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Abstract

A directed embedding of an Eulerian digraph on a surface is a 2-cell em-
bedding of its underlying graph on the surface with a property that each
face is bounded by a directed cycle. A digraph is 2-regular if each vertex
has both indegree and outdegree two, and is diplanar if it is directedly
embeddable on the sphere (or the plane). As an expansion of Whitney’s
theorem to directed embeddings, Archdeacon et al. [Australas. J. Com-
bin. 67 (2017), 159–165] proved that every strongly 2-edge-connected 2-
regular diplanar digraph is uniquely directedly embeddable on the sphere.

We indicate the close relationship between an embedding of a 3-
connected graph on a surface and a directed embedding of a strongly
2-edge-connected digraph on the surface, and give a simpler proof of the
above theorem. Moreover, we give the complete structures of directed
embeddings of strongly 2-edge-connected 2-regular diplanar digraphs on
the projective-plane, the torus and the Klein bottle. This enables us to
evaluate the total number of such directed embeddings.

1 Introduction

Let S be a surface, which is a compact 2-dimensional manifold without boundary.
An embedding f : G → S of an undirected graph G on S is an injective continuous
map from G to S. In other words, an embedding is a drawing of a graph on a
surface without edge-crossings. We often consider a graph G is already mapped on a
surface and denote its image by G itself. The faces are the component of the open set
S−f(G). An embedding of a graph is 2-cell if each face is homeomorphic to an open
2-cell, which contains neither handles nor crosscaps. In this paper, we consider only
2-cell embeddings. For terminologies of topological graph theory, we refer to [10].
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Two embeddings f1, f2 : G → S of a graph G on a surface S are equivalent if
there is a homeomorphism h : S → S such that hf1 = f2, and they are inequivalent
otherwise. A graph G is uniquely embeddable (up to equivalent) on a surface S if
any two embeddings of G on S are equivalent. Whitney’s theorem [14, 15] is one of
the most important results on plane embeddings, and states that every 3-connected
planar graph is uniquely embeddable on the sphere. This theorem was obtained as a
corollary of a stronger result that one of any two embeddings of a 2-connected planar
graph can be obtained from the other by a sequence of local re-embeddings, called
Whitney flips (see [10, Sections 2 and 5] for details).

A digraph is Eulerian if each vertex has the same indegree and outdegree. A
directed embedding of an Eulerian digraph D on a surface S is defined as a 2-cell
embedding of its underlying graph on S with a property that each face is bounded
by a directed closed walk. Hence, in- and out-edges alternate in the rotation around
each vertex of a directedly embedded digraph. An Eulerian digraph D is diplanar if
D has a directed embedding on the sphere (or the plane). This type of embeddings
first appeared in Tutte’s work [13], and has been studied extensively ( see for example
[1–6,8, 9]).

For an integer k ≥ 1, a digraph D is k-regular if each vertex of D has both
indegree and outdegree k, and is strongly k-edge-connected if for any X ⊆ E(D)
with |X| < k, D − X is strongly connected. In this paper, we mainly focus on
strongly 2-edge-connected 2-regular diplanar digraph. Thus, our digraphs have no
loops and no multiple edges, that is, several copies of an edge uv, while they may
have opposite edges, that is, two anti-directed edges uv and vu. Archdeacon et al. [3]
proved an analogue of Whitney’s theorem:

Theorem 1.1 (Archdeacon et al. [3]). Every strongly 2-edge-connected 2-regular
diplanar digraph is uniquely directedly embeddable on the sphere.

As with Whitney’s theorem, Theorem 1.1 was obtained as a corollary of the
stronger result that one of any two directed embeddings of a connected 2-regular
diplanar digraph can be obtained from the other by a sequence of “directed” Whitney
flips. Moreover, in [3], they proved an analogue of Tutte’s peripheral cycles theorem,
which is also a stronger result than Theorem 1.1. Unfortunately, Theorem 1.1 does
not hold for arbitrary Eulerian digraphs. That is, there are infinitely many strongly
2-edge-connected Eulerian diplanar digraphs having at least two directed embeddings
on the sphere.

In Section 2, we indicate the close relationship between an embedding of a
3-connected graph on a surface and a directed embedding of a strongly 2-edge-
connected digraph on the surface, which enables us to give a simple proof of Theo-
rem 1.1. Moreover, we focus on directed embeddings of diplanar digraphs on non-
spherical surfaces. As for embeddings of planar undirected graphs, Mohar, Robertson
and Vitray [12], and Mohar and Robertson [11] studied embeddings of 2-connected
planar graphs on non-spherical surfaces and showed that such embeddings have spe-
cial structures, called “patch structures”. Recently, the author [7] completely char-
acterized structures of embeddings of 3-connected 3-regular planar graphs on the
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projective-plane, the torus and the Klein bottle, which are useful for enumerating
such embeddings and counting their total number. In Section 3, we extend the above
result to directed embeddings of digraphs, that is, we characterize structures of di-
rected embeddings of strongly 2-edge-connected 2-regular diplanar digraph on the
projective-plane, the torus and the Klein bottle. In addition to this, we evaluate the
number of such directed embeddings.

2 A simple proof of Theorem 1.1

For the sake of arguments in later sections, we introduce the combinatorial way of
describing embeddings of a (undirected) simple graph, called “embedding schemes”.
A general description of an embedding scheme can be found in [10].

For an embedding f : G→ S of a graph G on a surface S, there are two possible
cyclic orderings of edges incident with each vertex v of G. Choose one of them, called
the rotation around v, and denote it by ρv. A signature of E(G) is a map assigning
1 or −1 to each edge of G, denoted by λ, such that for an edge e = uv with its
endvertices u and v, λ(e) = 1 if a subwalk induced by the three edges ρu(e), e and
ρ−1v (e) is included in a facial walk, otherwise λ(e) = −1. It can be shown that this
definition of the signature λ is consistent, that is, λ(uv) = λ(vu) for every edge uv.
The pair (ρ, λ), where ρ = {ρv : v ∈ V (G)}, is obtained by the above procedure, is
called an embedding scheme for f(G). An embedding scheme determines exactly one
embedding of G up to equivalence.

For an embedded graph G associated with a given embedding scheme, we call
an operation of replacing the signatures of some edges with their inverses twisting
these edges, and the embedding associated with the resulting embedding scheme the
re-embedding of G obtained by twisting these edges.

Now we introduce a transforming operation of a 4-regular graph. Let G be a
4-regular graph embedded on a surface, and v be a vertex of G adjacent to u1, u2, u3
and u4 such that the rotation around v corresponds to this order. A truncation
of a vertex v is an operation of replacing a small neighborhood around v with a
facial cycle of order 4, called a truncated cycle, shown in Fig. 1; delete v and add
four vertices v1, v2, v3 and v4 together with edges viui and vivi+1 with indices taken
modulo 4.

u1

u3

u2

u4

u1

v3
u2v4

v1

u3

v2u4
v

Fig. 1: Truncation of a vertex
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The truncated graph of a 4-regular graph G embedded on a surface is the em-
bedded graph obtained from G by truncating all vertices, denoted by tr(G). We
call the edges of tr(G) contained in a truncated cycle truncated edges and the others
original edges. It is clear that tr(G) is 3-regular and each vertex is incident with two
truncated edges and one original edge. In this paper, we mainly focus on 2-regular
digraphs D. Since our digraphs have no loops, for the underlying graph G of D, the
truncated graph tr(G) is simple.

Note that the truncating operation depends on the rotation around a vertex.
That is, if two embeddings f1(G) and f2(G) of G on a surface are inequivalent then
the truncated graphs tr(f1(G)) and tr(f2(G)) may not be isomorphic to each other.
However, we do not have to consider such a situation when G is the underlying graph
of a connected 2-regular digraph D.

Lemma 2.1. For any two directed embeddings f1(D) and f2(D) of a connected 2-
regular digraph D on a surface with its underlying graph G, there is an isomorphism
from tr(f1(G)) to tr(f2(G)) that preserves truncated cycles.

Proof. Since G is the underlying graph of D, which is 2-regular, there are only two
possible rotations around each vertex of G, and one of them is the inverse of the
other. This implies that the sets of truncated cycles of tr(f1(G)) and tr(f2(G)) are
the same, and hence tr(f1(G)) and tr(f2(G)) are isomorphic to each other.

Lemma 2.2. If a connected 2-regular digraph D directedly embedded on a surface is
strongly 2-edge-connected then the truncated graph of the underlying graph of D is
3-connected.

Proof. It is easy to see that if D is strongly 2-edge-connected then the underlying
graph G is 2-connected and 4-edge-connected. Suppose that the truncated graph
tr(G) of G is not 3-connected. As tr(G) is 3-regular, it is not 3-edge-connected.

We first assume that tr(G) has a bridge e. As a truncated edge is contained in a
truncated cycle, e is not a truncated edge. Thus, e is an original edge and hence it
is also a bridge in G, a contradiction.

Next, we assume that tr(G) has two edges e1 and e2 forming an edge-cut, both
of which are not bridges. If one of them is truncated, then the other must be
contained in the same truncated cycle, denoted by C. In this situation, the vertex
of G corresponding to C is a cut vertex, a contradiction. Thus, both of e1 and e2
are not truncated. However, this implies that they are original edges and hence they
form an edge-cut of G, which contradicts the 4-edge-connectivity of G.

Using Lemmas 2.1 and 2.2, we can prove Theorem 1.1 easily.

Proof of Theorem 1.1. Let D be a strongly 2-edge-connected 2-regular diplanar di-
graph with its underlying graph G, and f1(D) and f2(D) be two directed embeddings
of D on the sphere. By Lemma 2.1, the two truncated graphs tr(f1(G)) and tr(f2(G))
of f1(G) and f2(G), respectively, are isomorphic. Moreover, by Lemma 2.2, they are
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3-connected and hence equivalent to each other (by Whitney’s theorem). This implies
that f1(D) and f2(D) are equivalent.

3 Directed embeddings on non-spherical surfaces

3.1 Directed embedding structures

The author [7] proved the following theorems:

Theorem 3.1 (Enami [7]). A 3-connected 3-regular graph embedded on the projective-
plane is planar if and only if it has one of the two structures (P1) and (P2) shown
in Fig. 2.

(P2)(P1)

Fig. 2: Embedding structures on the projective-plane

Theorem 3.2 (Enami [7]). A 3-connected 3-regular graph embedded on the torus is
planar if and only if it has one of the two structures (T1), (T2) and (T3) shown in
Fig. 3.

(T1) (T2)

(T3)

Fig. 3: Embedding structures on the torus

Theorem 3.3 (Enami [7]). A 3-connected 3-regular graph embedded on the Klein
bottle is planar if and only if it has one of the eight structures (K1) to (K8) shown
in Fig. 4.
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(K1) (K2)

(K3) (K4) (K5)

(K6) (K7) (K8)

Fig. 4: Embedding structures on the Klein bottle

In Fig. 2, each pair of antipodal points on the dashed circle should be identified
to recover the projective-plane. Similarly, in Fig. 3, to recover the torus, both pairs
of opposite sides of dashed rectangle should be identified in the same direction,
and in Fig. 4, to recover the Klein bottle, the top and bottom sides of the dashed
rectangle should be identified in the same direction while the left and right sides
should be identified in the opposite direction. In these figures, each of the shaded
areas corresponds to a component of the graph obtained from the original graph by
deleting all edges not bounded by shaded areas. Some vertices on the boundary of
such an area may not be different from each other, that is, the edges not bounded
by shaded areas may not be a matching. We omit a series of shaded rectangles from
(T2), (T3), (K1) and (K2). Both (T2) and (T3) have an even number of shaded
rectangles ((T3) may have no shaded rectangle), while both (K1) and (K2) have
an odd number of shaded rectangles. In [12], the structures of embeddings of a 2-
connected planar graph on the projective-plane was analysed, and the structures in
Theorem 3.1 is special cases in [12].

Remark 3.4. Let G be a 3-connected 3-regular planar graph. Suppose that G is
already embedded on the projective-plane, the torus or the Klein bottle, and hence it
has one of the structures shown in Figs. 2, 3 and 4. We can obtain the re-embedding
f(G) of G on the sphere by twisting all edges not bounding a shaded area. Because
of that, every facial walk of G containing an edge not bounding a shaded area, that
is, a closed walk bounding an empty area in the structure, is not facial in f(G).
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Now we show expansions of Theorems 3.5, 3.6 and 3.7 to directed embeddings of
strongly 2-edge-connected 2-regular diplanar digraphs:

Theorem 3.5. A strongly 2-edge-connected 2-regular digraph directedly embedded on
the projective-plane is diplanar if and only if it has the structure shown in Fig. 5.

Fig. 5: Directed embedding structures on the projective-plane

Theorem 3.6. A strongly 2-edge-connected 2-regular digraph directedly embedded on
the torus is diplanar if and only if it has the structure shown in Fig. 6.

Fig. 6: Directed embedding structures on the torus

Theorem 3.7. A strongly 2-edge-connected 2-regular digraph directedly embedded on
the Klein bottle is diplanar if and only if it has one of the two structures shown in
Fig. 7.

Fig. 7: Directed embedding structures on the Klein bottle

As with the structures of embeddings shown in Figs. 2, 3 and 4, in the structures of
directed embeddings shown in Figs. 5, 6 and 7, each of the shaded areas corresponds
to a component of the digraph obtained form the original digraph by deleting all
directed edges not bounded by shaded areas.
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Proof of Theorems 3.5, 3.6 and 3.7. If a directed embedding of a strongly 2-edge-
connected 2-regular digraph on the projective-plane, the torus or the Klein bottle
has one of the structures shown in Figs. 5, 6 and 7, then it has one of the directed
embeddings on the sphere shown in Fig. 8. Hence, we only have to show that any
directed embedding of a strongly 2-edge-connected 2-regular diplanar digraph D on
the projective-plane, the torus or the Klein bottle must have one of the structures
shown in Figs. 5, 6 and 7.

Fig. 8: Three structures of a directed embedding on the sphere

Suppose that D is already directedly embedded on the projective-plane, the torus
or the Klein bottle with a directed embedding f1(D), giving an embedding f1(G) of
the underlying graph G. By Lemma 2.2, the truncated graph T1 = tr(f1(G)) of G is
3-connected. Moreover, we now show that every edge-cut of order 3 in T1 is trivial,
that is, its edges have a common end-vertex. Suppose that T1 has a non-trivial edge-
cut of order 3 (for a contradiction). If an edge in the edge-cut is truncated then
one of the others is contained in the same truncated cycle. Since the edge-cut is
non-trivial, in this situation, we can find a vertex-cut of order at most two in T1,
which contradicts the 3-connectivity of T1. Thus, each of them is an original edge.
However, this implies that G has an edge-cut of order 3, which contradicts the strong
2-edge-connectivity of D. Therefore, every edge-cut of order 3 in T1 is trivial.

The directed embedding f1(D) gives a derived embedding g1(T1) in the same
surface. Since T1 is 3-connected, 3-regular and planar, by Theorems 3.1, 3.2 and 3.3,
the embedding g1(T1) on the projective-plane, the torus or the Klein bottle has one
of the structures shown in Figs. 2, 3 and 4. In the structure, if g1(T1) has a shaded
triangle then the three edges incident with this triangle form an edge-cut. Thus,
this triangle corresponds to only one vertex, denoted by v, and if C is the truncated
cycle of T1 incident with v, then g1(C) bounds an empty area in the structure. This
implies that for any re-embedding g′1(T1) of T1 on the sphere, g′1(T1) is not facial (See
Remark 3.4).

NowD has another directed embedding f2(D) on the sphere, from which we derive
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an embedding of T2 = tr(f2(G)) on the sphere, dnoted by g2(T2). (By Theorem 1.1,
D has an unique directed embedding on the sphere.) For every truncated cycle C
of T2, g2(C) is a facial cycle in g2(T2). By Lemma 2.1, there is an isomorphism
φ : T1 → T2 which preserves truncated cycles, and hence g2(φ(T1)) = g′1(T1) , where
g′1 = g2 ◦ φ, is an embedding if T1 on the sphere. Since C is a truncated cycle in T1,
φ(C) is a truncated cycle in T2, and hence g2(φ(C)) is a facial cycle in g2(T2). In
other words, g′1(C) is a facial cycle in g′1(T1), which is a contradiction.

Therefore, g1(T1) has no shaded triangle, that is, the structure is one of the four
(P1), (T2), (K1) and (K3). From the above argument, an edge contained in a
truncated cycle appear in a shaded area. Thus, f1(G) has the same structure, and
hence f1(D) has one of the structures shown in Figs. 5, 6 and 7.

3.2 The number of directed embeddings

For a directed embedding of a 2-regular digraph D on a surface, the operation of
twisting some edges of D can be defined as with the case of embeddings of (undi-
rected) graphs. This operation holds the property that in- and out-edges alternate in
the rotation at each vertex of D. That is, the resulting mapping of D on a surface is
a re-embedding of D. Actually, for a digraph D directedly embedded on the sphere
with one of the structure shown in Fig. 8, we obtain the re-embedding of D with
one of the structure shown in Figs. 5, 6 and 7 by twisting all edges which are not
contained in shaded area. It can be shown that for two distinct edge-sets X1 and X2,
the two directed embeddings of D obtained from the original directed embedding
of D by twisting the edges in X1 and X2 are inequivalent or mapped on distinct
surfaces.

Proposition 3.8. Every connected 2-regular diplanar digraph D with n vertices has
at least 2n inequivalent directed embeddings on the projective-plane. If D is strongly
2-edge-connected, then D has at least n inequivalent directed embeddings on the torus,
and at least n(2n− 1) inequivalent directed embeddings on the Klein bottle.

Proof. Let D be a 2-regular diplanar digraph with n vertices, and suppose that D is
now directedly embedded on the sphere.

Twisting an edge of D, we obtain a re-embedding of D on the projective-plane,
which has the structure shown in Fig. 5. Then D has at least |E(D)| = 2n inequiv-
alent directed embeddings on the projective-plane.

Hereafter, suppose that D is strongly 2-edge-connected. First, choose one vertex
v of D. Then D has the structure shown in the bottom of Fig. 8, when there are
exactly two shaded rectangles and one of them represents only one vertex. Since
D is strongly 2-edge-connected, the other shaded rectangle represent a connected
subgraph of D. Hence, twisting the four edges incident with a vertex of D, we obtain
a re-embedding of D on the torus, which has the structure shown in Fig. 6. (If D is
not strongly 2-edge-connected and v is a cut vertex, then the re-embedding of D is
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on the sphere.) Then D has at least |V (D)| = n inequivalent directed embeddings
on the torus.

Second, choose two edges of D and twist them. Since D is strongly 2-edge-
connected, the resulting directed embedding of D is on a non-spherical surface, that
is, this operation cannot be a directed Whitney flip. In this situation, this directed
embedding is on the Klein bottle, which has one of the two structures shown in the
left of Fig. 7 or the right of Fig. 7 when there is exactly one shaded rectangle. If we
choose two edges contained in the same facial directed walk, then the re-embedding
has the structure shown in the left of Fig. 7. Otherwise, it has the structure shown
in the right of Fig. 7. Thus, we can give at least

(|E(G)|
2

)
= n(2n − 1) inequivalent

directed embeddings of D on the Klein bottle.

By Theorem 3.5, there are no directed embeddings of a strongly 2-edge-connected
2-regular diplanar digraph on the projective-plane other than those in Proposition 3.8.

Corollary 3.9. Every strongly 2-edge-connected 2-regular diplanar digraph with n
vertices has exactly 2n inequivalent directed embeddings on the projective-plane.

Next, we show a family of digraphs attaining the lower bounds in Proposition 3.8
on the torus and the Klein bottle. An undirected graph is cyclically k-edge-connected
if there is no set of at most k − 1 edges such that the graph obtained by deleting
these edges has at least two components having a cycle.

Corollary 3.10. If the underlying graph of a strongly 2-edge-connected 2-regular
diplanar digraph with n vertices is cyclically 5-edge-connected, then it has exactly
n inequivalent directed embeddings on the torus and n(2n − 1) inequivalent directed
embeddings on the Klein bottle. Moreover, in the case on the torus, the converse
holds.

Proof. Let D be a a strongly 2-edge-connected 2-regular digraph D with n vertices.
Suppose that the underlying graph G of D is cyclically 5-edge-connected, and D has
more than n inequivalent directed embeddings on the torus or n(2n−1) inequivalent
directed embeddings on the Klein bottle. Thus, there is a directed embedding of D
on the torus or the Klein bottle which is not counted in Proposition 3.8. This directed
embedding has the structure shown in Fig. 6 or the right of Fig. 7 having at least
two shaded rectangle, each of which does not represent just one vertex, that is, has
a cycle. In this situation, we can find four edges of G such that the graph obtained
by deleting these edges has exactly two components having cycles, a contradiction.

If G is not cyclically 5-edge-connected then there are four edges such that the
graph obtained by deleting these edges has two components having a cycle. Twisting
these edges, we obtain a re-embedding of D on the torus, which has the structure
shown in Fig. 6 when there are exactly two shaded rectangles. This directed embed-
ding is not counted in Proposition 3.8.

The underlying graph of a digraph attaining the lower bounds in Proposition
3.8 on the Klein bottle is not necessarily cyclically 5-edge-connected. For example,
Fig. 9 presents the underlying graph of such a digraph D.
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Fig. 9: The underlying graph of D

In addition to Corollary 3.10, we can give a polynomial-time algorithm for count-
ing the number of inequivalent directed embeddings of a given strongly 2-edge-
connected 2-regular diplanar digraph on the torus or the Klein bottle and a poly-
nomial-delay algorithm for enumerating them. The author [7] already showed such
algorithms in the case of embeddings of 3-connected 3-regular planar graphs. To
imitate this algorithm, we can easily obtain the desired algorithm, and hence we
omit details here.

4 Concluding remarks

In this paper, we studied directed embeddings of strongly 2-edge-connected 2-regular
diplanar digraphs on the sphere, the projective-plane, the torus and the Klein bottle.
In order to extend our results to surfaces with higher Euler genera, we should show
the complete lists of structures of 3-connected 3-regular planar graphs embedded on
these surfaces like Figs. 2, 3 and 4. However, we think that there are a large number
of re-embedding types even on surfaces with Euler genus at least 4. Then, it seems
to be difficult to give such complete lists without additional assumptions.
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