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Abstract

A set A is said to split a finite set B if exactly half the elements of B (up
to rounding) are contained in A. We study the dual notions: (1) splitting
family, which is a collection of sets such that any subset of {1, . . . , k} is
split by a set in the family, and (2) splittable family, which is a collection
of sets such that there is a single set A that splits each set in the family.
We study the minimum size of a splitting family on {1, . . . , k}, as well
as the structure of splitting families of minimum size. We use a mixture
of computational and theoretical techniques. We additionally study the
related notions of ≤4-splitting families and 4-splitting families, and we
provide lower bounds on the minimum size of such families. Next we
investigate splittable families that are just on the edge of unsplittability
in several senses. First, we study splittable families that have the fewest
number of splitters. We give a complete characterization in the case of
two sets, and computational results in the case of three sets. Second, we
define a splitting game, and study splittable families for which a splitter
cannot be found under adversarial conditions.
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1 Introduction

This article concerns the dual notions of splitting families and splittable families,
which arise naturally in several areas of combinatorics. Both types of families involve
the following key notion:

Definition 1.1. Let A,B be subsets of [k] = {1, . . . , k}. We say that A splits B, or
A is a splitter of B, if |A ∩ B| = |B|/2 for |B| even, and |A ∩ B| = (|B| ± 1)/2 for
|B| odd.

A collection A of subsets of [k] is said to be a splitting family on k if for any
B ⊂ [k] there exists an A ∈ A such that A splits B. Splitting families are also called
splitting systems, and along with separating systems such families have been used to
aid in combinatorial search algorithms [14], see also [7, 12]. In sections 2–3 below, we
will study several questions surrounding splitting families and variations of splitting.

A collection B of subsets of [k] is said to be a splittable family if there exists
A ⊂ [k] such that for each B ∈ B we have A splits B (we sometimes abbreviate
this: A splits B). Splittable families correspond to the families with combinatorial
discrepancy ≤ 1, the optimal value. We refer to [5] as a starting point for discrepancy
theory and its numerous applications. In sections 4–5, we will study several questions
surronding splittable families and variations of splittability.

Beginning with splitting families, our first investigation focuses on the question of
the least size of a splitting family on k. Splitting families were used in [14] as an aid
in an algorithm for solving the low Hamming weight discrete logarithm problem. In
that article, the author presents a construction, attributed varyingly to Coppersmith
and Galvin, of a splitting family on k with �k/2� sets. Specifically he shows that the
family consisting of Ai = {i, i+1 . . . , i+ �k/2�−1} for i = 1, . . . , �k/2� is a splitting
family on k. (We will refer to this as a standard splitting family.)

The article [14] left it unclear whether there exists a splitting family of smaller
size than the standard splitting family. It is clear that a smaller splitting family
would improve their algorithms, but it is not straightforward to observe whether
such an object exists. In Section 2 we affirm that the standard splitting family is
optimal in the sense that any splitting family on k has size at least �k/2�. This result
follows from the results of [1] and was pointed out to us by a colleague [16].

It is also natural to ask whether the standard splitting family is the unique split-
ting family of optimal size. We provide computational results essentially confirming
this conjecture for k ≤ 16 (with just one notable exception). We further show that
under additional assumptions, the conjecture holds for all k.

In Section 3 we study two broad generalizations of splitting families which arise
naturally in the above investigations. A collection A is said to be a ≤4-splitting
family on k if for any B ⊂ [k] such that |B| ≤ 4 there exists an A ∈ A such that
A splits B. The notion of 4-splitting family is defined analogously. We will provide
lower bounds on the minimum size of a ≤4-splitting family and of a 4-splitting family.
The latter bound corrects a minor error in [7].
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Our second major area of investigation concerns the boundary between splittable
and unsplittable families. It was shown in [4] (and elaborated in [3]) that the general
problem of deciding whether a given family is splittable is NP-complete. It is then
natural to ask which families B are “just splittable,” that is, splittable but with the
fewest number of distinct sets A that split B. The answer to the question of which
n-set families B are “just splittable” can be used to find bounds on the least size of
an n-splitting family on [k], see [6].

In Section 4 we give results on n-set families on [k] with the fewest number of
splitters for n ≤ 3. When n = 1 and B = {B}, the minimum number of splitters
occurs when |B| = k or k − 1, and the number of splitters is asymptotic to 2k/

√
k.

When n = 2 and B = {B1, B2}, it was shown in [6] that if |Bi| ≤ k/2 then the
minimum number of splitters occurs when B1 and B2 are disjoint. In this article we
remove the cardinality constraints |Bi| ≤ k/2 and find that the minimum number
of splitters occurs when |Bi| ≈ 2k/3 and |B1 ∩ B2| ≈ k/3. In both the disjoint and
general cases, the number of splitters is asymptotic to 2k/k. We also calculate an
analytical formula for approximating the number of splitters of an arbitrary two-set
family B.

When n = 3 the situation is somewhat more complex and we provide partial
answers and computational results. Based solely on the short pattern 2k/k1/2, 2k/k1,
the authors of [6] conjectured that for n = 3 the minimum number of splitters is
asymptotic to 2k/k3/2. Our computational results support this conjecture. How-
ever the explanation for the formula 2k/k3/2 does not seem to be the same as the
explanation for the cases n = 1, 2. Indeed, when n ≥ 3 there exist unsplittable
families, unlike when n < 3, and the “just splittable” families are very similar to the
unsplittable ones in appearance.

In Section 5, we define and study a strategic variant of the notion of splittability.
We define the splitting game, in which players Split and Skew are given a family
B and collaborate to construct a set A. Split wins if A splits B and Skew wins
otherwise. We establish several general lemmas that allow one to simplify the analysis
of a given instance of the game. For families B of three or fewer sets, we give
a complete characterization of when each player has a winning strategy. We also
provide complete solutions to several special case studies, such as the tic-tac-toe
style game which arises when the splitting game is played on a grid.

2 Splitting families

Recall from the introduction that a splitting family A on k is a collection of sets for
which every subset of [k] is split by some set in A. In this section we investigate
several questions surrounding the minimum size of a splitting family on k, as well as
the structure of families of minimum size.

Recall from the introduction that for even k, the standard splitting family on k
consists of Ai = {i, i + 1 . . . , i + k/2 − 1} for i = 1, . . . , k/2. For any even k, the
standard splitting family on k is in fact a splitting family, see for instance [8] and
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[14]. As a consequence, for any k the minimum size of a splitting family on k has
upper bound �k/2�. The next result states that this bound is tight. We are grateful
to Calvin Yost–Wolff for discovering the proof and allowing us to include it here.

Theorem 2.1 ([16]). Any splitting family on k has size at least k/2. As a conse-
quence, the minimum size of a splitting family on k is exactly �k/2�.

Proof. Suppose that A is a splitting family on k. For each A ∈ A let vA be the ±1
characteristic vector of A, that is, vA(i) = 1 for i ∈ A and vA(i) = −1 for i /∈ A.
Define a polynomial p(x) in k variables by

p(x) =
∏
A∈A

vA · x.

Then p vanishes on every 0, 1-vector with an even number of 1’s. Next define

q(x) = p((x1 + 1)/2, . . . , (xk + 1)/2).

and note that q vanishes on every ±1-vector with an even number of 1’s.

Finally let q̄ be the polynomial obtained from q by repeatedly replacing occur-
rences of x2

i with 1 in each monomial of q. Then q̄ agrees with q on every ±1-vector,
and hence q̄ vanishes on every ±1-vector with an even number of 1’s.

Now q̄ is multilinear in the sense that it is affine in each coordinate. Moreover
q̄ �= 0: indeed, p does not vanish on any 0, 1-vector with an odd number of 1’s, so q
does not vanish on any ±1-vector with an odd number of 1’s, so q̄ does not vanish
on any ±1-vector with an odd number of 1’s. It follows from [1, Lemma 2.1] that
deg(q̄) ≥ k/2. We can now conclude that |A| = deg(p) = deg(q) ≥ deg(q̄) ≥ k/2.

Given this result, it is natural to wonder whether the standard splitting family on
k is the unique splitting family of size �k/2�. In the rest of this section, we present
partial answers to this question.

We begin with computational results. In the following we say that a splitting
family A on k is uniform if every set A ∈ A has size |A| = �k/2 or �k/2�. Observe
that the standard splitting family on k is uniform. We also say that splitting families
A,A′ are equivalent if A′ can be obtained from A by complementing sets in A and
permuting the elements of [k].

Proposition 2.2. ◦ For all k ≤ 16, every minimal splitting family is uniform.

◦ Among even k ≤ 16, there is just one minimal splitting family which is not
equivalent to a standard splitting family, namely k = 8 and

F = {{1, 2, 3, 4}, {1, 2, 5, 6}, {3, 4, 5, 6}, {1, 3, 5, 7}}.

The method of search centered on the following notion. We say that splitting fam-
ily A = {A1, . . . , An} on k is extendable if it is the restriction to k of some splitting
family on k + 1. Our algorithm performed an exhaustive search of non-extendable
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splitting families with a fixed number of sets. We do not see any immediate gener-
alizations to the exceptional splitting family with k = 8. The code and its output
may be found in [11].

In our next results we identify the structure of minimal splitting families under
a strong additional hypothesis. To begin, we recall that if A = {A1, . . . , An} is a
family of subsets of [k], its incidence matrix is the n × k matrix A with a 1 in the
(i, j) entry if j ∈ Ai, and a 0 otherwise. When every pair from [k] is split by some
set in A, the columns of A are distinct elements of the Hamming cube {0, 1}n. In
this case, the Hamming representation of A is the graph on the subset S ⊂ {0, 1}n
consisting of the columns of A, with adjacency defined by s ∼ t if and only if s, t
differ in exactly one entry.

If x̄ is a subset of the indices 1, . . . , n we let δx̄ denote the element of {0, 1}n
with 1’s in the entries indicated by x̄ and 0’s everywhere else. We say that a set
Bδ of such vectors is split if some index appears in exactly half (up to rounding) of
the elements of Bδ with this representation. Thus, given a family A with Hamming
representation S on {δx̄1, . . . , δx̄k

}, we can identify a subset B ⊂ [k] with the subset
Bδ = {δx̄j

| j ∈ B} of S, which is split if and only if some set in A splits B. In
our graphical representations we stratify the elements δx̄ by their weight, |x̄|. See
Figure 1 for two examples of Hamming representations.

δ∅

δ1 δ4

δ12 δ34

δ123 δ234

δ1234

δ∅

δ4

δ12 δ13 δ23

δ124 δ134 δ234

Figure 1: Left: The Hamming representation of the standard splitting
family on k = 8. Right: The Hamming representation of the nonstandard
minimal splitting family on k = 8.

In the following result, we say that a family A of subsets of [k] is a ≤t-splitting
family if every subset of [k] of size at most t is split by some set in A. We say that
a ≤2-splitting family A is connected if its Hamming representation is a connected
graph.

Theorem 2.3. Let A be a connected ≤4-splitting family on k of minimum size.
Then for k even, A is equivalent to the standard splitting family on k, and for k odd,
A is equivalent to the standard splitting family on k+1 with the point k+1 removed.
In particular, |A| = �k/2�.

The proof consists of a series of lemmas. In the following, when x̄ and ȳ are sets
of indices, we let x̄ȳ denote the union of the two sets.
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Lemma 2.4 (Y lemma). Let S be the Hamming representation of a ≤4-splitting
family A. Then every element of S has degree at most 2 in S. In fact, S cannot con-
tain an arrangement of the following four “Y” types, where x̄, ȳ, w̄, ū, v̄ are pairwise
disjoint, and ū, v̄, w̄ are nonempty:

(a) {δx̄, δx̄ȳū, δx̄ȳv̄, δx̄ȳw̄};
(b) {δx̄, δx̄ū, δx̄ūv̄, δx̄ūw̄};
(c) {δx̄ū, δx̄v̄, δx̄ūv̄, δx̄ūv̄w̄};
(d) {δx̄ūv̄, δx̄ūw̄, δx̄v̄w̄, δx̄ūv̄w̄}.

These four arrangements are shown in Figure 2.

δx̄

δx̄ȳū
δx̄ȳv̄

δx̄ȳw̄

δx̄

δx̄ū

δx̄ūv̄
δx̄ūw̄

δx̄ū
δx̄v̄

δx̄ūv̄

δx̄ūv̄w̄

δx̄ūv̄w̄

δx̄ūv̄ δx̄ūw̄ δx̄v̄w̄

Figure 2: Forbidden “Y” arrangements for the Hamming representation
of a ≤ 4-splitting family; (a)–(d) appear left–right.

Proof. To prove the arrangements of types (a)–(d) are impossible, it is sufficient
to observe that in each type (a)–(d), no index appears exactly twice among the
subscripts, as this means that the arrangement is not split.

Now this implies every element of S has degree at most 2. To see this, sup-
pose towards a contradiction that some element s ∈ S is adjacent in the Hamming
hypercube to three other elements s1, s2, s3 ∈ S. We claim that the 4-element set
{s, s1, s2, s3} is of one of the types (a)–(d). Indeed, each of s1, s2, s3 has weight one
higher or one lower than s. If all three are higher the set is of type (a), if two of
the three are higher the set is of type (b), if two of the three are lower the set is of
type (c), and if all three are lower the set is of type (d). In all cases we obtain a
contradiction to the previous paragraph.

We remark that avoiding the types (a)–(d) does not guarantee a ≤4-splitting
family. For example {δ1, δ2, δ3, δ4} is not split and not of any of the types (a)–(d).

Lemma 2.5. Let S be the Hamming representation of a ≤4-splitting family A with
∅ /∈ A. If S is a simple cycle, then A is equivalent to the standard splitting family
on k = |S|.

Proof. By complementing sets of A, we can assume δ∅ ∈ S. We first argue that
the stratified graph of S has the shape of a standard arrangement, that is, S has a
single element of maximum weight, and two elements at each intermediate weight
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(see Figure 1 left). Indeed otherwise S must contain elements of the form δx̄a, δx̄, δx̄b
(informally, the cycle must have a local minimum at a location other than δ∅). But
then the set {δ∅, δx̄, δx̄a, δx̄b} is a Y of type (b), a contradiction.

Next we argue that the δ-labeling of the elements of S is equivalent to a standard
arrangement up to renaming the sets. To begin we know the bottom element (least
weight) is δ∅ and we can say that the top element (greatest weight) is δ12···n where
n is the total number of sets. Furthermore we can assume without loss of generality
that the labels up the left-hand side are δ1, δ12, . . . , δ12···n−1.

δ∅

δ1

...
...

δ12···n−1

δ12···n

To conclude, we need only show that the labels down the right-hand side are
exactly δ2···n, δ3···n, . . . , δn. To see this, assume as an inductive hypothesis that the
first i− 1 vertices down the right-hand side are δ2···n, . . . , δi···n, for some i ≥ 1.

We claim that the remaining vertices down the right-hand side must all omit i.
Otherwise we would be able to find two distinct such vertices of the form {δx̄, δx̄i}.
But then the set {δ1···i, δx̄, δx̄i, δi···n} is not split. This proves the claim.

Now we can conclude that the vertex immediately below δi···n must be δ(i+1)···n.
This completes the inductive step, and the proof.

In the next result, if S is a Hamming representation of an n-set ≤4-splitting
family A, we say that S is maximal if whenever an element of {0, 1}n is added to S
the result is no longer a Hamming representation of a ≤4-splitting family.

Lemma 2.6. Let S be the Hamming representation of a ≤4-splitting family A with
∅ /∈ A. If S is a simple cycle, then S is maximal.

Proof. By the previous lemma, it is sufficient to show that the standard arrangement
S = {δ∅, δ1, . . . , δ1···n, . . . , δn} is maximal. Now suppose towards a contradiction that
there exists δx̄ /∈ S such that S ∪{δx̄} is a Hamming representation of a ≤4-splitting
family.

We first claim that either 1 ∈ x̄ or n ∈ x̄. Indeed otherwise we would have
that the set {δ∅, δ1, δn, δx̄} is a Y of type (a). Thus we can suppose without loss of
generality that 1 ∈ x̄.

Now let i ∈ 2, . . . , n be the least index such that i /∈ x̄. Then the set {δ1···i−2,
δ1···i−1, δ1···i, δx̄} is a Y of type (b), a contradiction which completes the proof.
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The lemmas so far imply that if S is the Hamming representation of a ≤4-splitting
family, then S is either a single simple cycle or else a disjoint union of paths. Next
we investigate constraints on the paths.

Lemma 2.7. Let S be the Hamming representation of a ≤4-splitting family A with
∅ /∈ A. If S is a path, then A is equivalent to the restriction to k = |S| of the
standard splitting family on k′ = 2|A|.

Proof. By complementing some of the sets of A, we can suppose without loss of
generality that one end of the path S is δ∅. We will show that S is a subset of the
Hamming representation of a standard splitting family. By permuting the indices
of the sets, we can suppose that the longest initial segment of increasing weights is
δ∅, δ1, . . . , δ1···n for some n. If there are no more elements of S, then we are done.

Otherwise we can suppose that S turns after δ1···n. Then this must be the last
turn, since an additional turn would form a vee shape, which together with δ∅ would
form a Y of type (b). Now the inductive argument from Lemma 2.5 implies that the
remaining points of S after δ1···n must be δ2···n, . . . , δi···n. It follows that n = |A|, and
that S is the restriction of the standard splitting family on n.

We are now ready to conclude the proof of the theorem.

Proof of Theorem 2.3. The lemmas together imply that A is either equivalent to the
standard splitting family on k or the restriction to k of the standard splitting family
on k′ = 2|A|. Since A is of minimum size, |A| ≤ �k/2�, which implies that k′ = k or
k′ = k + 1 (if k is odd).

3 Splitting subsets of size 2 and 4

Recall from the previous section that A is a ≤t-splitting family on k if A splits all
subsets of [k] of size at most t. We will also say that A is a t-splitting family on k
if A splits all subsets of [k] of size exactly t. In [14], t-splitting families are used in
an algorithm to solve the weight t discrete log problem. In this section we study the
least size of a 4-splitting family and the least size of a ≤4-splitting family on k.

Beginning with 4-splitting families, the article [13] established a lower bound on
the least size of a uniform 4-splitting family (that is, a 4-splitting family in which
every set has size �k/2). Later, [7] stated that this lower bound holds for arbitrary
4-splitting families, citing the aforementioned article as proof. In the following result
we repair this minor error and prove that the claimed lower bound does indeed hold
for arbitrary 4-splitting families.

Theorem 3.1. Let k ≥ 6 and suppose A is a 4-splitting family on k. Then |A| ≥
log2 k.

In the proof and later in the paper, we will use the following terminology. Let
A = {A1, A2, . . . , An} be a family of subsets of [k]. For any I ⊂ {1, 2, . . . , n}, the
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Venn region corresponding to I is the set

⋂
{Ai | i ∈ I} ∩

⋂
{Ac

i | i /∈ I} .

The multiplicity of the Venn region corresponding to I, or any of its elements, is |I|.
We will say two Venn regions corresponding to I, I ′ are adjacent if |I�I ′| = 1.

Proof. Assume towards a contradiction that n < log2 k so that k ≥ 2n + 1.

We consider the subfamily A0 = {A1, A2, . . .An−1}. Then A0 has 2n−1 Venn
regions, and since k > 2n = 2 · 2n−1 we conclude that some Venn region R of A0

contains at least three points x, y, z.

We can replace An with its complement if necessary, so we can assume without
loss of generality that An contains at least two of x, y, z, say x and y. If w ∈ [k] is
any other point, consider the set {x, y, z, w}. A0 does not split it since x, y, z ∈ R.
Therefore, since A is a 4-splitting family, An must split {x, y, z, w}, implying z, w /∈
An. Since w was chosen arbitrarily, it follows that An = {x, y}. The k − 3 ≥ 2n − 2
points other than x, y, z are distributed among the 2n−1 Venn regions of A0; we
consider several cases on how these points are distributed.

Case 1: There is a point in R besides x, y, z.

Let w be such a point. We know w �∈ An. Since k ≥ 6, we can find a fifth point
w′, and again w′ /∈ An. Then {x, z, w, w′} is not split by An since An only contains
x. Further, {x, z, w, w′} is not split by any set from A0 since x, z, w are in the same
Venn region of A0. Thus, {x, z, w, w′} is not split by any set from A, a contradiction.

Case 2: There are no points in R besides x, y, z and some Venn region of A0 other
than R has at least three points.

Let R′ be such a region and let w,w′, w′′ ∈ R′. Then {z, w, w′, w′′} is not split by
any set from A0. Moreover An contains none of these four points, so {z, w, w′, w′′}
is not split by any set from A, a contradiction.

Case 3: There are no points in R besides x, y, z and no Venn region of A0 other
than R has at least three points.

The 2n − 2 points other than x, y, z are distributed among the 2n−1 − 1 Venn
regions of A0 other than R. In this case, since 2n − 2 = 2 · (2n−1 − 1), every such
region must have exactly two points. Choose distinct Venn regions R′ and R′′ which
are adjacent to R. (This is possible because the assumption k ≥ 6 implies |A| ≥ 3,
so |A0| ≥ 2.) Letting w′ ∈ R′ and w′′ ∈ R′′, we have that {x, z, w′, w′′} is not split
by any set from A0. Moreover {x, z, w′, w′′} is not split by An = {x, y}. Once again
{x, z, w′, w′′} is not split by any set from A, a contradiction.

This completes the proof.

We now turn to ≤4-splitting families.

Theorem 3.2. Let k ≥ 5 and suppose A is a ≤4-splitting family on k. Then
|A| ≥ log2 k + 3− log2 5.
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Proof. Suppose A = {A1, . . . , An} and this time let A0 = {A1, . . . , An−2} and A1 =
{An−1, An}.

We first claim that no Venn region of A0 contains four points. Indeed if there
were such x, y, z, w, then since A is 2-splitting we would have that each of x, y, z, w
lie in distinct Venn regions of A1. Since we assumed k ≥ 5, we can let u be any other
point. Without loss of generality, u is in the same Venn region of A1 as x. But then
the 4-element set {x, y, z, u} is not split, a contradiction.

We next claim there cannot exist Venn regions R1, R2, R3 of A0, each with three
points, such that R1 ∼ R2 ∼ R3. Indeed, otherwise we would be able to find xi in
each Ri such that all three xi are in the same Venn region of A1. (This holds because
three 3-element subsets of a 4-element set must have a point in common.) Suppose
without loss of generality that x1, x2, x3 ∈ An−1 ∩ An. Let y2 be another element of
R2 which is in a Venn region of A1 adjacent to that of x2. Then {x1, x2, y2, x3} is
not split by any set of A. Indeed An−1 and An contain three of these points, and
A1, . . . , An−2 each agree on x2, y2 and at least one of x1, x3.

Now let S be the set of Venn regions of A0 with three points. We claim that
|S| ≤ 2n−3. For this, observe that the adjacency graph of the 2n−2 Venn regions of A0

is isomorphic to a hypercube and thus may be decomposed into 2n−4 disjoint squares.
If |S| > 2n−3 = 2 · 2n−4 then one of these squares must contain three elements of S.
It follows that we can find three elements R1, R2, R3 ∈ S such that R1 ∼ R2 ∼ R3.
This contradicts the previous claim.

We now have that the number of elements k satisfies:

k ≤ 3|S|+ 2|Sc| = 2(|S|+ |Sc|) + |S| ≤ 2 · 2n−2 + 2n−3 = 5 · 2n−3.

This implies the desired bound.

It is remarkable that the lower bounds in the previous two theorems are so close to
one another. The distance between them is more visible if one considers the inverse
functions, that is, the corresponding upper bounds on the k for which there exists a
4- or ≤4-splitting family on k of a given size. Of course, these bounds are unlikely
to be tight.

4 Splittable families

Recall from the introduction that a family B = {B1, . . . , Bn} of subsets of [k] is
called splittable if there exists a single set A ⊂ [k] such that A splits Bi for all
i ≤ n. While some splittable families have many distinct splitters, others are “just
barely splittable” in the sense that they have very few splitters. In this section we
investigate the question: which n-set splittable family on k has the fewest number
of splitters, and what is this number? Solutions to this question can be used to find
bounds on the least size of an “n-splitting family” (see [6] for details). Our solution is
somewhat involved even when n = 1, 2, and we provide computational results when
n = 3.



S. COSKEY ET AL. /AUSTRALAS. J. COMBIN. 82 (3) (2022), 268–296 278

We first consider the case when n = 1, that is, B = {B} and B ⊂ [k]. If |B| is
even then the number of splitters of B is

2k−|B| ·
( |B|
|B|/2

)
,

and if |B| is odd then the number of splitters of B is

2k−|B| ·
(( |B|

|B|/2 + 1

)
+

( |B|
|B|/2− 1

))
= 2k−|B|+1

( |B|
(|B| − 1)/2

)
.

The following result is unsurprising, and we record the proof.

Proposition 4.1. The number of splitters of B = {B} on [k] is minimized when
|B| = k if k is even, and when |B| = k − 1 when k is odd. The minimum number of
splitters is asymptotic to 2k/

√
k.

Proof. We first claim that if |B| = k − i is odd (and nonempty), then removing one
point from B decreases the number of splitters. Indeed the number of splitters of B
is

2i+1

(
k − i

(k − i− 1)/2

)
,

and the number of splitters of B with a point removed is

2i+1

(
k − i− 1

(k − i− 1)/2

)
.

It is not difficult to calculate that the latter expression is smaller than the first
whenever k − i ≥ 3. (Note that when k − i = 1, the two expressions are equal.)

In particular the number of splitters is minimized when |B| is even. We next
claim that if |B| = k − i is even (and nonempty), then removing two points from B
increases the number of splitters, that is:

2i
(

k − i

(k − i)/2

)
< 2i+2

(
k − i− 2

(k − i− 2)/2

)
.

This comes from applying Pascal’s identity:

2i
(
k − i
k−i
2

)
= 2i

((
k − i− 2
k−i−2

2
− 1

)
+ 2

(
k − i− 2

k−i−2
2

)
+

(
k − i− 2
k−i−2

2
+ 1

))

< 2i+2

(
k − i− 2

k−i−2
2

)
.

The desired result follows.

For the second statement, we now see that when k is even the minimum number
of splitters of a 1-set family on k is exactly

(
k

k/2

)
. It is a standard application of

Stirling’s approximations to conclude that this is asymptotic to 2k/
√
k.
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We now turn to the case when n = 2. We begin by fixing some notation. Given
a family B = {B1, B2}, we say the arrangement of B is the quadruple (a1, b, a2, d),
where a1 = |B1\B2|, b = |B1 ∩ B2|, a2 = |B2\B1|, and d = |Bc

1 ∩ Bc
2| (see Figure 3).

The number of splitters of B is determined by its arrangement, and we will often use
the family and the arrangement interchangeably. We let split(B) and split(a1, b, a2, d)
both denote the number of splitters of B.

a1 b a2 d

B1 B2

Figure 3: A family B = {B1, B2} with arrangement (a1, b, a2, d).

We now proceed to calculate a formula for split(a1, b, a2, d). Initially suppose that
|B1| = a1 + b and |B2| = a2 + b are both even. Then if A contains i elements from
B1 ∩B2, then A is a splitter if and only if A contains exactly a1+b

2
− i elements from

B1\B2 and
a2+b
2

− i elements from B2\B1. Thus the total number of splitters of B is
given by:

split(a1, b, a2, d) = 2d
b∑

i=0

(
a1

a1+b
2

− i

)(
b

i

)(
a2

a2+b
2

− i

)
.

(Here if z ∈ N and x �= 0, . . . , z we define
(
z
x

)
= 0.)

Note that if |B1| = a1 + b is odd and |B2| = a2 + b is even, then

split(a1, b, a2, d) = 2d
1∑

ε=0

b∑
i=0

(
a1⌊

a1+b
2

⌋
+ ε− i

)(
b

i

)(
a2

a2+b
2

− i

)

= 2d
b∑

i=0

(
a1 + 1

(a1+1)+b
2

− i

)(
b

i

)(
a2

a2+b
2

− i

)

= split(a1 + 1, b, a2, d).

Similarly if both |B1| = a1 + b and |B2| = a2 + b are odd, we have

split(a1, b, a2, d) = split(a1 + 1, b, a2 + 1, d).

We are now ready to give the characterization of 2-set families with the minimum
number of splitters.

Theorem 4.2. Let k = a1 + b+ a2 + d be fixed. Then split(a1, b, a2, d) is minimized
by the following arrangements:

◦ if k ≡ 0 (mod 3), minimum at (m,m,m, 0), where m = k
3
;

◦ if k ≡ 1 (mod 3), minimum at (m− 2, m,m, 0), where m = k+2
3
, and;
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◦ if k ≡ 2 (mod 3), minimum at (m,m,m+ 2, 0), where m = k−2
3
.

Moreover, the minimum number is asymptotic to 2k/k.

The proof consists of a series of “point-moving” lemmas. Each one shows that
given an arbitrary arrangement, we can find a way to nudge it towards the proposed
minimum arrangement without increasing the number of splitters.

Lemma 4.3. If a1 + b and a2 + b are even and d ≥ 0, then for any permutation
(a′1, b

′, a′2) of (a1, b, a2), we have split(a1, b, a2, d) = split(a′1, b
′, a′2, d).

Proof. It suffices to consider the case when d = 0, since otherwise both sides of
the inequality simply have an extra factor of 2d. Further it suffices to show that
split(a1, b, a2, 0) = split(b, a1, a2, 0), since by symmetry split(a1, b, a2, 0) = split(a2, b,
a1, 0), and all other permutations are generated by these two.

To show that split(a1, b, a2, 0) = split(b, a1, a2, 0), fix a family B = {B1, B2}
with arrangement (a1, b, a2, 0) and let B′ = {B1, B

′
2}, where B′

2 = B1�B2, so that
B′ has arrangement (b, a1, a2, 0). Next define a mapping of sets A �→ A′ by A′ =
(A ∩B1) ∪ ((B2\B1)\A). We claim that A �→ A′ is an injection from the splitters of
B to the splitters of B′.

We first argue that if A splits B then A′ splits B′. Since A splits B1 and A′∩B1 =
A ∩ B1, A

′ splits B1 as well. By the assumption that a ≡ b ≡ c (mod 2), all of
B1, B2, B

′
2 are even-sized. Now if A contains i elements from B1∩B2, then A contains

a+b
2

− i elements from B1 \B2 and b+c
2

− i elements from B2\B1. Thus A
′ contains i

elements from B1 \B′
2 and

a+b
2

− i elements from B1 ∩B′
2 and c− ( b+c

2
− i) = c−b

2
+ i

elements from B′
2\B1. Thus A

′ contains exactly a+c
2

elements from B′
2, so A

′ splits B′.

Finally note that since d = 0, we can recover A from A′ by the formula A =
(A′∩B1)∪((B2\B1)\A′). This shows that A �→ A′ is injective, so split(B) ≤ split(B′).
Moreover the symmetry of the inverse mapping shows that split(B′) ≤ split(B),
concluding the proof.

Recall that the definition of splitting allows rounding up or down in the case of
odd-sized sets. Thus if a family has an odd-sized set, one would expect it to have
more splitters than a similar family with even-sized sets only. The following result
confirms this intuition.

Lemma 4.4. Suppose that a1 + b and a2 + b are even, and let ε1, ε2 ∈ {−1, 0, 1}.
Then

split(a1, b, a2, 0) ≤ split(a1 + ε1, b− ε1 − ε2, a2 + ε2, 0).

Proof. Let B = {B1, B2} be a family with arrangement (a1, b, a2, 0), and let B′ =
{B′

1, B
′
2} be the family with arrangement (a1+ε1, b−ε1−ε2, a2+ε2, 0) that is derived

from B according to the εi in the natural way. (For example, if ε1 = 1 and ε2 = 0,
we can construct B′ from B by selecting some point x ∈ B1 ∩ B2 and placing it in
B′

1 \ B′
2.) It is easy to see that if A splits B, then A splits B′ too, completing the

proof.
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The next result allows one to move points from outside the sets B1, B2 into the
sets without increasing the number of splitters.

Lemma 4.5. For fixed k, for any arrangement (a1, b, a2, d) on k, there exists an
arrangement (a′1, b

′, a′2, 0) on k such that

split(a′1, b
′, a′2, 0) ≤ split(a1, b, a2, d).

Proof. By Lemma 4.4, we need only consider the case when a1 + b and a2 + b are
both even. By Lemma 4.3 we can suppose that b > 0 (otherwise d = k and this is
clearly not minimal). We now use the result [6, Theorem 3.11], which states that if
b, d > 0 then we have:

split(a1 + 1, b− 1, a2 + 1, d− 1) ≤ split(a1, b, a2, d).

Note that the arrangement on the left-hand side again satisfies the hypotheses of
Lemma 4.3. Thus we can repeat the process inductively to obtain the desired con-
clusion.

The next result is the key, as it allows one to move 2 points from one of the sets
to the other without increasing the number of splitters, provided it would make the
regions more balanced in size.

Lemma 4.6. Assume that a1 + b and a2 + b are even. If 2 ≤ a1 ≤ a2 then

split(a1, b, a2, 0) ≤ split(a1 − 2, b, a2 + 2, 0).

Proof. Let B = {B1, B2} be a family with arrangement (a1, b, a2, 0) and B′={B′
1, B

′
2}

be a family with arrangement (a1 − 2, b, a2 + 2, 0). We can again assume B′ is
constructed from B in the natural way, that is, fix x, y ∈ B1\B2 and let B′

1 =
B1 \ {x, y} and B′

2 = B2 ∪ {x, y}. We wish to show that there exists an injection
from the splitters of B to the splitters of B′. Note immediately that if A is a splitter
of B that contains either x or y, but not both, then A also splits B′. Thus it remains
to show that there are fewer splitters of B that contain (omit) both x, y than splitters
of B′ that contain (omit) both x, y.

We address the “omit” case with the “contain” case being similar. Let S be the
number of splitters of B that omit x, y, and S ′ be the number of splitters of B′ that
omit x, y. We wish to show that S ≤ S ′. To proceed, let us first assume that b is
even. Let ti =

ai+b
2

, the target number of elements of Bi for a splitter A of B. We
calculate:

S ′ − S =
b∑

i=0

(
a1 − 2

t1 − i− 1

)(
b

i

)(
a2

t2 − i+ 1

)
−
(
a1 − 2

t1 − i

)(
b

i

)(
a2

t2 − i

)

=

b/2∑
i=0

(
a1 − 2

t1 − i− 1

)(
b

i

)(
a2

t2 − i+ 1

)
−
(
a1 − 2

t1 − i

)(
b

i

)(
a2

t2 − i

)
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+

(
a1 − 2

t1 − (b+ 1− i)

)(
b

b+ 1− i

)(
a2

t2 − (b+ 1− i) + 1

)

−
(

a1 − 2

t1 − (b+ 1− i)

)(
b

b+ 1− i

)(
a2

t2 − (b+ 1− i)

)

=

b/2∑
i=0

(
b

i

)((
a1 − 2

t1 − i− 1

)(
a2

t2 − i+ 1

)
−
(
a1 − 2

t1 − i

)(
a2

t2 − i

))

+

(
b

i− 1

)((
a1 − 2

t1 − i

)(
a2

t2 − i

)
−
(

a1 − 2

t1 − i− 1

)(
a2

t2 − i+ 1

))

=

b/2∑
i=0

((
b

i

)
−

(
b

i− 1

))((
a1 − 2

t1 − i− 1

)(
a2

t2 − i+ 1

)
−
(
a1 − 2

t1 − i

)(
a2

t2 − i

))

The second line above was the key step, wherein we paired term i with term j =
b+ 1− i. In the third equality we reflect five binomial coefficients and observe that
ai − ti = ti − b.

Clearly,
(
b
i

) − (
b

i−1

)
is positive for each i ≤ b/2. Thus it is enough to show that

for all i ≤ b/2 we have

(
a1 − 2

t1 − i− 1

)(
a2

t2 − i+ 1

)
−

(
a1 − 2

t1 − i

)(
a2

t2 − i

)
≥ 0. (1)

Note that if the second term of inequality (1) is zero, we are done. On the other
hand if the second term of inequality (1) is nonzero, then we claim that the first
term is nonzero as well. To see this, the indices where the first term is nonzero are
[t1 − a1 + 1, t1 − 1]∩ [t2 − a2 + 1, t2 + 1] = [t1 − a1 + 1, t1 − 1], and the indices where
the second term is nonzero are [t1 − a1 + 2, t1] ∩ [t2 − a2, t2] = [t1 − a1 + 2, t1]. (We
are using here that a1 ≤ a2, t1 ≤ t2, and t2 − a2 ≤ t1 − a1.) The only index in the
latter set but not the former is i = t1, but the hypothesis 2 ≤ a1 implies b/2 < t1,
and so this index is not in the sum.

Now for indices i such that the terms of inequality (1) are nonzero, we have:

(
a1−2
t1−i−1

)(
a2

t2−i+1

)
(
a1−2
t1−i

)(
a2
t2−i

) =
(t1 − i)(a2 − t2 + i)

(a1 − t1 + i− 1)(t2 − i+ 1)
=

(t1 − i)(t2 − b+ i)

(t1 − b+ i− 1)(t2 − i+ 1)
. (2)

It suffices to show that the last quantity in equation (2) is > 1. Recall that the
Mediant Inequality states that if A,B,C,D > 0 and A

B
> C

D
then A

B
> A+C

B+D
> C

D
.

Since t1 ≤ t2 we can write:

t2 − b+ i

t1 − b+ i− 1
> 1 =

b− 2i+ 1

b− 2i+ 1
.

Since we are assuming the numerator and denominator of the left-hand side are
positive, and since b− 2i+ 1 is positive as well, the Mediant Identity implies that

t2 − b+ i

t1 − b+ i− 1
>

t2 − i+ 1

t1 − i
>

b− 2i+ 1

b− 2i+ 1
.



S. COSKEY ET AL. /AUSTRALAS. J. COMBIN. 82 (3) (2022), 268–296 283

This implies that the last quantity in Equation (2) is greater than 1, as desired.

If b is odd then the calculation of S ′ − S is similar. We again pair the i and
b + 1 − i terms. Of course the i = (b + 1)/2 term has nothing to pair with, but
fortunately it cancels out completely. To see this note that the left and right terms
are reflections of one another, since

(t1 − (b+ 1)/2− 1) + (t1 − (b+ 1)/2) = a1 − 2, and

(t2 − (b+ 1)/2 + 1) + (t2 − (b+ 1)/2) = a2.

Thus in the second line we can take the sum from i = 1 up to i = (b − 1)/2. The
rest of the proof is the same as before.

The combination of Lemmas 4.3 and 4.6 means that (when d = 0) moving two
points from any region to another region with fewer points does not increase the
number of splitters. We are now ready to prove our main result.

Proof of Theorem 4.2. We will give the proof when k = 3m, the remaining cases are
similar. By the lemmas together, it suffices to show that for any even x, y ≥ 0 we
have:

split(m,m,m, 0) ≤ split(m+ x,m− x+ y,m− y, 0) .

We show this in two steps, with each step consisting of several applications of
Lemma 4.6 and 4.3. Assuming x ≤ y, first use the two lemmas to achieve:

split(m,m,m, 0) ≤ split(m+ x,m,m− x, 0).

We then use the two lemmas again to achieve:

split(m+ x,m,m− x, 0) ≤ split(m+ x,m− x+ y,m− y, 0).

We refer to Figure 4 for a visualization of these two inequalities. The steps are similar
if y ≤ x. This concludes the proof that split(m,m,m, 0) is minimal.

For the last statement, observe that split(k/3, k/3, k/3, 0) is exactly equal to∑
i

(
k/3
i

)3
. These are Franel numbers, and it is not hard to see this expression is

asymptotic to 2k/k. (See for instance [9].)

While we kept it out of the statement for cleanliness, we record here that the
proof of Theorem 4.2 may be used to classify all minimum arrangements. First
observe that Lemma 4.3 implies there are two additional minimum arrangements in
the cases when k ≡ 1, 2 (mod 3). That these are exhaustive may be seen from the
strict inequality obtained in the end of the proof of Lemma 4.6.

Before leaving the case when there are n = 2 sets, we mention an approximate
formula for the value of split(a1, b, a2, d). Recall that the de Moivre–Laplace Theorem
[10, Section 7.3] gives the approximation

(
n

k

)
≈ 2n

√
2

πn
e−

2
n(k−n

2 )
2

.
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• • • • • •

• • • • •
• • • •

• • •
• •

•

b = 0

a 1
=
0 a

2
=
0

Figure 4: The lattice of arrangements (a1, b, a2, 0) with k = 12 and a1 +
b, a2 + b even. An arrow α → β denotes α has fewer or equal splitters
than β. The proof of Theorem 4.2 uses the fact that one can follow the
arrows from the centroid to any other point using two straight-line steps.

Thus when a1 ≡ b ≡ a2 (mod 2) we can approximate the number of splitters by

split(a1, b, a2, d) = 2d
b∑

i=0

(
b

i

)(
a1

t1 − i

)(
a2

t2 − i

)

≈ 2a1+b+a2+d

√
8

π3a1ba2

∫ ∞

−∞
e
− 2

b(x− b
2)

2− 2
a1
( b
2
−x)

2− 2
a2
( b
2
−x)

2

dx

=
2k+1

π
√
a1a2 + a1b+ a2b

.

It is not difficult to calculate that the latter expression has its minimum when a1 =
b = a2 = k/3 and d = 0. However without very tight control over the error in the
approximation, it would not be possible to use this information to replace the proof
of the previous theorem.

We close this section by briefly considering the case when there are n = 3 sets.
The formula for the number of splitters when n = 3 is considerably more complex
than the n = 2 case. Using an exhaustive search elaborated in Appendix 5, we found
that if Nk denotes the minimum number of splitters of a splittable 3-set family, then
Nk appears to obey N6 = 4 and

Nk+1

Nk

=

{
2− 1

�k/6�+1
, k even

2, k odd

It is not difficult to show that the recurrence above implies that Nk is asymptotic to
2k/k3/2. Together with the known asymptotics for the case n = 2, this supports the
following.

Conjecture. The minimum number of splitters of a splittable n-set family is asymp-
totic to

2k/kn/2 .



S. COSKEY ET AL. /AUSTRALAS. J. COMBIN. 82 (3) (2022), 268–296 285

5 The splitting game

In this section we again look for arrangements that are in some sense the least
splittable. This time, rather than considering the number of splitters an arrangement
has, we instead consider whether the arrangement can be split under adversarial
conditions. To do this, we adopt a game theoretic perspective on the notion of set
splitting.

The splitting game is played by players Split and Skew on a game board (k,B),
where k is a positive integer and B is a family of subsets of [k]. An instance (k,B, t)
of the game consists of a game board together with t ∈ {Split, Skew} indicating
which player goes first. The players alternately claim an element from [k], without
repetition, until all the elements have been claimed. Split wins the game if the set of
elements Split claimed splits B (i.e., splits every B ∈ B), and Skew wins otherwise.

The splitting game lies in the general class of games known as Maker–Breaker
games. Introduced by Paul Erdös and John Selfridge, such games consist of two
players choosing objects with Maker trying to occupy some winning arrangement
and Breaker trying to prevent Maker’s success [2]. Since such games are finite and
of perfect information, Zermelo’s theorem implies that in each instance of the game,
one of the two players must have a winning strategy.

It is clear that if Split has a winning strategy in (k,B, t), then B is splittable.
However, the converse is not true. For example, consider a game on k = 3 consisting
of the sets B = {{1, 2}, {2, 3}}. Note that B is splittable with two splitters: {1, 3}
and {2}. Therefore, in the game (3,B, Skew), if Skew first claims 2, then Split can
claim 1 or 3 but not both, resulting in a victory for Skew.

We begin with some general observations on the splitting game.

Lemma 5.1 (Reduction lemma). Let (k,B), (k′,B′) be game boards with |B| = |B′|,
and suppose |R| ≡ |R′| (mod 2) for corresponding Venn regions R,R′ of B,B′. Then
Player p has a winning strategy in (k,B, t) if and only if p has a winning strategy in
(k′,B′, t).

Proof. It is enough to consider the case when B′ is formed by adding a pair of points
to some Venn region of B. One can then use this case repeatedly, adding or removing
pairs of points, to obtain the full statement. So assume that k′ = k + 2, and that B′

is formed by adding the points k + 1, k + 2 to some subset of the sets in B.
Let σ be a winning strategy for Player p in (k,B, t) and let Player q be the other

player. We define a strategy for p in (k′,B′, t) as follows. If q claims one of k + 1
or k + 2, then p claims the other immediately. Otherwise p plays according to σ. If
every element of [k] is claimed before this happens, and it is p’s turn to move, then
p takes either one, and q is forced to take the other.

Let A be the set of elements claimed by Player p after a run where p played
according to this strategy. Since p followed σ, considering only turns involving [k],
A splits or skews B as desired by p. Moreover since A contains exactly one of k + 1
and k+2, it follows that A remains a splitter or a skewer, as the case may be, of B′.
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In any case, p wins (k′,B′, t).

Conversely, if Player p does not have a winning strategy in (k,B, t), then by
Zermelo’s Theorem, q must have a winning strategy. By the forward implication, q
then has a winning strategy in (k′,B′, t). Thus p does not have winning strategy in
(k′,B′, t) if p does not have a winning strategy in (k,B, t).

For the next result, if B is a family of subsets of [k], we say that Split has a pairing
strategy for B if there exists a set of disjoint pairs P = {P1, . . . , Pr} of elements of
[k] such that every splitter of P splits B. Similarly we say that Skew has a pairing
strategy if every splitter of P does not split B; that is, if P ∪ B is unsplittable.

Lemma 5.2 (Pairing lemma). Let B be a family of subsets of [k]. If Player p has a
pairing strategy for B, then p has a winning strategy for (�,B, t) for either value of t
and for each � ≥ k.

Proof. Suppose Split has a pairing strategy given by P = {P1, . . . , Pr}, and consider
the side game (�,P, t). By Lemma 5.1, Split has a winning strategy for (�,P, t) if
and only if Split has a winning strategy in a game in which all sets are empty, which
is clearly the case. Since any set that splits P also splits B, this yields a winning
strategy for (�,B, t).

If Skew has a pairing strategy, we can use the same argument, but note that Skew
will play the role of Split in the side game.

In the rest of the section, we carry out case studies, analyzing which player wins
in several special cases of the splitting game. We begin with a very trivial such case.

Theorem 5.3. Suppose that (k,B) has at most two odd-sized Venn regions of nonzero
multiplicity. Then for either value of t, Split has a winning strategy in (k,B, t).

Proof. By Lemma 5.1, the game board (k,B) is equivalent to a game board (�, C) in
which

∣∣⋃
C∈C C

∣∣ ≤ 2. If
∣∣⋃

C∈C C
∣∣ ≤ 1, then every subset of [�] splits C, so any run of

the splitting game results in a Split win. If
∣∣⋃

C∈C C
∣∣ = 2, then Split has a pairing

strategy given by
{⋃

C∈C C
}
.

Next we proceed to study games where the number of sets n = |B| is small. By
Lemma 5.1, one can reduce any game to one in which each Venn region has at most
one element. Thus for fixed n there are just finitely many n-set game boards after
reduction, and for small n we can exhaustively check who has a winning strategy in
each case.

Theorem 5.4. For all games with |B| ≤ 3, the winning player and corresponding
winning strategy are known and identified in Appendix 5.

This case study gives some insight into the question of which player wins more
often. Let P (n) be the proportion of n-set boards (k,B) (with at most one element
in each Venn region) for which Split has a winning strategy for (k,B, Split). From
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our data, we have P (1) = 1, P (2) = 7/8, and P (3) = 65/128. Moreover, using the
fact that games won by Skew are closed under adding sets, it is not difficult to show
that P (n) is a decreasing function of n, and in fact, we have the following result.

Theorem 5.5. With P (n) as described above, P (n) → 0 as n → ∞.

Proof. Let N ∈ {0, 1}2n be chosen uniformly at random. Construct a game board
(k,B) on n sets from N by identifying each of the 2n Venn regions of B with a coor-
dinate of N , and placing 0 or 1 points in each region, according to the corresponding
coordinate of N . Then P (n) is precisely the probability that Split has a winnning
strategy for (k,B, Split).

Our strategy is to find subfamilies of B of size 2, with high probability, for which
Skew has a winning strategy. Let t = �n/2, and let B1, . . . ,Bt be disjoint subfamilies
of B on 2 sets. Let Si be the event that Split has a winning strategy for (k,Bi, Split).
Now consider a single Venn region R of Bi, and let X be a random variable denoting
|R|. Then X is binomially distributed with p = 1/2, so we have Pr(X is even) =
Pr(X is odd) = 1/2. It follows from Lemma 5.1 and Appendix 5 that Pr(Si) =
P (2) = 7/8.

We claim that S1, . . . , St are mutually independent. It suffices to show that for
any nonempty subset {i1, . . . , is} of [t− 1], we have Pr(St | Si1 ∩ · · · ∩ Sis) = Pr(St).
Now recall that we are assigning 0 or 1 points to each Venn region of the total
configuration. Imagine that we assign the regions contained in sets of B1 . . .Bt−1

first, thus determining the occurrence of Si1 ∩ · · · ∩ Sis . Note that each of the
three interior Venn regions of Bt has at least one Venn region of B unassigned.
Therefore, the number of additional points assigned will follow a nontrivial binomial
distribution, so the probability that an even (or odd) number of additional points
will be assigned is 1/2. Therefore, the initial assignment has no bearing on the
probability of St, and we have mutual independence.

Now, since S1 ∩ · · · ∩ St must occur in order for Split to have a winning strategy
for (k,B, Split), we have

P (n) ≤ Pr(S1 ∩ · · · ∩ St) = (7/8)t → 0 as n → ∞.

This completes the proof.

It is also worth remarking that while we were able to give a pairing strategy for
every 3-set game, there is not always a pairing strategy. For an example with n = 6,
see the first statement of Theorem 5.7 below. In this case we can show that Player II
has a winning strategy, so Lemma 5.2 implies there cannot be a pairing strategy. For
an example with n = 5, we can also show Player II has a winning strategy in the
game on Z/5Z whose board is described by Bi = {i, i + 1, i + 2}, i = 1, . . . , 5. We
do not know whether there is such an example using just four sets.

As there is significant literature on maker-breaker tic-tac-toe and its variants,
we next study splitting tic-tac-toe. Here given m,n we let k = mn and think of
[k] as an m × n grid. We then let B consist of the rows and columns of the grid.
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Observe that B is splittable by a checkerboard pattern. For comparison, in 3 × 3
maker-breaker tic-tac-toe, Maker tries to make a line and Breaker tries to prevent
Maker from making a line. In 3 × 3 splitting tic-tac-toe, Skew tries to make a line
or cause Split to make a line.

Because of the special status of the 3 × 3 board, we first consider the “classic”
variant of 3 × 3 splitting tic-tac-toe where B includes the diagonals as well as the
rows and columns.

Proposition 5.6. In “classic” 3×3 splitting tic-tac-toe, Skew has a winning strategy.

Proof. If Skew is Player I, begin by claiming the upper-left corner. Split is then
forced to claim the middle, or else Skew can win traditional tic-tac-toe. Skew then
claims the middle-top and middle-left, forcing Split to form a diagonal line.

If Skew is Player II, we consider the three cases depending on which element Split
claims first. If Split claims the middle, then by claiming a corner, Skew can threaten
to form three in a row no matter where Split goes next. Skew can take advantage of
this by choosing one of the squares adjacent to its first move, forcing Split to take
the final corner in that row or column. Thus, along this diagonal, either Split has
already formed a full diagonal or there is one open square which Skew can force Split
to claim as Split must make the last move.

Next suppose Split claims the upper middle. Skew can then go in the middle and
no matter what Split does next, Skew can occupy one of the two bottom corners.
Thus, Skew threatens to form a diagonal so Split must prevent this by taking one of
the two upper corners depending on where Skew went. Again, by avoiding the final
spot in this row, Skew can force Split to take it, resulting in a full row for Split and
a Skew win.

Finally suppose Split claims the upper left. Skew again responds by selecting the
middle. No matter where Split goes next, Skew can force Split to claim one of the
two free squares adjacent to their first one. As before, Skew can simply avoid the
third square in this row or column, eventually forcing Split to form three in a row.

This covers all cases up to symmetry, so Skew has a winning strategy.

We now return to the version of splitting tic-tac-toe without the diagonals.

Theorem 5.7. Consider the m× n splitting tic-tac-toe game, with m,n �= 1.

◦ If m = n = 3, Player II has a winning strategy.

◦ Otherwise, Skew has a winning strategy.

The proof consists of a number of cases and is carried out in Appendix 5.

We conclude with the generalization of splitting tic-tac-toe to higher dimensions.
Specifically, we play on a d-dimensional grid and let B consist of the maximal axis-
parallel lines.



S. COSKEY ET AL. /AUSTRALAS. J. COMBIN. 82 (3) (2022), 268–296 289

Theorem 5.8. Consider the n1×· · ·×nd game described above. Assume that ni �= 1
for all i (this would reduce to a lower dimensional game).

◦ If d = 2 and n1 = n2 = 3, then Player II has a winning strategy.

◦ In all other cases, Skew has a winning strategy.

Proof. The first statement is part of the previous theorem.

For the second statement, unless ni = 3 for all i, the previous theorem implies
there is a two-dimensional sub-board where Skew has a winning strategy.

If ni = 3 for all i, regard the board as a union of parallel 3× 3 sub-boards. First
suppose Skew is player I. After the first move, we can assume that Player II moves on
a different sub-board (otherwise we could cut the boards in a different way). Then
Skew gets to make a second move in the same sub-board, giving them a one move
lead. It is not difficult to see that Skew can now make a line in this sub-board. For
example Skew’s first four moves can form a 2 × 2 corner of the sub-board, forcing
Split to play in other corners. After this Skew is threatening two lines and Split
cannot block both.

Next suppose that Skew is Player II. After Split makes the first move, Skew can
play on the same sub-board. If Split continues to play on the same sub-board, then
Skew wins because Skew is Player II in a 3 × 3 game. If Split plays outside the
sub-board, Skew can copycat and also play outside the sub-board. Since there are
an even number of elements in the complement of the sub-board, Skew can continue
to use the winning strategy on the sub-board.

Appendices

A 3-set families with the minimum number of splitters

Using a computer search, we found all types of splittable 3-set families on all k ≤ 60.
The code and its output may be found in [15].

For each of these k there are several distinct families with the fewest number of
splitters. However, the various solutions all look similar to one another (with some
Venn regions permuted or single point moved somewhat). Every solution has either
exactly two Venn regions with 1 point or exactly one Venn region with 2 points. The
solution sets repeat in pattern every 6 values of k.

In Figure 5 we give one of the solutions for each equivalence class of k modulo 6.
We conjecture that the pattern continues for all k.

The pattern here has been verified for k ≤ 60.

In Figure 6, we give some computational results for the minimum number of
splitters of 3-set families for small values of k.
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Figure 5: Conjectural 3-set families with the minimum number of split-
ters. From left to right, top to bottom, the congruence classes 0, . . . , 5 of
k modulo 6. (In each case, � is an odd integer.)

k # of splitters in minimum arrangement
≤ 5 2

6 4
7 6
8 12
9 18
10 36
11 54
12 108
13 180
14 360
15 600
16 1200
17 2000
18 4000
19 7000
20 14000

Figure 6: Minimum number of splitters for 3-families on [k].
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B Two and three set games

In this section we catalog the winner and winning strategy for all instances of the
splitting game on two or three sets. By Lemma 5.1, we may suppose there are 0 or
1 elements in each Venn region. We use an empty region to represent 0 elements
and a • to represent 1 element. Since we will see that each of these games may be
won using a (possibly trivial) pairing strategy, the winner is independent of which
player goes first. It is also independent of whether or not there are points in the
Venn region of multiplicity 0; we use a 	 to suggest either case.

For two set games, there are 8 arrangements, not considering the multiplicity 0
region. Of these, 7 are won by Split and 1 by Skew. The 8 arrangements are divided
into 5 types up to symmetry. Of the 5 types, 4 are won by Split and 1 by Skew (see
Figure 7).

	

•
	

•
	

••
	

•• •
	

Figure 7: Types of two set games, with pairing strategies shown. The
first four arrangements are won by Split. The final arrangement is won
by Skew.

For 3-set games, there are 128 arrangements. Of these, 65 are won by Split and
63 are won by Skew. The arrangements fall into 40 types up to symmetry. By
Theorem 5.3, Split has a winning strategy for any game with ≤ 2 occurrences of
•, which accounts for 10 of the types. The remaining 30 types are shown below.
Figure 8 depicts games won by Split, and Figure 9 depicts games won by Skew.
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Figure 8: Three-set games won by Split with ≥ 3 instances of •, with
pairing strategies shown.
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Figure 9: Three-set games won by Skew, with pairing strategies shown.
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C 2-dimensional splitting tic-tac-toe

In this section we carry out the details of the proof of Theorem 5.7. Recall the
theorem states that in the m× n splitting tic-tac-toe game with m,n �= 1:

◦ If m = n = 3, Player II has a winning strategy.

◦ Otherwise, Skew has a winning strategy.

For the first item, consider first the case where Skew is Player I. The board is
completely symmetric with respect to the squares, so assume without loss of gen-
erality that Skew takes the upper left square. Then Split’s strategy is to take the
top middle. Up to symmetry, Skew can now take the top right, the left middle, the
center, or the right middle.

Suppose Skew takes the top right. Then split takes the left middle. Then if Skew
takes the bottom right, then Split takes the right middle. Then as long as Split
takes something other than the middle on his remaining turn, Split wins. On the
other hand if Skew takes something other than the bottom right on his third turn,
then Split takes the bottom right. Now Split has one square from each row and each
column, so Skew cannot claim an entire row, and neither can Split, as Split has just
one move left. Thus Split wins in this case.

Now suppose Skew takes the left middle. Then Split takes the bottom left. As
noted before, if Split has claimed a square from every row and column, Split wins.
Thus Skew is forced to take the right middle. Then Split takes the center. Then
Split can win by splitting the pair of remaining squares on the right.

Now suppose Skew takes the center. Then Split takes the right middle. Then,
so as to prevent Split from taking a square from each row or column, Skew must
take the bottom right. Then Split can win by simultaneously splitting the pair of
remaining squares on the bottom and the pair of remaining squares on the right.

Finally, consider the case where Skew goes in the right middle. Then Split takes
the left middle. Then Skew is forced to take the bottom right, as in the other cases.
Then Split takes the top right. Now Split can win by splitting the pair of remaining
squares on the bottom.

It remains to show that Skew has a winning strategy in the first item when Split
is Player I. Without loss of generality, Split begins by taking the top left. Then Skew
takes the center. Split cannot take a square from the top or the left since Split has
the last move, and Skew can force Split to eventually take three in a row. Thus
Split has two remaining options, up to symmetry: Split can take the right middle
or the bottom right. In either case, after Split makes a move, then Skew takes the
bottom middle and forces Split to take the top middle. Then Skew can force Split
to eventually take the top right, so Skew wins.

For the second item, if m,n are both even, notice that any row and column
forms a two-set family with an odd number of elements in each Venn region. By our
previous work on two-set games, Skew has a winning strategy on just these two sets.



S. COSKEY ET AL. /AUSTRALAS. J. COMBIN. 82 (3) (2022), 268–296 294

If m = 2, Skew uses a pairing strategy with the pairs a2,j, a1,j+1 (cyclically).

For the remaining cases, Skew has a winning strategy by “getting ahead” in one
of the rows or columns. If at any point, the number of squares claimed by Split and
Skew in an even row (column) differ by at least two, or in an odd row (column) by
at least three, then Skew can skew the row (column) by claiming squares from that
row (column) on each turn until they run out.

If m is even and n is odd, consider first when Skew is Player I. Skew takes the
top left corner. Since m is even, Split cannot allow Skew to take two squares from
any column before Split takes any, so Split is forced to go in column 1. Then Skew
takes the second square in row 1. Now if Split takes a square from row 1, then Skew
takes the second square in column 2, which puts Skew two ahead in column 2. If
Split takes a square from column 2, then Skew takes a square from row 1, which puts
Skew three ahead in row 1. In either case, Skew wins.

Now consider when m is even and n is odd and Split is Player I. Without loss
of generality, Split goes in the bottom right corner. Then Skew can follow the same
strategy as before without Split’s first move coming into play at all.

If m,n ≥ 5 are odd and Skew is Player I, Skew takes the top left. Assume without
loss of generality that Split does not go in column 1 or column 2. Then Skew takes
a square from column 1 in an empty row. Then Split is forced to go in column 1.
Skew continues taking squares from column 1 in empty rows until Split takes the
last square from column 1. Now column 2 is empty, and there are at least two rows
in which only Skew has claimed a square. Skew now takes squares from those rows
in column 2. Each time, Split is forced to take a square from the same row. Then
Skew is free to take a third square from column 2, where Split has taken none, and
Skew wins.

If m,n ≥ 5 are odd and Split is Player I, assume without loss of generality that
Split takes the bottom right square. Then Skew plays as described above, but in the
case where Split takes a square not in row 1 in his second move, Skew takes a square
from column 1 from the same row, then continues as described. The result is the
same, since in either case, it will be Skew’s turn with column 2 empty and at least
two rows with only Skew having claimed a square.

Ifm,n are odd and exactly one of them is 3, more explanation is required. Assume
m ≥ 5 and n = 3 without loss of generality, and first consider the case where Skew
is Player I. Skew takes the top left. If Split does not go in column 1, then Skew can
play as in the 5 × 5 game. If Split goes in column 1, then Skew takes the middle
square of row 1. Then Split is forced to take the right square of row 1. Then Skew
takes squares from column 2 from empty rows until all have been taken, and Split
is forced to also take squares from column 2. When Split takes the last square from
column 2, there are at least two rows in which only Skew has taken a square. Skew
then takes the left square from each of these rows, and Split is forced to take the
right square of that row each time. Now Skew takes another square from column 1,
which puts Skew three ahead, and Skew wins.

For the last case, assume m ≥ 5 is odd and n = 3 and Split is Player I. Assume
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without loss of generality that Split takes the bottom right square. Then Skew takes
the top left. If Split doesn’t go in go in column 1, then Skew takes squares from
column 1, not row m, until they run out. Split is forced to take squares from column
1 as well, including the left square in row m. Now since there are an odd number
of squares, and Split is Player I, Skew can force Split to eventually take the third
square in row m, and Skew wins. If Split instead goes in column 1 for his second
move, then Skew takes top middle. Split is forced to take top right. Then Skew takes
squares from column 2, not row m until they run out, and Split is eventually forced
to take bottom middle. Then, since Split has the last move, Skew can force Split to
eventually take bottom left, and Skew wins.

This completes the proof.
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