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Abstract

For n ≥ 3, let α(n) denote the minimum number of vertices in a graph
with exactly n spanning subtrees. This notion was introduced by Sedlác̆ek
and has been studied by Azarija and S̆krekovski. In particular, they have
conjectured that α(n) = o(logn).

This paper will prove a weak version of this conjecture: specifically
we will show that α(n) = O((logn)3/2/(log log n)). This bound is sub-
stantially larger than the conjectured upper bound; it is at least in the
same ballpark.

1 Introduction

For n ≥ 3, let α(n) denote the minimum number of vertices in a graph with exactly
n spanning subtrees. (In this paper, by a graph we will always mean a simple graph
without loops or multiple edges.) This notion was introduced by Sedlác̆ek [5] and
has been studied by Nebeský [3] and Azarija and Strekovski [1],[4]. In particular,
the last two authors have conjectured that α(n) = o(logn).

Note that for a graph with m vertices, the number of spanning subtrees is maxi-
mized for a complete graph Km which by Cayley’s theorem has mm−2 spanning sub-
trees. Therefore α(mm−2) = m. For general n, we get a lower bound from this maxi-
mality. Specifically, if we letm be the least integer such thatmm−2 ≥ n, then we have
α(n) ≥ m. With a little manipulation, we can write this as α(n) ≥ logn

log logn
(1+ o(1)).

If G and G′ are graphs, then we can form the wedge G∨G′ by taking the disjoint
union and identifying one vertex of G with one vertex of G′. The number of spanning
subtrees multiplies under taking wedges. Therefore we have fairly tight upper bounds
on α(n) if n is a product of a small number of terms of the form mm−2 and a slightly
weaker upper bound α(ar) = O(r) for any fixed a (so α(n) = O(logn) at least for
this very sparse family of ns).

These considerations make the conjectured upper bound seem reasonable and one
can also write down some crude heuristics that make the conjecture seem plausible.
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Despite this all the reported upper bounds on α(n) seem to be very weak. (The
bounds I saw were all linear in n, though I am hardly an expert on this question.)
The goal of this paper is to present a much better upper bound, which while not as
strong as the conjecture is at least within the same ballpark. The best result we will
be able to prove is that α(n) = O((logn)3/2/(log log n)). However this best bound
requires some fairly heavy algebraic number theory.

To compensate, we will begin rather slowly. We will first prove a very elementary
linear bound α(n) ≤ n/17+O(1). Even this weak bound seems to be an improvement
on the existing literature. This construction will naturally generalize to a family of
linear bounds α(n) ≤ n/r +O(1) for arbitrarily large r, and by balancing the linear
term and the constant term we will give an almost elementary proof that α(n) =
O(n1/2). These initial examples will all be in some sense built of just two pieces, but
for the sharpest results we will need examples built from chains of arbitrary length
and we will be forced to use some fairly serious number theory. We will give an
argument which shows α(n) = O((logn)2/(log logn)) but requires less sophisticated
number theory (namely, Dirichlet’s theorem on primes in arithmetic progressions)
and then our strongest bound, which requires very serious number theory.

2 The toolkit

Since this paper is devoted to proving upper bounds, all our work will be devoted to
just presenting some basic examples. These examples will be built from very simple
graphs by relatively simple operations, so we will first collect up these tools.

The basic building blocks will be just two kinds of graphs, cycles Cp of prime
length p, and theta graphs θ(a, b, c) which consist of two vertices joined by paths of
length a, b, c. (Since we do not allow multiple edges, we must insist that at most
one of the parameters a, b, c is equal to 1.) These are among the simplest graphs in
a topological sense, and they arise in many graph theoretic examples. In particular
the theta graphs were used in [1], though in an unrelated way.

For a graph G, let s(G) denote the number of spanning subtrees of G, and if
u, v are vertices of G let su,v(G) denote the number of spanning forests with two
components and u, v in different components. Note that su,v(G) = s(G/(u = v)),
where by G/(u = v) we mean the multigraph where u and v have been collapsed
to a single vertex. (An edge joining u and v might be viewed under this collapse
as producing a loop, but since a loop cannot be part of a spanning subtree we may
without loss assume that such an edge is also collapsed.)

Obviously s(G) is the main quantity of interest in this paper, but su,v(G) should
be thought of as some sort of derivative of s(G) in the following sense. Consider the
graphs Γk obtained from G by adding a path of length k (counting edges) between
two selected vertices u, v ∈ V (G). Note that since we want Γk to have neither loops
nor multiple edges, we need k ≥ 2 if u, v are adjacent in G, and k ≥ 1 if u �= v are
non-adjacent in G. Since any spanning subtree of Γk either deletes one edge of the
path (and hence intersects G in a spanning subtree) or has the entire path (and hence
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meets G in a 2-component spanning forest with u and v in different components),
we have

s(Γk) = ks(G) + su,v(G).

There is a related construction where we simply take the wedge of G with a cycle
of length k ≥ 3. This will have s(G ∨ Ck) = ks(G). We can regard this as a special
case of the construction above where we set u = v and we take the convention that
su,u(G) = 0. We will take this attitude in most of this paper, but in Sections 3 and
5 we will regard taking a wedge with a loop as a separate part of our toolkit.

Note that s(Cp) = p since deleting any of the p edges gives a spanning subtree
and conversely. Also s(θ(a, b, c)) = ab+ bc+ ca since choosing two of the three paths
and deleting one edge from each gives a spanning subtree and conversely. In this
paper we will consider only theta graphs where ab+ bc + ca = p is a prime.

3 The prime 17 and the first upper bound

Focus on p = 17 and just the two graphs C17 and θ(1, 2, 5). These graphs have
s(C17) = s(θ(1, 2, 5)) = 17. We will use these two basic examples and the con-
struction of Γk from the previous section to build 17 different families of graphs.
Each family will have s(Γk) in a particular congruence class modulo 17, will cover
all sufficiently large elements of its congruence class, and the 17 families will cover
between them all 17 congruence classes. Thus we see that all sufficiently large n can
be written as s(Γk) for one of these 17 families. Since this section is just a warm-up
for the more complete argument and 17 cases gets a little tedious, we will omit many
of the specific computations.

For the first family, we will take θ(1, 2, 5) ∨ Ck for k ≥ 3, which again can be
viewed as a degenerate case of the Γk construction. Such a graph has k + 6 vertices
and

s(θ(1, 2, 5) ∨ Ck) = 17k.

Thus for any n ≡ 0 (mod 17) with n ≥ 51 we can find a graph Γ with n/17 + 6
vertices and s(Γ) = n.

The next eight families will all be built from C17. We choose u and v to be vertices
of C17 separated by j edges, for j = 1, 2, . . . , 8, and let Γj,k be the graph obtained
by adding a path of length k joining u and v (which will actually give a theta graph
θ(j, 17 − j, k)). Since we produce a 2-component spanning forest by deleting one
edge of the path of length j from u to v and one edge of the complementary path of
length 17 − j, we see that su,v(C17) = j(17 − j). Thus for each j = 1, 2, . . . , 8, we
have a graph with k + 16 vertices and

s(Γj,k) = 17k + j(17− j).

Note that for j = 1 we must insist on k ≥ 2 to avoid multiple edges, but otherwise we
can allow k ≥ 1. The numbers j(17−j) are congruent to 16, 13, 8, 1, 9, 15, 2, 4 modulo
17 (which not coincidentally are exactly the nonzero quadratic residues modulo 17).
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Turning this around, from the specific case j = 1, we see that for any n ≡ 16
(mod 17) with n ≥ 2 · 17 + 1(17 − 1) = 50, there is a graph Γ1,(n−16)/17 with (n −
16)/17+16 = n/17+256/17 vertices and s(Γ1,(n−16)/17) = n. For j = 2, . . . , 8, we get
similar families. More explicitly, for each of the congruence classes d above, we will
find constants B1(d) and B2(d) such that for every n ≡ d (mod 17) with n > B1(d),
there is a graph Γ with n/17 +B2(d) vertices and s(Γ) = n.

The final eight families will all be built from θ(1, 2, 5) using the nondegenerate
version of the Γk construction from the previous section. The graph θ(1, 2, 5) can
be viewed as a 7-cycle, say with vertices vi for i ∈ Z/7Z, with one additional edge
added joining two vertices 2 apart, say v1v6. To avoid writing double subscripts,
we will write si,j for svi,vj(θ(1, 2, 5)). One can compute s1,5 = 20 ≡ 3 (mod 17),
s1,3 = 22 ≡ 5 (mod 17), s0,2 = 23 ≡ 6 (mod 17), s1,4 = 24 ≡ 7 (mod 17), s1,6 = 10,
s0,1 = 11, s0,3 = 29 ≡ 12 (mod 17), and s1,2 = 14. These congruence classes modulo
17 are exactly the quadratic non-residues, and hence they complete our menagerie.
We should go through all these cases individually, but since they will be covered by
the general computation in Section 5, we will focus on just one of them (the easiest),
s1,6 = 10. In this case the two vertices chosen, v1 and v6, are the two endpoints of the
three paths. Hence s1,6 = 10 since we get a 2-component spanning forest by deleting
one edge from each of the three paths, and conversely. Since the vertices v1, v6 are
adjacent, we must join them by a path of length k ≥ 2 to construct a Γk without
multiple edges. Thus for each k ≥ 2, we get a graph Γk with k + 6 vertices and

s(Γk) = 17k + 10.

Turning this around, we see that if n ≡ 10 (mod 17) and n ≥ 2 · 17 + 10 = 44, then
the graph Γ(n−10)/17 has (n−10)/17+6 = n/17+92/17 vertices and s(Γ(n−10)/17) = n.
The other cases are similar, the resulting values for B1(d) and B2(d) are smaller than
those for C17, largely because θ(1, 2, 5) has fewer vertices.

Let B1 = maxdB1(d) and B2 = maxdB2(d). If one accepts the omitted calcula-
tions and accepts that the maxima are attained for the (C17, j = 8) and (C17, j = 1)
families above, respectively, then we have proven the following theorem.

Theorem 3.1. For all n > 72, we have α(n) ≤ n/17 + 256/17.

4 The general construction

It is hopefully clear that the construction of the previous section is just a specific case
of what should be a fairly powerful construction. Let us introduce some notation to
help us access this power.

Suppose we have fixed a triple (G, u, v) of a graph G and two (possibly equal)
vertices u, v of G. Recall that if u = v, we set su,u(G) = 0. Let G have s(G) = r, and
su,v(G) ≡ d (mod r). Then we can define the graph Γk by joining u to v by a path
of length k. The graphs Γk will all have s(Γk) ≡ d (mod r) and since we only have
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a lower bound on k they will cover all sufficiently large values in this congruence
class. Let kmin be the smallest allowed value of k. Then Γk has |V (G)| + k − 1
vertices and s(Γk) = kr+ su,v(G) ≡ d (mod r). To turn this around as we did in the
previous section, we define B1(G, u, v) = (kmin − 1)r + su,v(G). Since we have seen
that kmin − 1 = 2, 1, 0 depending on whether u = v, u, v are adjacent, or otherwise,
we can write this as

B1(G, u, v) =

⎧⎨
⎩

2r if u = v
r + su,v(G) if u, v are adjacent
su,v(G) if u, v are neither equal nor adjacent

.

(Note that as required all these values are congruent to dmodulo r.) If n ≡ d (mod r)
and n > B1(G, u, v), then the graph Γ(n−su,v(G))/r will have s(Γ(n−su,v(G))/r) = n and

n

r
+ |V (G)| − 1− su,v(G)

r

vertices. Let B2(G, u, v) = |V (G)| − 1 − su,v(G)/r be the constant term of this
expression.

Thus from the triple (G, u, v) and our basic construction, we can conclude that
for any n > B1(G, u, v) with n ≡ d (mod r), there is a graph Γ with n vertices and
s(Γ) = n.

Since a single triple gives all sufficiently large n in one congruence modulo r, we
obviously want to do exactly what we did in the previous section and assemble a
collection of r triples (G, u, v) all with the same value s(G) = r and such that the
numbers su,v(G) collectively represent all the different congruence classes modulo r.
As in Section 3, our first and simplest examples will use just two different graphs
G and many pairs of vertices within these graphs. The later and more difficult
examples will use large collections of graphs. If we have such a collection we will write
(Gd, ud, vd) for the triple with sud,vd(Gd) ≡ d (mod r), and we will abuse notation
slightly and write B1(d) and B2(d) for the values of B1(Gd, ud, vd) and B2(Gd, ud, vd).
As in the previous section, we will also define B1 = maxdB1(d) and B2 = maxdB2(d).
We will call such a family G = {(Gd, ud, vd)} a representative family of triples (RFT)
modulo r with parameters B1 = B1(G) and B2(G). Then we have the following
theorem, which is arguably more of a restatement of the definition.

Theorem 4.1. If there is a RFT modulo r with parameters B1, B2, then for all
n > B1, we have α(n) ≤ n/r +B2.

5 Analysis of cycles and thetas

In the previous section, we saw that to any triple (G, u, v) we can assign the param-
eters s(G), su,v(G), B1(G, u, v) and B2(G, u, v), and that by assembling enough such
triples with the same value of s(G) we can prove the sorts of theorems we want to
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prove. In the section before that, we tried to indicate that cycles and theta graphs
were good examples to consider, but we omitted some of the key details. Now it is
time to pay the piper and compute these parameters for our fundamental examples.

Again we will only look at two kinds of graphs, cycles Cp of prime length p, and
theta graphs θ(a, b, c) where the number of spanning subtrees ab + bc + ca = p is
prime. For each of these cases, we will look at the range of values of su,v(G) as u, v
vary over distinct vertices of G. We will see that these values are either all (non-zero)
quadratic residues modulo p or all (non-zero) quadratic non-residues modulo p. The
zero congruence class in an RFT is always provided by the degenerate case (G, u, u),
so we can ignore it. Therefore as long as both cases occur, we will have a RFT
modulo p and hence a linear upper bound on α with slope 1/p.

Suppose G = Cp is a cycle of prime length p. If we choose two vertices u, v on
this cycle j apart, then Cp/(u = v) will be a wedge of a cycle of length j and a cycle
of length p − j and therefore su,v(Cp) = j(p − j). Thus we see that the values of
−su,v(Cp) (mod p) are exactly the quadratic residues modulo p. Hence the values of
su,v(Cp) are all quadratic residues if p ≡ 1 (mod 4) and all quadratic non-residues if
p ≡ 3 (mod 4).

Next consider B1(G, u, v) for this family. For j = 1 (and only in this case) we are
choosing adjacent vertices and the construction above applies for k > 1, hence for
n > p + (p− 1) = 2p− 1. For all other j, we need n > su,v(Cp) = j(p− j), and the
lower bound is maximized for j = (p ± 1)/2 when it equals (p2 − 1)/4. For p > 7,
which is the only case where our results will apply, this means that B1 = (p2 − 1)/4.
Since B2 is the maximum of |V (G)| − 1 − su,v(G)/p and su,v(G) is minimized for
j = 1, we have

B2 = p− 1− (p− 1)/p = (p− 1)2/p.

Suppose G = θ(a, b, c) where s(G) = ab + bc + ca = p is a prime. View G as
being built from three paths (of lengths a, b, and c) with vertices (xi)

a
i=0, (yi)

b
i=0 and

(zi)
c
i=0 by identifying x0 = y0 = z0 and xa = yb = zc. Suppose we choose u = xi

and v = yj. Then identifying u and v will produce a multigraph with three vertices
X = x0 = y0 = z0, Y = xa = yb = zc, and Z = u = v where X and Y are joined by
a path of length c, X and Z are joined by paths of length i and j, and Y and Z are
joined by paths of length a− i and b− j. Hence we compute

su,v(θ(a, b, c)) = c(i+ j)(a+ b− i− j) + ij(a + b− i− j)

+ (i+ j)(a− i)(b− j)

= (i+ j)(ab+ bc + ca)− j2a− i2b− (i+ j)2c.

Arguably, the argument above breaks down if i = 0, a or j = 0, b. One can either
convince oneself that it does apply (if we interpret a path of length 0 as meaning we
have identified the endpoints) or one can directly compute su,v in these cases (the
resulting graphs are wedges of a theta and a cycle) and check that the formula is
still correct.

There is another case where u, v lie on the same path of the theta, but it is easy
to see that in this case G/(u = v) is also a wedge of a cycle and a theta and hence
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the values of su,v produced are the same as those produced by the degenerate case
above. Hence we will ignore this possibility.

Note that the formula above for su,v(G) gives

−(a + b)su,v(θ(a, b, c)) ≡ (ja− ib)2 (mod p)

and since (b+ c)(a+ c) ≡ c2 (mod p)

−(a+ b)(b+ c)(c+ a)su,v(θ(a, b, c)) ≡ (c(ib− ja))2 (mod p).

Thus as in the case of a cycle all the values of su,v(G) are either quadratic residues
modulo p or all the values are quadratic non-residues modulo p. Further as the
following lemma shows we get all such values.

Lemma 5.1. Suppose ab + bc + ca = p is a prime. Then every congruence class
modulo p can be written in (at least) one of the following forms:

1. c(ib− ja) for 0 ≤ i ≤ a and 0 ≤ j ≤ b,

2. a(ic− jb) for 0 ≤ i ≤ b and 0 ≤ j ≤ c, or

3. b(ia− jc) for 0 ≤ i ≤ c and 0 ≤ j ≤ a.

Proof. Consider the standard triangular lattice in the plane. For ease of identifying
points on this lattice, we will think of the plane as the complex plane and we will
identify the lattice points with the Eisenstein lattice Z[ω], where ω is a primitive cube
root of unity. Starting at the origin and moving along the positive real axis draw
an equiangular hexagon with side lengths read cyclically a, b, c, a, b, c by turning 120
degrees counterclockwise at each angle. Label the vertices inside and on this hexagon
by numbers modulo p by adding bc if we move by +1, ab if we move by +ω and ca
if we move by +ω2. Since 1 + ω + ω2 = 0 is the minimal polynomial of ω and
ab+ bc + ca ≡ 0 (mod p), we can unequivocably label all vertices in this way.

Decompose this hexagon into three 60−120 degree parallelograms as follows. Cut
the perimeter at the three points obtained by starting at the origin and taking every
other vertex. Explicitly, these are the points with coordinates 0, a−bω2, and cω−bω2.
Note that all three of these vertices are labelled 0 in our scheme. This divides the
perimeter of the hexagon into three pieces which (read clockwise) have side lengths
(a, b), (b, c), and (c, a) with a 120 angle between the two sides. Extending each pair
to a parallelogram gives the desired decomposition. Points in the first parallelogram
have coordinates i− jω2 for 0 ≤ i ≤ a and 0 ≤ j ≤ b and hence are labelled by the
numbers ibc − jca = c(ib − ja). Thus they give exactly case (1) of the statement.
Since all three cutting vertices have label 0, the other two parallelograms differ by
just a cyclic rotation of the parameters a, b, c. Hence case (2) is the values given by
the second parallelogram, and case (3) the third. Thus the labels assigned within
the hexagon are exactly the aggregate of the numbers of the three forms given.

The values assigned to the vertices of this hexagon alternate between 0 and abc
(mod p), so if we translate the hexagon taking any side to the opposite side, the values
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will agree. Iterating this we tile the entire plane with translates of the hexagon with
each copy having the same values assigned. We see that from any lattice point steps
in the three directions add ab, bc, or ca modulo p and therefore any value of the form
bcx+ aby+ caz (mod p) for integer x, y, z occurs. Since a, b, c are pairwise relatively
prime, this implies every value modulo p occurs.

Next consider the values of B1 and B2 for this collection. The required maxima
and minima will depend on the relative sizes of a, b, c so assume without loss of
generality that a ≤ b ≤ c. If i = 0 and j = 1 (and up to symmetry only in this
case), we are choosing adjacent vertices and taking the most extreme case, we need
n > (p− a− b) + p = 2p− a− b. For all other i, j, we need only n > su,v(θ(a, b, c)).
By convexity, this lower bound is maximized when u, v are on the two longest paths
and i and j as close to b/2 and c/2 as possible (given that they must be integers).
Ignoring the integrality condition and hence settling for just an upper bound (that
is, just plugging in i = b/2 and j = c/2 and simplifying), we find

B1 ≤ max(2p− a− b, (b+ c)p/4).

If (a, b, c) �= (1, 2, 3) (and in this exceptional case both C11 and θ(1, 2, 3) give values
of su,v that are non-residues modulo 11 so the theorem stated below will not apply
anyway), then we can replace this by the easier upper bound

B1 ≤ (a + b+ c)p/4.

For B2 using the crudest lower bound su,v ≥ 0, we get

B2 ≤ a + b+ c− 2.

Summarizing, we have seen that if G is either a cycle or a theta graph and
s(G) = p is prime, then the values of su,v(G) as u, v vary over pairs of distinct
vertices of G will either be every quadratic residue or non-residue modulo p. As long
as we can find two choices of G, one of which gives the residues and the other the
non-residues, we will have built an RFT modulo p. The simplest case of this is the
following theorem.

Theorem 5.2. Suppose the prime p can be written as p = ab + bc + ca for positive
integers a, b, c at most one of which is 1 and suppose a+ b is a quadratic non-residue

modulo p. Then for every n > (p2 − 1)/4, we have α(n) ≤ n+(p−1)2

p
.

Proof. Since (a+c)(b+c) ≡ c2 (mod p), we see that if a+b is a quadratic non-residue
modulo p, then so is (a+ b)(b+ c)(c+a) (and so are a+ c and b+ c). Since −su,v(Cp)
and −(a + b)(b + c)(s + a)su,v(θ(a, b, c)) are quadratic residues modulo p, it follows
that one of su,v(Cp) and su,v(θ(a, b, c)) gives quadratic residues modulo p and the
other gives non-residues. Hence the graphs Cp and θ(a, b, c) and various choices of
vertices u, v provide an RFT modulo p. For the 0 class, we use θ(a, b, c) with u = v
which gives B1 = 2p and B2 = a+ b+ c− 2. Since the hypotheses force p ≥ 17 and
p > a+ b+ c, the maxima for B1 and B2 both come from the cycle of length p.
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Corollary 5.2.1. If p > 5 is a prime congruent to 5 modulo 12, then the above
theorem applies.

Proof. Write p = 3m + 2 and note that s(θ(1, 2, m)) = p and since p is 1 modulo 4
quadratic reciprocity shows that 1 + 2 = 3 is a quadratic nonresidue modulo p.

Either of these last two results generalizes Section 3 (and fills in the missing details
in that section), and shows that we can give completely elementary proofs of upper
bounds of the form α(n) ≤ n/p + O(1) for a sequence of primes p. Going further
seems to require some fairly deep number theory. For example, from the (relatively)
elementary fact that there are infinitely many primes congruent to 5 modulo 12 we
get the following.

Corollary 5.2.2. α(n) = o(n).

There is a weak version of Bertrand’s postulate for primes congruent to 5 modulo
12: for all sufficiently large x we can choose a prime p congruent to 5 modulo 12
with x < p < 2x. (One proof of this, albeit using some serious machinery, is to
invoke Dirichlet’s theorem, which in its full form says that the primes congruent to 5
modulo 12 have Dirichlet density 1

4
. Positive Dirichlet density implies this result and

much stronger ones. Still this claim feels more elementary than Dirichlet.) Choosing
a prime p congruent to 5 modulo 12 with

√
n < p < 2

√
n, Theorem 5.2 gives

α(n) <
n

p
+ p.

Since the right-hand side is an increasing function of p for p >
√
n, we get the

following result.

Corollary 5.2.3. For all sufficiently large n, we have α(n) < 5/2 · n1/2.

One could of course replace the constant by any value greater than 2 by only
slightly modifying this discussion.

6 Assembling chains

Now we come to one of the really powerful tricks in the current paper. Suppose we
RFTs G = {(Gd, ud, vd)} modulo r and G ′ = {(G′

d, u
′
d, v

′
d)} modulo r′ for relatively

prime numbers r and r′. Look at what happens if we form the rr′ triples (Gd ∨
G′

d′ , vd, v
′
d′), where the wedge Gd ∨G′

d′ is formed by identifying ud and u′
d′ . To avoid

excessive subscripts, we will drop them, relying on the reader to understand that all
unprimed objects correspond to a fixed choice of d and similarly for primed objects
and d′. These graphs all have s(G ∨ G′) = rr′. If we have any two component
spanning forest of G∨G′ with v and v′ in different components, then exactly one of
v and v′ will be in the same component as the wedge vertex u = u′. Thus we see
that

sv,v′(G ∨G′) = rsu′,v′(G
′) + r′su,v(G).
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Since r and r′ were assumed to be relatively prime, and we assumed that our triples
were chosen so that su,v(G) and su′,v′(G

′) cover every congruence class modulo r and
r′, respectively, it follows from the Chinese remainder theorem that sv,v′(G ∨ G′)
covers every congruence class modulo rr′. Thus we have produced an RFT modulo
rr′ which we will denote by G ∨ G ′.

Now let us look at how the parameters B1 and B2 for this new collection relate
to the analogous parameters for the two components. Write the formula above as

sv,v′(G ∨G′)
rr′

=
su,v(G)

r
+

su′,v′(G
′)

r′
.

Recalling that B2(G, u, v) = |V (G)| − 1+ su,v(G)

s(G)
, and using the fact that “number of

vertices minus 1” is additive over taking wedges, it follows that B2(G ∨ G′, v, v′) =
B2(G, u, v)+B2(G

′, u′, v′). That is, B2 is additive over this construction. Recall that
B1(G,u,v)

s(G)
= (kmin − 1) + su,v(G)

s(G)
. The only way v and v′ can be equal or adjacent in

G∨G′ is if either u = v or u′ = v′. It follows that kmin − 1 is subadditive, and hence

B1(G ∨G′, v, v′)
rr′

≤ B1(G, u, v)

r
+

B1(G
′, u′, v′)
r′

.

That is, B1/r is subadditive over this construction. (Since the examples of Section
5 all have the maximum for B1 attained in the case where u, v are not adjacent, it
will follow that the maximum over triples of B1/r is actually additive for all our
examples.)

Thus we have proven the following theorem.

Theorem 6.1. Suppose G and G ′ are RFTs modulo relatively prime numbers r and
r′, respectively. Then G∨G ′ is an RFT modulo rr′ and the parameters of these RFTs
are related by

B1(G ∨ G ′)
rr′

≤ B1(G)
r

+
B1(G ′)

r′

and
B2(G ∨ G ′) = B2(G) +B2(G ′).

Iterating this will allow us to build up linear upper bounds where B2 and B1/r
are very small compared to r. This and a little analysis and number theory will let
us prove much better upper bounds on α. But before we begin this, let me digress
slightly.

Since we are proving an upper bound on α(n), we must be at least implicitly
constructing a family of graphs Γn with s(Γn) = n. One weakness to the way in
which we are presenting the proof is that this family is perhaps not as explicit as one
would like. However unwinding the discussion above gives a fairly nice description
of the family.

I think of the family as “necklaces”, which consist of a cyclic sequence of “beads”.
Each bead is a graph Gi together with two distinguished vertices ui and vi and the
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necklace Γ is assembled by taking the disjoint union of the Gi and identifying vi
with ui+1, interpreted cyclically. With one exception the beads are either cycles or
theta graphs. The one exception, which can be thought of as a “clasp”, is simply
a path with its endpoints as the distinguished vertices. If we index the Gi with
0, 1, . . . , m − 1 modulo m so that G0 is the clasp and is a path of length k, then
any spanning tree must either break the clasp (which can be done in k ways, each
leading to s(G1) · · · s(Gm−1) spanning subtrees) or break one of the beads into a two
component forest. If it breaks bead i into two components (which can be done in
sui,vi(Gi) ways), then there are s(G1) · · · s(Gi−1)s(Gi+1) · · · s(Gm−1) ways to choose
subtrees of the remaining beads. Thus we to see that

s(Γ) = s(G1) · · · s(Gm−1)

(
k +

su1,v1(G1)

s(G1)
+ · · ·+ sum−1,vm−1(Gm−1)

s(Gm−1)

)
.

The term k ensures that in some sense we only need to build examples modulo the
product s(G1) · · · s(Gm−1), and the key observation in this paper is that with a little
cleverness we can arrange the other terms to cover all congruence classes. Note
that this also means that an RFT constructed using wedges will involve a very large
number of different graphs, unlike our starting examples which involved only two
distinct graphs and many pairs of vertices.

Now look what happens when we apply Theorem 6.1 to the examples from Corol-
lary 5.2.1. Fix a a set T of primes p > 5 congruent to 5 modulo 12. For any prime
p ∈ T we have an RFT with B1/p < p/4 and B2 < p. Let PT and ST denote the
product and sum of the elements of T . Then applying Theorem 6.1 to all these RFTs
will give an RFT modulo PT with B1/PT < ST/4 and B2 < ST . Thus Theorem 4.1
gives the following result.

Theorem 6.2. For any set T of primes p > 5 congruent to 5 modulo 12 and any
n > STPT/4, we have α(n) ≤ n/PT + ST .

Thus we have a family of linear upper bounds where B1/r and B2, which both
grow like ST , are much smaller than r = PT . This and a fair amount of number
theorey implies a very strong bound on α(n).

Corollary 6.2.1. α(n) = O((logn)2/(log logn)).

Proof. Call a prime q which is greater than 5 but congruent to 5 modulo 12 “good”.
Let πg(x) be the number of good primes less than or equal to x. Then Dirichlet’s
theorem on primes in arithmetic progressions, in its full power, says that πg(x) ∼

x
4 lnx

, that is, good primes have Dirichlet density 1/4. Standard manipulations of this
asymptotic result, give

∏
q<x

q = ex/4(1+o(1)),
∑
q<x

q =
x2

8 log x
(1 + o(1)),

where the product and sum run over good primes smaller than x. Therefore if we take
T to be all the good primes up to about 4 logX, we will have PTST ≈ X. Turning
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this around, we define m to be the least value such that for T the first m good
primes, we have PTST > 4n. Then m ∼ logn

log logn
and hence the largest of these primes

is qm ∼ 4 logn. (Note that if we fixed a hard cut-off of 4 logX for our good primes,
then because the error term in our estimate for PT is in the exponent, it would be
hard to get a precise asymptotic for PTST . However estimating m involves taking a
logarithm, so we can get a precise asymptotic for m.) Now we give up exactly one
of these primes to produce T ′. Specifically, we give up the smallest prime such that
after giving it up we have PT ′ST ′ < 4n.

Since the ratio between consecutive good primes is bounded, there is a constant c
so that PT ′ST ′ > 4n/c. Roughly c is the bound by the ratio since that is the amount
P decreases by when we replace the removed prime by the next smaller. The only
catch is that S will also decrease, but much more slightly. Since S decreases by at
most a factor of 2 (a much smaller fudge factor would work, but we will just use 2),
we can take c to be twice the maximum ratio. Therefore

α(n) ≤ n/PT ′ + ST ′ < (c/4 + 1)ST ′ < (c/4 + 1)(m− 1)qm = O

(
(log n)2

log log n

)
.

7 A technical improvement

Corollary 6.2.1, which gives an upper bound that matches the conjectured upper
bound (and the hard lower bound) to within a power, could have been taken as the
main theorem of this paper. However with some fairly serious number theory we can
push this bound a little bit further.

The basic examples we used to prove Corollary 6.2.1 came from a family of primes
modulo which we built RFTs with B1/p and B2 both growing like p. This relatively
fast growth rate is an artefact of the fact that both of the graphs we used had
O(p) vertices. We can do better, though it will require more sophistication. Since
ab+ bc+ ca = p, the best we can hope for is to choose two graphs θ(a, b, c) both with
O(

√
p) vertices, and we will see below that we can do this. Notice that this bound

holds even more generally. Suppose we build an RFT modulo r which uses only a
bounded number of basic graphs, say K of them, but many pairs of points u, v on
these graphs. Since our RFT must cover all r congruence classes modulo r, at least
one of these basic graphs must yield at least r/K pairs u, v. Hence at least one of
the graphs must have at least

√
2r/K vertices. Thus B1/r and B2 must both be

of size at least O(r1/2). Thus the result of this section cannot be improved without
some further idea.

First we turn to the problem of finding an RFT modulo a prime p with B1/p and
B2 both of size

√
p. There are many ways to do this, but we will focus on just one

very specific construction. Note that

s(θ(a + 2b, 2a+ 3b, 3a+ b)) = s(θ(a + 3b, 2a+ b, 3a+ 2b)) = 11a2 + 25ab+ 11b2.
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Assume p = 11a2 + 25ab+ 11b2 is a prime, and further assume that p ≡ 1 (mod 4).

Let
(

x
y

)
denote the Jacobi symbol. Since

p = (4a+ 3b)

(
31

9
a+

11

3
b

)
− 25a2

9
= (4a+ 5b)

(
81

25
a +

11

5
b

)
− 49a2

25
,

quadratic reciprocity gives (assuming without loss of generality that b is odd)

(
(4a+ 3b)(4a+ 5b)

p

)
=

(
p

4a+ 3b

)(
p

4a+ 5b

)

=

(−25a2/9

4a+ 3b

)(−49a2/25

4a+ 5b

)

=

( −1

4a+ 3b

)( −1

4a+ 5b

)
= −1.

Hence one of 4a + 3b = (a + 2b) + (3a + b) and 4a + 5b = (a + 3b) + (3a + 2b) is
a quadratic residue modulo p and the other is not. Thus these two theta graphs
represent the two different cases. Thus the above results give the following.

Theorem 7.1. Suppose a and b are positive integers such that p = 11a2+25ab+11b2

is a prime and is congruent to 1 modulo 4. Then for n > 3(a + b)p/2, we have
α(n) ≤ n

p
+ 6a+ 6b− 2.

As desired, this is an improvement over Theorem 5.2 in the sense that B1/p and
B2 are both of order O(

√
p). What is not obvious is that there are infinitely many

such primes and that they have positive Dirichlet density. However, this follows from
some (moderately heavy) algebraic number theory. For this the author is heavily
indebted to two mathoverflow posts [6] and [7] (with a lovely answer by Brunault)
and additional feedback given by one of the referees.

Theorem 7.2. The set of primes p which can be written as p = 11a2+25ab+11b2 for
positive integers a, b and are congruent to 1 modulo 4 has positive Dirichlet density.

Proof. First, we drop the positivity condition on a, b and just look for primes of the
form 11a2+25ab+11b2. The discriminant of this quadratic is 141 = 3 ·47 and we can
write 11a2 +25ab+11b2 = 11(a+ b)2 +3ab = 11(a− b)2 +47ab. Thus we see after a
little quadratic reciprocity that for a prime to be of this form it must be a quadratic
nonresidue modulo both 3 and 47. Conversely, if p is such a prime, then 141 is a
square modulo p and hence the prime ideal (p) splits in the number ring of Q[

√
141].

But this number ring has class number 1, hence is a unique factorization domain.
Thus this splitting means that we have integers a and b such that 11a2+25ab+11b2 =
p. (Specifically, the splitting means that there is an element of the number ring of
norm ±p, say c + d

√
141, where c + d and c − d are both integers. Looking at the

congruence modulo 3 implies that the norm must be −p so c2 − 141d2 = −p. Then
setting a = 59d−5c and b = 3c−35d, which are both integers, gives c = (35a+59b)/2
and d = (3a+ 5b)/2 and c2 − 141d2 = −p = −(11a2 + 25ab+ 11b2).) The pair (a, b)
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is not unique since we can multiply c + d
√
141 by any power of the fundamental

unit α = 95 + 8
√
141 and get another solution. However by Hecke equidistribution

(see [2], Theorem 6 of Chapter XV), the logarithm log |c + d
√
141| modulo logα

viewed as an element of R/(logα)Z is equidistributed. The condition that a and b
are positive translates into an inequality 35

3
d < c < 59

5
d, and this in turn translates

into log |c + d
√
141| lying in some open interval in R/(logα)Z. Thus a non-zero

fraction of all such primes will have both a and b positive, and hence will be of the
desired form.

The argument given in the previous section using Corollary 5.2.1 and Dirchlet’s
theorem to conclude positive Dirichlet density now applies mutatis mutandis to the
primes from Theorem 7.1 using Theorem 7.2 (hence Hecke equidistribution and the
prime number theorem) to get positive Dirichlet density. Specifically, we call a prime
of the required type “better”. For any set T of better primes, we define PT to be
their product and

S ′
T =

∑
q∈T

√
q.

Since 9(a + b)2 < p, the basic examples have B1/p <
√
p/2 and B2 < 2

√
p, so

Theorem 4.1 implies

Theorem 7.3. For any set T of primes of the form 11a2+25ab+11b2 and congruent
to 1 modulo 4 and any n > S ′

TPT/2, we have α(n) ≤ n/PT + 2S ′
T .

From this theorem we argue almost verbatim the same way we did in the proof
of Corollary 6.2.1. Letting πb(x) be the number of better primes up to and including
x, Theorem 7.2 says πb(x) ∼ x

K lnx
for some constant K. Again, this implies

∏
q<x

q = ex/K(1+o(1)),
∑
q<x

q1/2 =
x3/2

3/2 ·K log x
(1 + o(1)),

where the product and sum run over better primes smaller than x. Therefore if we
take T to be all the better primes up to about K logX , we will have PTS

′
T ≈ X.

Turning this around, we define m to be the least value such that for T the first m
better primes, we have PTS

′
T > 2n. Then m ∼ logn

log logn
and hence the largest of these

primes is qm ∼ K logn. Now we give up exactly one of these primes to produce
T ′. Specifically, we give up the smallest prime such that after giving it up we have
PT ′S ′

T ′ < 2n (and hence Theorem 7.3 applies).

Since the ratio between consecutive better primes is bounded, if we let c be twice
this maximum ratio, then PT ′S ′

T ′ > 2n/c. Therefore

α(n) ≤ n/PT ′ + 2S ′
T ′ < (c/2 + 2)S ′

T ′ < (c/2 + 2)(m− 1)
√
qm = O

(
(logn)3/2

log log n

)
.

Thus we can end on our strongest result:

Corollary 7.3.1. α(n) = O((logn)3/2/(log log n)).
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