λ1, λ2, . . . , λk) of n, we mean the representation

n = λ1 + λ2 + · · ·+ λk, (1.1)

where k ≥ 1 and the integers λj , j = 1, 2, . . . , k, are arranged in non-increasing order:
λ1 ≥ λ2 ≥ · · · ≥ λk > 0. The summands λj in (1.1) are usually called parts of λ. The
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Ferrers diagram of a partition is an array of boxes (or cells) in the plane, left-justified,
with λj boxes in the jth row counting from the bottom. Reading consecutively the
numbers of cells in the columns of the array of the partition λ, beginning from the
leftmost column, we get the conjugate partition λ∗ = (λ∗

1, λ
∗
2, . . . , λ

∗
K), where K = λ1.

For example, the Ferrers diagram of the partition λ̃ = (5, 4, 3, 3, 2, 2, 2, 1) of n = 22
as 22 = 5 + 4 + 3 + 3 + 2 + 2 + 2 + 1 and its conjugate partition λ̃∗ = (8, 7, 4, 2, 1)
(that is, 22 = 8 + 7 + 4 + 2 + 1) are presented in Figure 1.

Figure 1: Ferrers diagrams of λ̃ and λ̃∗

Let p(n) denote the total number of integer partitions of n ≥ 1. For the generating
function

P (x) = 1 +

∞∑
n=1

p(n)xn

of the sequence {p(n)}n≥1, Euler established the following identity:

P (x) =

∞∏
j=1

(1− xj)−1; (1.2)

see, e.g., [2, Chapter 1]. Hardy and Ramanujan [9] developed the so called circle
method and applied it to an asymptotic analysis for the coefficients of P (x). In this
way, they determined asymptotically the numbers p(n) as follows:

p(n) ∼ 1

4n
√
3
exp

(
π

√
2n

3

)
, n → ∞.

For more details and a more precise asymptotic expansion for p(n), we refer the
reader to [18] and [2, Chapter 5].

The planar analogue of (1.1) is called a plane partition. A plane partition ω of
the positive integer n is an array of non-negative integers

ω1,1 ω1,2 ω1,3 · · ·
ω2,1 ω2,2 ω2,3 · · ·
· · · · · · · · ·

(1.3)

that satisfy
∑

h,j≥1 ωh,j = n, and the rows and columns in (1.3) are arranged in
non-increasing order: ωh,j ≥ ωh+1,j and ωh,j ≥ ωh,j+1 for all h, j ≥ 1. The non-zero
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entries ωh,j > 0 are called parts of ω. If there are λh parts in the hth row, so that for
some l, λ1 ≥ λ2 ≥ · · · ≥ λl > λl+1 = 0, then the (linear) partition λ = (λ1, λ2, . . . , λl)
of the integer s = λ1 + λ2 + · · ·+ λl is called the shape of ω. We also say that ω has
l rows and s parts. Sometimes, for the sake of brevity, the zeros in array (1.3) are
deleted. For instance, the abbreviation

5 4 1 1
3 2 1
2 1

(1.4)

represents a plane partition ω̃ of n = 20 with l = 3 rows and s = 9 parts. Any
plane partition ω has an associated solid diagram Δ = Δ(ω) of volume n, which is
considered as three-dimensional analogue of the Ferrers diagram of a linear integer
partition. It is defined as a set of n integer lattice points x = (x1, x2, x3) ∈ N

3, such
that if x ∈ Δ and x′

j ≤ xj , j = 1, 2, 3, then x′ = (x′
1, x

′
2, x

′
3) ∈ Δ too. (Here N

denotes the set of all positive integers.) Indeed, the entry ωh,j can be interpreted as
the height of the column of unit cubes stacked along the vertical line x1 = h, x2 = j,
and the solid diagram is the union of all such columns. Figure 2 represents the solid
diagram of the plane partition in the example (1.4).

Figure 2: The solid diagram of plane partition (1.4)

Let q(n) denote the total number of plane partitions of the positive integer n
(or, the total number of solid diagrams of volume n). A basic generating function
identity established by MacMahon [13] implies that the generating function of the
sequence {q(n)}n≥1,

Q(x) = 1 +
∞∑
n=1

q(n)xn,

satisfies

Q(x) =

∞∏
j=1

(1− xj)−j (1.5)

(more details may be also found, e.g., in [19, Corollary 18.2] and [2, Corollary 11.3]).
The asymptotic form of the numbers q(n), as n → ∞, has been obtained by Wright
[22] (see also [16] for a little correction). It is given by the following formula:

q(n) ∼ (ζ(3))7/36

211/36(3π)1/2
n−25/36 exp (3(ζ(3))1/3(n/2)2/3 + 2γ), (1.6)
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where

ζ(z) =

∞∑
j=1

j−z

is the Riemann zeta function and

γ =

∫ ∞

0

u log u

e2πu − 1
du =

1

2
ζ ′(−1).

(The constant ζ ′(−1) = −0.1654 . . . is closely related to the Glaisher-Kinkelin con-
stant; see [5]).

Remark 1.1 In fact, Wright [22] proposed a variant of the circle method, which
allows him to obtain an asymptotic expansion for q(n).

Further, we need the concepts of conjugate trace and trace of a plane partition,
introduced by Stanley [20].

Definition 1.1 The conjugate trace of the plane partition ω, given by the array
(1.3), is defined to be the number of parts ωh,j of ω satisfying ωh,j ≥ h.

Hence the conjugate trace of the plane partition in example (1.4) is 6.

Definition 1.2 The trace of a plane partition ω, given by (1.3), is defined to be the
sum

∑
h ωh,h.

Let T ∗
lt(n) (Tlt(n)) be the number of plane partitions of n with at most l rows,

and conjugate trace (trace) t. Stanley [20] applied a bijection, established by Bender
and Knuth [3], and showed that

T ∗
lt(n) = Tlt(n). (1.7)

Setting T ∗
t (n) = liml→∞ T ∗

lt(n) and Tt(n) = liml→∞ Tlt(n), he obtained the following
identities:

1 +
∞∑
n=1

∞∑
t=1

T ∗
t (n)y

txn = 1 +
∞∑
n=1

∞∑
t=1

Tt(n)y
txn =

∞∏
j=1

(1− yxj)−j. (1.8)

We notice that a linear (one-dimensional) partition λ has 2! = 2 aspects—partition λ
itself and its conjugate partition λ∗, while in the case of plane partitions, we observe
3! = 6 aspects obtained from the six permutations of the three axes in the solid
diagram. (Here we prefer to use MacMahon’s term “aspect” [14, Section 427] rather
than “conjugate” used by Stanley [20, p. 58].) Stanley [20, Section 3] showed that
every plane partition ω of the positive integer n whose conjugate trace is t has exactly
one aspect ω′ with the same number of rows and trace equal to t. Suppose that the
rows of ω and ω′ are numbered from top to bottom by 1, 2, . . . . The unique partition
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ω′ is obtained from ω by taking the linear conjugate partition of row k of ω and
then writing its parts in a non-increasing order on row k of ω′. This correspondence
explains why both (1.7) and (1.8) hold. For example, using the conjugates of the
partitions 11 = 5+4+1+1, 6 = 3+2+1, and 3 = 2+1 of the rows in the partition
ω̃ displayed by (1.4), we obtain ω̃′ as

4 2 2 2 1
3 2 1
2 1,

whose trace is obviously 6 and is equal to the conjugate trace of ω̃.

Let Ω(n) be the set of all plane partitions of n, and let Λ(n) be the set of all linear
integer partitions of n. We introduce the uniform probability measures P and P on
these two sets, respectively. That is, we assign the probability 1/q(n) to each plane
partition of n and the probability 1/p(n) to each linear partition of n. In this way,
each numerical characteristic of a plane partition from Ω(n) and of a linear partition
from Λ(n) becomes a random variable (or, a statistic in the sense of the random
generation of plane or linear partitions of n). The analysis of linear integer partitions
in terms of probabilistic limit theorems was initiated by Erdős and Lehner [4] who
found an appropriate normalization for the largest part (for the number of parts,
by the conjugation of the Ferrers diagram) in a random partition from Λ(n) and
established a weak convergence to the extreme value (Gumbel) distribution as n →
∞. Subsequent work in this direction has been continued by many authors. Special
interest in these studies was to determine the asymptotic behavior of counts of big
part sizes of a random partition from Λ(n) (say, part sizes greater than a certain
suitable value m = m(n)). For typical results, we refer the reader to [21], [7] and
[17]. In [7], among other important results, Fristedt proved the following Poisson
limit theorem.

Theorem 1.1 [7, p. 713]. Let ξm,n be the number of parts greater than m in a
random integer partition from the set Λ(n), equipped with the uniform probability
measure P. Then, with respect to P, ξm,n has a limiting Poisson distribution with
expectation e−c, as n → ∞ if, for any c ∈ R,

m =

√
6n

π

(
log

√
6n

π
+ c

)
. (1.9)

The main purpose of this paper is to establish an analogue of Theorem 1.1 for
plane partitions from the set Ω(n), equipped with the uniform probability measure
P. To introduce a statistic with an asymptotic behavior similar to that of ξm,n, in
the two-dimensional case we need to take into account the order of the parts of a
plane partition in both directions: from top to bottom (in rows) and from left to
right (in columns). This idea is, in fact, what Stanley [20] stated in the definition
of a conjugate trace of a plane partition (see Definition 1.1). The definition of the
statistic that we propose as an analogue of ξm,n is given below.
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For 0 ≤ m < n, let Xm,n = Xm,n(ω) be the number of parts of ω ∈ Ω(n)
that satisfy the inequalities ωh,j ≥ h and ωh,j > m. In example (1.4), we have
X0,20(ω̃) = 6, X1,20(ω̃) = 4, X2,20(ω̃) = 3 and X3,20(ω̃) = 2. Now, we state our main
result.

Theorem 1.2 With respect to the probability measure P, the random variable Xm,n

has a limiting Poisson distribution with expectation 2
3
e−c, as n → ∞ if, for any

c ∈ R,

m =

(
n

2ζ(3)

)1/3
(
log

(
n

2ζ(3)

)2/3

+ log logn+ c

)
. (1.10)

Remark 1.2 In [11] it is shown that the trace of a random plane partition of n,
appropriately normalized, converges in distribution to a standard normal random
variable as n → ∞. We notice that the conjugate trace and the trace of a random
plane partition of n have one and the same probability distribution with respect to
the probability measure P. This follows from Stanley’s one-to-one correspondence
[20], described above, and his identity (1.8). Hence, the limit theorem in [11] is also
valid for the conjugate trace of a plane partition.

In the proof of Theorem 1.2 we follow a generating function approach. Let E

denote the expectation taken with respect to the probability measure P on the space
Ω(n). We observe that the generating function of the expectations {E(yXm,n)}n≥1

satisfies an identity whose right-hand side is of the form Q(x)fm(x, y), where Q(x)
is given by (1.5) and the function fm(x, y) will be specified later. Then, we apply
the saddle point method in a form given by Hayman [10] (see also, e.g., [6, Chapter
VIII.5]).

Finally, we consider the simpler statistic Zm,n = Zm,n(ω) counting the number of
parts which are greater than m in a randomly chosen ω ∈ Ω(n). It is not difficult to
show that if m = m(n) is given by (1.10), then the difference Zm,n −Xm,n tends to
0 in probability as n → ∞. Hence Theorem 1.2 implies the following corollary.

Corollary 1.1 With respect to the probability measure P, the random variable Zm,n

has a limiting Poisson distribution with expectation 2
3
e−c as n → ∞ if m satisfies

(1.10).

Our paper is organized as follows. In Section 2 we include the necessary gener-
ating function identities and the asymptotic results that will be used further. The
proofs of Theorem 1.2 and Corollary 1.1 are given in Section 3. Some concluding
remarks are given in Section 4.

2 Preliminary Results

Consider a plane partition ω ∈ Ω(n), defined by the array (1.3). Let Ln = Ln(ω)
be the largest part size of ω and let Rn = Rn(ω) be the number of rows in it.
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Suppose that, for a certain ω, Rn ≤ s and define the subsets of parts of ω by
{ωh,j : ωh,j = k ≥ h} for k = 1, 2, . . . , n (possibly some of the last subsets are
empty). Let Yk,n = |{ωh,j : ωh,j = k ≥ h}|, where by |A| we denote the cardinality of
the set A. The next lemma extends the result of Theorem 2.2 from [20]. We state
it in terms of probability generating functions. We assume there that the randomly
chosen ω ∈ Ω(n) is such that Rn(ω) ≤ s and Ln(ω) ≤ l, for fixed s and l (i.e. the
intersection {ω : Rn ≤ s} ∩ {ω : Ln ≤ l} is non-empty). For an arbitrary random
variable Un = Un(ω), ω ∈ Ω(n), restricted on {ω : Rn ≤ s} ∩ {ω : Ln ≤ l}, by
E(Un, Rn ≤ s, Ln ≤ l) we denote its expectation. (Obviously, after the two passages
to the limit: s → ∞ and l → ∞, we will obtain the expectation of Un, with respect
to the probability measure P on the whole Ω(n), that is E(Un).)

Lemma 2.1 We have

1 +
∞∑
n=1

q(n)E(y
Y1,n

1 y
Y2,n

2 . . . yYn,n
n , Rn ≤ s, Ln ≤ l)xn =

s∏
k=1

l∏
j=1

(1− yjx
k+j−1)−1, (2.1)

where x, y1, . . . , yn are formal variables.

Sketch of the proof. We notice first that Definition 1.1 implies that
∑

j≥1 Yj,n equals
the conjugate trace of a plane partition. Stanley [20, Theorem 2.2] showed that from
(1.7) it follows that

1 +

∞∑
n=1

q(n)E(y
∑

j≥1 Yj,n , Rn ≤ s, Ln ≤ l)xn =

s∏
k=1

l∏
j=1

(1− yxk+j−1)−1, (2.2)

where x and y are formal variables. Clearly, (2.1) is a slight extension of (2.2), in
which the contribution of the parts k are separated by the variables yk. The proof
of (2.1) follows the same line of reasoning as in [20]. It is based on two bijections.
The first one, due to Knuth [12], is as follows:

(K) There is a one-to-one correspondence between ordered pairs (ω1, ω2) of col-
umn strict plane partitions of the same shape and matrices (bjk)j,k≥1 of non-negative
integers. In this correspondence, (i) the number k appears in ω1 exactly

∑
j bjk times,

and (ii) k appears in ω2 exactly
∑

j bkj times.

(By a column strict plane partition we mean a plane partition whose non-zero
entries are strictly decreasing in each column.)

The second bijection is given by Bender and Knuth [3].

(BK) There is a one-to-one correspondence between the plane partition ω ∈ Ω(n)
with Rn(ω) = s, Ln(ω) = l and Yj,n(ω) = tj , j = 1, 2, . . . , n, with t =

∑n
j=1 tj , and

pairs (ω1, ω2) of column strict partitions, so that the largest part of ω2 is s, the largest
part of ω1 is l, the number of parts in the jth row of ω1 or ω2 is tj and the conjugate
trace t of ω equals the total number of parts

∑n
j=1 tj of ω1 or ω2. Moreover, if ωk is

a partition of nk, k = 1, 2, then n = n1 + n2 − t; see also [20, p. 57].
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In this way, using bijection (BK), we establish that the count q(n)P(Yj,n = tj , j =
1, 2, . . . , n, Rn ≤ s, Ln ≤ l) is equal to the number of pairs (ω1, ω2) of column strict
plane partitions of the same shape satisfying: (i) the largest part of ω1 is ≤ s, (ii)
the largest part of ω2 is ≤ l, (iii) the number of parts in row j of ω1 or ω2 is tj , (iv)
the number of parts of ω1 or ω2 is t =

∑n
j=1 tj , (v) the sum of the parts of ω1 and

ω2 is n + t. Then, one can obtain (2.1), using bijection (K) and following the same
argument as in [20]. �

Remark 2.1 We notice that, in a similar way as Stanley did in [20], one can obtain
from (2.1) as corollaries the following identities after both passages to the limit:
s → ∞ and l → ∞. For instance, we have

1 +
∞∑
n=1

q(n)E(
∞∏
k=1

y
Yk,n

k )xn =
∞∏
j=1

(1− yjx
j)−j, (2.3)

which generalizes Stanley’s formula (6) in [20, p. 59]. Clearly, (1.8) follows from
(2.3) after the substitution yj = y, j = 1, 2, . . . .

Now, recall that Xm,n =
∑

j>m Yj,n. Setting in (2.3) y1 = · · · = y[m] = 1 and
yj = y for j > m, where [m] denotes the integer part of m, we obtain

1 +

∞∑
n=1

q(n)E(yXm,n) =
∏
j≤m

(1− xj)−j
∏
j>m

(1− yxj)−j

= Q(x)fm(x, y). (2.4)

Here Q(x) is defined by (1.5) and

fm(x, y) =
∏
j>m

(
1− xj

1− yxj

)j

. (2.5)

We are now ready to proceed with the preliminaries of our further asymptotic
analysis. We have to study the behavior of the coefficient [xn]Q(x)fm(x, y) of xn

in the Taylor expansion of the product Q(x)fm(x, y) as n → ∞, where Q(x) and
fm(x, y) are defined by (1.5) and (2.5), respectively. We express this coefficient by
means of Cauchy’s integral formula using a suitably chosen closed curve around 0 as
a contour of integration. Since the unit circle is a natural boundary for Q(x), this
contour lies inside the unit disk. We will estimate the Cauchy integral using a general
theorem due to Hayman [10] whose proof is based on the saddle point method. We
will describe next the wide class of functions to which Hayman’s theorem apply. We
employ the terminology given in [6, Chapter VIII.5].

Consider a function G(x) =
∑∞

n=0 gnx
n that is analytic for |x| < ρ, 0 < ρ ≤ ∞.

For 0 < r < ρ, we set

a(r) = r
G′(r)
G(r)

, (2.6)
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b(r) =
rG′(r)
G(r)

+ r2
G′′(r)
G(r)

− r2
(
G′(r)
G(r)

)2

. (2.7)

We assume that G(x) > 0 for x ∈ (ρ0, ρ) ⊂ (0, ρ) and satisfies the following three
conditions:

Capture condition. limr→ρa(r) = ∞ and limr→ρ b(r) = ∞.

Locality condition. For some function δ = δ(r) defined over (ρ0, ρ) and satisfying
0 < δ < π, one has

G(reiθ) ∼ G(r)eiθa(r)−θ2b(r)/2

as r → ρ, uniformly for |θ| ≤ δ(r).

Decay condition.

G(reiθ) = o

(
G(r)√
b(r)

)

as r → ρ uniformly for δ(r) < |θ| ≤ π.

Definition 2.1 A function G(x) which satisfies the capture, locality and decay con-
ditions is called admissible in the sense of Hayman.

Hayman’s Theorem. Let G(x) be a Hayman admissible function and r = rn be
the unique solution of the equation

a(r) = n. (2.8)

Then the Taylor coefficients gn of G(x) satisfy, as n → ∞,

gn ∼ G(rn)

rnn
√
2πb(rn)

(2.9)

with b(rn) given by (2.7).

Hayman’s theorem was applied in [15] to obtain a general asymptotic estimate
for [xn]Q(x)F (x), where Q(x) is defined by (1.5) and F (x) is suitably restricted
on its behavior in any neighborhood of x = 1. This result was then used to derive
asymptotics of the expectations of several plane partition statistics. For linear integer
partition statistics, a method for the asymptotic analysis of [xn]P (x)F (x), where
P (x) is defined by (1.2), was developed by Grabner et al. [8]. In our asymptotic
analysis of [xn]Q(x)fm(x, y) we are not able to apply directly the general result from
[15, Theorem 1]. In fact, the function fm(x, y) (see (2.5)) is analytic only for |x| < 1,
while F (x) in [15] satisfies a more general assumption in a neighborhood of the
point x = 1. In addition, fm(x, y) depends on the growth of n since the parameter
m = m(n) satisfies relation (1.10). Finally, the dependency on a second variable y in
fm(x, y) plays an important role in our study since the estimates that we will explore
further have to be uniform for y ∈ [0, 1). Hence our further asymptotic analysis relies
on the observations for the MacMahon’s generating function Q(x) established in [15].
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The asymptotic behavior of fm(x, y), as x → 1 and |x| < 1, is studied separately at
the end of this section.

We continue with a lemma related to Q(x) (see (1.5)). For its proof, we refer the
reader to [15, pp. 261–265]. Further on, in (2.6), (2.7) and (2.9) we set G(x) := Q(x),
ρ := 1 and gn := q(n).

Lemma 2.2 (i) The unique solution of (2.8) is r = rn = e−dn, where, for large n,
the sequence {dn}n≥1 has the following expansion:

dn =

(
2ζ(3)

n

)1/3

− 1

36n
+O(n−1−β) (2.10)

and β > 0 is a certain fixed constant. Moreover, as n → ∞,

b(e−dn) ∼ 3n4/3

2ζ1/3(3)
, (2.11)

where b(r) is defined by (2.7). Hence (2.8) and (2.11) imply that Q(x) satisfies
Hayman’s “capture” condition as n → ∞.

(ii) With dn and b(e−dn) as in part (i), we have

e−iθnQ(e−dn+iθ)

Q(e−dn)
= e−θ2b(e−dn )/2(1 +O(1/ log3 n)) (2.12)

as n → ∞ uniformly for |θ| ≤ δn, where

δn =
d
5/3
n

log n
=

1

log n

(
2ζ(3)

n

)5/9

(1 +O(n−2/3)). (2.13)

(The last equality follows from (2.10).) In addition, (2.12) and (2.13) show that
Hayman’s “locality” condition holds for Q(x) with δn := δ(e−dn).

(iii) For sufficiently large n, we have

|Q(e−dn+iθ)| ≤ Q(e−dn)e−Cd
−2/3
n

≤ Q(e−dn)e−C′n2/9/ log2 n = o

(
Q(e−dn)√
b(e−dn)

)
(2.14)

uniformly for δn ≤ |θ| ≤ π, where C,C ′ > 0 are absolute constants and dn and
δn satisfy (2.10) and (2.13), respectively. By (2.14) Q(x) satisfies also Hayman’s
“decay” condition with δn as in part (ii).

Remark 2.2 Clearly, for sufficiently large n, the arc (−δn, δn) on the circle x =
e−dn+iθ,−π < θ ≤ π, becomes close to the main singularity x = 1 of MacMahon’s
generating function Q(x). Furthermore, (2.12) and (2.14) show that Q(e−dn+iθ) sig-
nificantly changes its behavior when θ leaves the interval (−δn, δn). Moreover, Lemma
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2.2 and Definition 2.1 show that MacMahon’s generating function Q(x) is admissible
in the sense of Hayman. Therefore, by Hayman’s theorem we have

q(n) ∼ endnQ(e−dn)√
2πb(e−dn)

, n → ∞, (2.15)

where dn and b(e−dn) are given by (2.10) and (2.11), respectively. In the Appendix
of [15] it is shown that (2.15) implies the corrected form of Wright’s formula (1.6).

Our last task in this section is to study the behavior of fm(e
−idn+iθ, y); see (2.5).

We obtain uniform estimates for the following two cases: θ belongs to a neighborhood
of 0, and θ varies arbitrarily in the whole interval (−π, π].

Lemma 2.3 (i) If dn and m = m(n) satisfy (2.10) and (1.10), respectively, then

lim
n→∞

fm(e
−idn+iθ, y)

fm(e−dn , y)
= 1 (2.16)

uniformly for |θ| ≤ δn and y ∈ [0, 1), where δn is given by (2.13).

(ii) Let dn and m be the same as in part (i). Then, for any θ ∈ (−π, π] and
sufficiently large n, we have

fm(e
−idn+iθ, y) = O(1) (2.17)

uniformly for y ∈ [0, 1).

Proof. (i) We let log x denote the main branch of the logarithmic function, that is,
we assume that log x < 0 if 0 < x < 1. Next, using (2.5), we represent the function
fm(x, y) in the following way:

fm(x, y) = exp (
∑
j>m

jgj(x, y)), (2.18)

where

gj(x, y) = log
1− xj

1− yxj
.

By the Taylor formula with x = e−dn+iθ, we have

gj(e
−dn+iθ, y) = gj(e

−dn , y) +O

(
δn| ∂

∂x
gj(x, y)|x=e−dn

)
, (2.19)

since, for any θ0 ∈ (−δn, δn), we have |eiθ0 − 1| ≤ |θ0| < δn. A simple calculation
shows that

∂

∂x
gj(x, y) =

jxj−1(y − 1)

(1− xj)(1− yxj)
. (2.20)
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Hence, using (2.18) - (2.20), we can write

f(e−dn+iθ, y)

f(e−dn , y)
= eSm,n , (2.21)

where the sum Sm,n of the remainder terms in the Taylor expansions of gj satisfies
the following estimate:

Sm,n = O

(
δn(1− y)

∑
j>m

j2e−jdn

(1− e−jdn)(1− ye−jdn)

)
(2.22)

uniformly for |θ| < δn and y ∈ [0, 1). The sum on the right-hand side of (2.22) can
be interpreted as a Riemann sum with step size dn. At this moment, it is more
convenient for us to express m as a function of dn, given by (2.10). We set

m = d−1
n (log d−2

n + log log n+ c), c ∈ R. (2.23)

By (2.23) the lower bound of the integral is mdn = log d−2
n + log log n + c. Thus we

have

∑
j>m

j2e−jdn

(1− e−jdn)(1− ye−jdn)
= O

(
d−3
n

∫ ∞

log d−2
n +log logn+c

u2e−u

(1− e−u)(1− ye−u)
du

)

= O

(
d−3
n

1− y

∫ ∞

log d−2
n +log logn+c

u2e−u

1− e−u
du

)
. (2.24)

The last integral is related to the Debye function of order 2. It is easy to see, using
formula 27.1.2 in [1], that∫ ∞

t

u2

eu − 1
du = (t2 + 2t + 2)e−t +O(t2e−2t), t → ∞. (2.25)

We will also need asymptotic expansions for d−1
n , d−2

n and log d−2
n . From (2.10) it

follows that

d−1
n =

(
n

2ζ(3)

)1/3

+
1

36(2ζ(3))2/3n1/3
+O(n−1/3−β), (2.26)

d−2
n =

(
n

2ζ(3)

)2/3

+
1

36ζ(3)
+O(n−β)

and

log d−2
n =

2

3
logn− 2

3
log (2ζ(3)) +O(n−2/3). (2.27)

We notice here that from (2.26) and (2.27) it follows that

d−1
n (log d−2

n + log log n+ c) =

(
n

2ζ(3)

)1/3
(
log

(
n

2ζ(3)

)2/3

+ log log n+c

)
+o(1),
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i.e., the difference between the right-hand sides of (1.10) and (2.23) tends to 0 as
n → ∞, which justifies the value of m, given by (1.10). Moreover, from (2.25) and
(2.27) we obtain

d−3
n

∫ ∞

log d−2
n +log logn+c

u2

eu − 1
du = O(d−1

n log n). (2.28)

Combining (2.10), (2.13), (2.22) and (2.28), we see that

Sm,n = O(d2/3n ) = O(n−2/9),

which implies that the ratio in (2.21) tends to 1, as n → ∞, uniformly for |θ| ≤ δn
and y ∈ [0, 1). This completes the proof of part (i).

(ii) For any θ ∈ (−π, π], we observe that

|fm(e−idn+iθ, y)| = exp

(∑
j>m

j log
|1− e−jdnθ|
|1− ye−jdnθ|

)

= exp

(
1

2

∑
j>m

j log

(
1− 2e−jdn cos (jθ) + e−2jdn

1− 2ye−jdn cos (jθ) + y2e−2jdn

))

≤ exp

(∑
j>m

j log

(
1 + e−jdn

1− e−jdn

))
, (2.29)

where in the inequality on the last line we used that y ∈ [0, 1) and that −1 ≤
cos (jθ) ≤ 1. Expanding the logarithm on the right hand side of (2.29) into powers
of e−jdn with j > m and using (2.23) and (2.27), we obtain

log

(
1 + e−jdn

1− e−jdn

)
= 2e−jdn + 2

∑
k≥2

e−j(2k−1)dn

2k − 1

= 2e−jdn +O(e−3mdn)

= 2e−jdn(1 +O(e−2mdn))

= 2e−jdn(1 + e−( 4
3
logn+2 log logn+O(1)))

= 2e−jdn(1 +O(n−4/3/ log2 n)).

Substituting this expression into the right hand side of (2.29) and approximating
again the underlying sum by a Riemann integral, from (2.26) and (2.27) we get the
estimate:

|fm(e−idn+iθ, y)| ≤ (1+O(n−4/3 log2 n)) exp

(
2

((
n

2ζ(3)

)1/3

+O

(
1

n

))∑
j>m

(jdn)e
−jdn

)

≤ exp

(
C0n

1/3

∫ ∞

2
3
logn+log logn

ue−udu

)
(2.30)
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uniformly for θ ∈ (−π, π] and y ∈ [0, 1), where C0 > 0 is an absolute constant. Using
the asymptotic formula for the incomplete gamma function [1, formula 6.5.32], we
obtain ∫ ∞

2
3
logn+log logn

ue−udu = O(n−2/3).

Replacing this estimate into the right hand side of (2.30), we complete the proof of
part (ii). �

3 Proof of the Main Result

3.1 Proof of Theorem 1.2

First, we recall the expressions for dn and δn given by (2.10) and (2.13), respec-
tively. Next we apply the Cauchy coefficient formula to (2.4), using the circle
x = e−dn+iθ,−π < θ ≤ π, as a contour of integration. Thus we obtain

[xn]Q(x)fm(x, y) =
endn

2π

∫ π

−π

Q(e−dn+iθ)fm(e
−dn+iθ, y)e−iθndθ

= J1,n + J2,n, (3.1)

where

J1,n =
endn

2π

∫ δn

−δn

Q(e−dn+iθ)fm(e
−dn+iθ)dθ, (3.2)

J2,n =
endn

2π

∫
δn<|θ|≤π

Q(e−dn+iθ)fm(e
−dn+iθ, y)dθ. (3.3)

The estimate of J1,n follows from parts (i) and (ii) of Lemma 2.2 and Lemma 2.3.
First, in (3.2) we perform the following computation:

J1,n =
endnQ(e−dn)fm(e

−dn , y)

2π

∫ δn

−δn

(
Q(e−dn+iθ)

Q(e−dn)

)(
fm(e

−dn+iθ, y)

fm(e−dn , y)

)
e−iθndθ

=
endnQ(e−dn)fm(e

−dn , y)

2π

∫ δn

−δn

e−θ2b(e−dn )/2

(
1 +O

(
1

log3 n

))
(1 + o(1))dθ

∼ endnQ(e−dn)fm(e
−dn , y)

2π

∫ δn

−δn

e−θ2b(e−dn )/2dθ. (3.4)

Note that in the second equality we applied (2.12) (that is, Hayman’s “locality”
condition) and (2.16) (i.e., Lemma 2.3(i)). Next, in the last integral of (3.4) we
substitute θ = u/

√
b(e−dn). We observe that

∫ δn

−δn

e−θ2b(e−dn )/2dθ ∼ 1√
b(e−dn)

∫ δn
√

b(e−dn )

−δn
√

b(e−dn )

e−u2/2du
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∼ 1√
b(e−dn)

∫ ∞

−∞
e−u2/2du

=

√
2π

b(e−dn)
, n → ∞,

since by (2.11) and (2.13)

δn
√
b(e−dn) ∼

√
3(2ζ(3))7/18

n1/9

log n
→ ∞, n → ∞.

Inserting the estimate of the last integral into (3.4), by Wright’s formula (2.15) we
obtain

J1,n =
endnQ(e−dn)fm(e

−dn , y)√
2πb(e−dn)

(3.5)

= q(n)fm(e
−dn , y) + o(fm(e

−dn , y)q(n))

= q(n)fm(e
−dn , y) + o(q(n)),

where in the last equality we have also used (2.17).

To estimate J2,n, we use Lemma 2.2(iii) and Lemma 2.3(ii). We apply first the
inequality given in (2.14) and combine it with (2.17). Thus we observe that

|Q(e−dn+iθ)fm(e
−dn+iθ)| ≤ C ′′Q(e−dn)e−C′n2/9/ log2 n (3.6)

uniformly for δn ≤ |θ| ≤ π, where C ′′ > 0 is a certain constant. From (3.3), (3.6),
(2.11) and (2.15) it follows that

|J2,n| ≤ endn

2π

∫
δn≤|θ|<π

|Q(e−dn+iθ)fm(e
−dn+iθ)|dθ

≤ C ′′endn

π
Q(e−dn)e−C′n2/9/ log2 n(π − δn)

= O

(
endnQ(e−dn)√
2πb(e−dn)

n2/3e−C′n2/9/ log2 n

)

= O(q(n)n2/3e−C′n2/9/ log2 n). (3.7)

Substituting (3.5) and (3.7) into (3.1)–(3.3), we obtain

1

q(n)
[xn]Q(x)fm(x, y) = fm(e

−dn , y) + o(1)

uniformly for y ∈ [0, 1). Finally, going back to (2.4), we conclude that

E(yXm,n) = fm(e
−dn , y) + o(1). (3.8)

So, to complete the proof of the theorem it remains to study the asymptotic
behavior of fm(e

−dn , y), with m given by (1.10).
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We will use an alternative representation for fm(x, y), which follows from (2.5).
We have

fm(x, y) = exp (
∑
j>m

j(log (1− xj)− log (1− yxj)))

= exp ((y − 1)(
∑
j>m

jxj) +Km(x, y)), (3.9)

where

Km(x, y) =
∑
j>m

∑
k≥2

j

k
((yxj)k − xjk). (3.10)

The sum in the exponent of the right-hand side of (3.9) can be estimated using a
Riemann sum approximation as in (2.30). Here we need a more precise estimate.
Setting x = e−dn , we obtain

∑
j>m

je−jdn ∼ d−2
n

∫ ∞

mdn

ue−udu

= d−2
n

∫ ∞

log d−2
n +log logn+c

ue−udu

= −d−2
n ue−u|∞

log d−2
n +log logn+c

+ d−2
n

∫ ∞

log d−2
n +log logn+c

e−udu

= (log d−2
n + log logn+ c)

e−c

log n
+

e−c

log n

=

(
2

3
logn + log log n+O(1)

)
e−c

log n
+O

(
1

log n

)

=
2

3
e−c +O

(
log logn

log n

)
, (3.11)

where in the fourth equality we have also used (2.27) and (2.23).

Finally, it remains to study the asymptotic behavior of the remainder term
Km(e

−dn , y) in (3.9). First, we change the order of summation in (3.10), and then
we perform some algebraic computations in order to see that

Km(e
−dn , y) =

∑
k≥2

(yk − 1)e−kdn

k

(
me−mkdn

1− e−kdn
+

e−mkdn

(1− e−kdn)2

)

= K(1)
m,n +K(2)

m,n, (3.12)

where

K(1)
m,n =

∑
k≥2

(yk − 1)e−kdnme−mkdn

k(1− e−kdn)
, (3.13)

K(2)
m,n =

∑
k≥2

(yk − 1)e−kdne−mkdn

k(1− e−kdn)2
.
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From (1.10) it follows that

e−mkdn =

(
d2ne

−c

log n

)k

,

1− e−kdn = kdn +O(k2d2n).

Replacing these two equalities in (3.13) and using (2.10), we conclude that

K(1)
m,n = O

(∑
k≥2

d2k−2
n

k2

)
= O(d2n) = O(n−2/3) (3.14)

uniformly for y ∈ [0, 1). In the same way, we obtain the estimate for K
(2)
m,n. We have

K(2)
m,n = O

(∑
k≥2

d2k−2
n

k3 logk n

)
= O

(
d2n

log n

)
. (3.15)

Combining (3.12), (3.14), (3.15) and (2.10), we get

K(e−dn , y) = O(d2n) = O(n−2/3). (3.16)

Thus (3.9), (3.11) and (3.16) imply that fm(e
−dn , y) approaches exp (2

3
e−c(y − 1))

as n → ∞ uniformly for y ∈ [0, 1). Now, Theorem 1.2 follows from the continuity
theorem for probability generating functions and (3.8), since exp (2

3
e−c(y − 1)) is the

generating function of a Poisson distribution with expectation 2
3
e−c. �

3.2 Proof of Corollary 1.1

We recall that the variables Xm,n and Zm,n are defined on the set Ω(n) of all plane
partitions of n equipped with the uniform probability measure P. Let ω = (ωh,j) ∈
Ω(n) be a plane partition defined by array (1.3). Since the restriction ωh,j ≥ h is
removed in the definition of Zm,n = Zm,n(ω), then, for every ω ∈ Ω(n), we have
Zm,n(ω) ≥ Xm,n(ω). Furthermore, we consider the following two events: Am,n =
{ω = (ωh,j) ∈ Ω(n) : Zm,n(ω)−Xm,n(ω) > ε}, with ε > 0, and Bm,n = {ω = (ωh,j) ∈
Ω(n) : there is a pair (h0, j0) such that m < ωh0,j0 < h0}. Hence, for any ω ∈ Bm,n,
the pair (h0, j0) satisfies the inequality h0 > m. Since the columns of ω are non-
increasing, for all k ≤ m, we have ωk,j0 ≥ ωh0,j0 and ωk,j0 ≥ k, whence at least m
parts of ω are greater than m. So, we observe that Am,n ⊂ Bm,n ⊂ {Xm,n > m} and
thus

P(Am,n) ≤ P(Xm,n > m). (3.17)

By Theorem 1.2, as n → ∞, the upper bound in (3.17) deals with a right tail of a
Poisson distribution. In addition, note that by (1.10) we have m → ∞ as n → ∞.
Therefore we conclude that, under the assumptions of Theorem 1.2, the right hand
side of (3.17) tends to 0. Hence P(Am,n) → 0, which means that Zm,n − Xm,n → 0
in probability. Now, from the representation Zm,n = (Zm,n −Xm,n) +Xm,n it follows
that Zm,n and Xm,n have one and the same limiting distribution as n → ∞, which
completes the proof of the corollary. �
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4 Concluding Remarks

In this work, we have proposed an approach for analysis of statistics related to
counts of large and small parts in a random and uniformly chosen plane partition.
The concept of conjugate trace of a plane partition, introduced by Stanley [20], plays
an important role in our study. We have decomposed the conjugate trace into the
sum of the counts of parts 1, 2, . . . and then we have separated these counts by the
formal variables y1, y2, . . . in the underlying generating function. Cutting this sum
until the mth row of the plane partition array shadowed by the conjugate trace, for
suitable values of m (see (1.10)), we are able to study the asymptotic behavior of
several particular statistics of counts of large part sizes. As an illustration, we have
proved a Poisson approximation for a statistic, which has a natural analogue in the
case of linear integer partitions. Finally, we have shown that the restriction given
by the conjugate trace of a plane partition of n can be removed since it is bounded
by a tail of a Poisson distribution and tends to 0 as n → ∞. We believe that our
approach could be also applied to further studies in this direction (for instance, to
establish central and local limit theorems for other similar plane partition statistics).

Our last remark is related to the one-dimensional case of linear integer partitions.
Fristedt’s method of study of integer partition statistics [7] is purely probabilistic.
It transfers the joint probability distribution of the part counts of a random and
uniformly chosen one-dimensional partition into the joint conditional distribution of
independent and geometrically distributed random variables. We are able to give an
alternative proof of Theorem 1.1 based on generating function identities. Below, for
the sake of completeness, we will briefly sketch this proof.

First, using general results from [2, Chapter 1], it is not difficult to show that

1 +

∞∑
n=1

p(n)E(yξm,n)xn = P (x)ϕm(x, y),

where

ϕm(x, y) =
∏
j>m

1− xj

1− yxj
.

We recall that E denotes the expectation with respect to the uniform probability
measure P on the set Λ(n) of linear integer partitions of n, and that P (x), the
generating function of the sequence {p(n)}n≥1, satisfies (1.2). Then, one can apply
the asymptotic scheme for analysis of linear integer partition statistics, proposed by
Grabner et al. [8, Theorem 2.2] and based on the classical saddle point method, to
show that, for

d′n =
π√
6n

− 1

4n
+O(n−1−α), α > 0,

and m defined by (1.9), we have

lim
n→∞

ϕm(e
−d′n , y) = exp (e−c(y − 1))
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uniformly for y ∈ [0, 1). The last exponent is the probability generating function of
the Poisson distribution with expectation e−c, which completes the proof of Theo-
rem 1.1.
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