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Abstract

The purpose of this paper is to introduce a model to study structures
which are widely present in public transportation networks. We show
that, through hypergraphs, one can describe these structures and inves-
tigate the relation between their spectra. To this aim, we extend the
structure of (m, k)-stars on graphs to hypergraphs: the (m, k)-hyperstars
on hypergraphs. Also, by giving suitable conditions on the hyperedge
weights, we prove the existence of matrix eigenvalues of computable val-
ues and multiplicities, where the matrices considered are Laplacian, ad-
jacency and transition matrices. By considering separately the case of
generic hypergraphs and uniform hypergraphs, we prove that two kinds
of vertex set reductions on hypergraphs with (m, k)-hyperstars are feasi-
ble, keeping the same eigenvalues with reduced multiplicity. Finally, some
useful eigenvector properties are derived up to a product with a suitable
matrix, and we relate these results to Fiedler spectral partitioning on the
hypergraph.

1 Introduction

In the present work we focus on structures which are typically present in public
transportation networks. Many real social, chemical and biological relations can be
represented as hypergraphs [10, 17, 19, 21, 23, 25, 24, 27]. In fact, hypergraphs are
an essential tool for studying objects that cannot be characterized by simple binary
relationships. In [17], for example, the authors focus on chemical reactions which
involve multiple atoms simultaneously. In order to study relationships among mul-
tiple objects, a representation that best describes the properties of the structures
is essential, without losing information on the M -relations (where M = 2 in sim-
ple graphs) and at the same time without necessarily assigning strict roles to the
entities. For this purpose, hypergraphs turn out to be a robust tool. Specifically,
for transportation networks, defining each public transport line through its stations
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allows us to have a complete picture of the service provided by the city. How can we
modify a public transportation network while leaving the service unchanged? — one
has to keep this question in mind when aiming to either add a station, remove a
station, change stations of a line or eliminate the line itself.

In this context, the Laplacian formalism, as well as its spectrum, can be used to
find many useful properties of the hypergraph. In particular, studying isospectral
hypergraphs means maintaining some properties of the structure, such as the number
of connected components, the bipartiteness, the size of the graph, etc. For more
details, we refer the reader to [6, 7, 13, 17, 18, 28, 29]. In this framework, the aim of
this work is to study spectral properties of hypergraphs. A special focus is given to
uniform hypergraphs, that have a large use in more applicative areas, such as biology
and social sciences [20, 30, 31]; and to hyperstars, that represent structures which
are widely present in transportation networks. Together with the spectral properties
of hypergraphs we shall also extend some results on Fiedler’s spectral partitioning,
in particular we shall extend results obtained in the previous work to the case of
hypergraphs [2].

The paper is organized as follows: we begin by stating the terminology used
and by giving some preliminary remarks (Section 2); in Section 3 we extend the
results obtained in [2] by generalizing the class of (m, k)-star on graphs to the (m, k)-
hyperstar on hypergraphs. In Section 4 we define two reduced (m, k)-hyperstars in
hypergraphs classes: in the first case the reduction consists in removing some vertices,
but keeping the hyperedges (which will simply be reduced by the number of vertices
removed); in the second case we remove some vertices together with the hyperedges
that contain them. In both cases we show that it is possible to keep the same
spectrum of the initial hypergraph. Finally, in Section 5 we draw some conclusions.

2 Notations and preliminary remarks

We consider an undirected weighted connected hypergraph H := (V , E , w), where
the N vertices in V are joined by the M hyperedges in E , with weight function:
w : E → R+. Let the rank and the anti-rank of H be the maximum and the minimum
cardinality of the edges in the hypergraph, respectively. If all hyperedges have the
same cardinality p (i.e. if the rank and the anti-rank of H are equal to p), the
hypergraph is said to be p-uniform, [3].

Exactly as for simple graphs, a hypergraph with N vertices and M hyperedges
may be defined by the incidence matrix (Hve)v∈V,e∈E , i.e. by the matrix of dimension
N×M in which the columns correspond to the hyperedges while the rows correspond
to the vertices of the hypergraph, and where

Hve =

{
w(e) if vertex v is contained in edge e,(v ∈ e)
0 otherwise,

where v ∈ V and e ∈ E .
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The degree of the vertex v is calculated as

d(v) :=
∑
e∈E

Hve =
∑

e∈E,v∈e

w(e).

We define D ∈ SymN(R+
0 ) as the diagonal matrix such that each diagonal entry

corresponds to the vertex degree.

The adjacency matrix A of hypergraph H is defined as

A := H1/2(HT )1/2 −D,

where H1/2 is such that H
1/2
ve = w(e)1/2 if v ∈ e.

In particular, if we denote the vertices by v1, . . . , vN , A is such that Aii = 0 for
each i ∈ 1, . . . , N , while

Aij =
∑

e∈E:vi,vj∈e

w(e), if i 6= j.

Therefore, we can define the standard hypergraph Laplacian and the normalized
hypergraph Laplacian matrices for hypergraph as follows

L := DA − A,
L := I −D−1/2A AD

−1/2
A ,

where
DA = diag(H1/2(HT )1/21)−D =

∑
e∈E:vi,vj∈e

w(e)|e− 1|

and 1 is the vector consisting of all ones; [33]. The hypergraph is connected; therefore

there are no isolated vertices, and the matrix DA (and D
−1/2
A ) is invertible.

Remark 2.1. The Laplacians L and L are zero-row sum matrices.

Whenever we refer to the k-th eigenvalue of a Laplacian matrix (standard or
normalized), we refer to the k-th eigenvalue according to a non-decreasing order.

Remark 2.2. The matrices A, L and L are symmetric. Therefore the algebraic
multiplicity of an eigenvalue equals its geometric multiplicity.

Furthermore, we observe that by defining the transition matrix T as T := D−1A A,
we can link the spectrum of T and the spectrum of L.

First of all, we observe that T is similar to Ã := D
−1/2
A AD

−1/2
A via the invertible

matrix D
1/2
A :

D
−1/2
A ÃD

1/2
A = D

−1/2
A D

−1/2
A AD

−1/2
A D

1/2
A = D−1A A = T.

Therefore σ(T ) = σ(Ã), where σ(·) is the spectrum of the considered matrix, and it
is easy to prove that the following statements are equivalent.
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S.1 v is an eigenvector of Ã with eigenvalue λ.

S.2 vTD
1/2
A is a left eigenvector of T with the eigenvalue λ.

S.3 D
−1/2
A v is a right eigenvector of T with eigenvalue λ.

Thus, linking the spectrum of T and the spectrum of L is equivalent to linking the
spectrum of Ã and the spectrum of L, and we can easily prove that the following
statments are equivalent.

S.1 v is an eigenvector of Ã with eigenvalue λ.

S.4 v is an eigenvector of L with the eigenvalue 1− λ.

For the classical results on Laplacian matrices, one may refer to [8, 9, 26, 1, 22].
For results on Laplacian matrices associated to hypergraphs, reference can be made
to the book by Bretto [4].

Regarding the spectral partitioning of hypergraphs we refer to Zhou et al. [32],
who generalized the methodology of spectral partitioning on undirected graphs to
hypergraphs. In particular, we recall the Fiedler partitioning as given from the
entries’ signs of the second eigenvector of its Laplacian matrix [11, 12].

3 Eigenvalues multiplicity in hypergraph matrices

In this section, we define the (m, k)-hyperstar, generalizing the (m, k)-star from [2]
which generalizes the star from [15]. In the present section, we define the (m, k)-
hyperstar, which generalizes the (m, k)-star [2], and which, in turn, generalizes the
star [15]. Together with the definitions, we also extend results obtained on the (m, k)-
star: in particular, we extend Theorem (3.1) in [2] for hypergraphs. By defining
weighted (m, k)-stars from hypergraphs, namely weighted (m, k)-hyperstars, we are
able to generalize the results obtained on multiple eigenvalues of Laplacian matrices,
transition and adjacency matrices also for hypergraphs.

3.1 (m, k)-hyperstar: eigenvalues multiplicity

We recall that an (m, k)-star is a graph G = (V , E , w) whose vertex set V can be
written as the union of two disjoint subsets V1 and V2 of cardinalities m and k
respectively, such that the vertices in V1 have no connections among them, and each
of these vertices is connected with all the vertices in V2: i.e.

∀i ∈ V1,∀j ∈ V2, (i, j) ∈ ;E

∀i, j ∈ V1, (i, j) /∈ E .

We denote an (m, k)-star graph with partitions of cardinality |V1| = m and
|V2| = k by Sm,k.
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(a) An HS2,3 on a hypergraph H (b) Incidence matrix

Figure 1: In this example N = 7 and M = 6, V1 = {1, 2} and V2 = {3, 4, 5}. The
degree and weight of the HS2,3 are deg(HS2,3) = 1 and w(HS3,4) = w3 +w4 +w5 =
1 + 3 + 2 = 6, respectively.

Remark 3.1. An (m, k)-star graph is not uniquely determined by m and k.

We define (m, k)-hyperstar and generalized (m, k)-hyperstar as follows:

Definition 3.1 ((m, k)-hyperstar: HSm,k ). An (m, k)-hyperstar is a hypergraph
H = (V , E , w) whose vertex set V can be written as the union of two disjoint subsets
V1 and V2, V = V1∪̇V2, of cardinalities m and k respectively, such that ∃P ∈ P(V2)
with

•
⋃

ẽ∈P ẽ = V2;

• E = {e | e = v1 ∪ ẽ, ẽ ∈ P, v1 ∈ V1};

• w(ẽ ∪ vi) = w(ẽ ∪ vj),∀ẽ ∈ P, vi, vj ∈ V1.

By HSm,k we denote an (m, k)-hyperstar of subsets V1 and V2 of cardinalities
|V1| = m and |V2| = k.

Definition 3.2 (Generalized (m, k)-hyperstar: GHSm,k). A generalized (m, k)-hyp-
erstar is a hypergraph H = (V , E , w) whose vertex set V can be written as the union
of two disjoint subsets V1 and V2, V = V1∪̇V2, of cardinalities m and k respectively,
and ∀v ∈ V1 there exists Pv ∈ P(V2) such that

•
⋃

ẽ∈Pv
ẽ = V2;

• E =
⋃

v∈V1{e | e = v ∪ ẽ, ẽ ∈ Pv};

• ∀u ∈ V2,
∑

u∈ẽ,
ẽ∈Pvi

w(ẽ ∪ vi) =
∑

u∈ẽ,
ẽ∈Pvj

w(ẽ ∪ vj), i∀vi, vj ∈ V1.
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By GHSm,k we denote a generalized (m, k)-hyperstar of subsets V1 and V2 of
cardinalities |V1| = m and |V2| = k.

Remark 3.2. An (m, k)-hyperstar is, trivially, a generalized (m, k)-hyperstar such
that Pvi = Pvj ,∀vi, vj ∈ V1. Therefore we shall consider generalized (m, k)-hyperstars
to prove the results.

Throughout this paper, we shall consider generalized (m, k)-hyperstars with
m, k ∈ N. When not otherwise specified, we shall denote GHSm,k simply by GHS.

We define a generalized (m, k)-hyperstar on a hypergraph H = (V , E , w) as the
generalized (m, k)-hyperstar of partitions V1, V2 ⊂ V such that only the vertices in
V2 can be joined to the rest of the hypergraph V \ (V1 ∪ V2): i.e.

(C.1) ∀v ∈ V1 ∃Pv ∈ P(V2) and Ē ⊂ E such that

•
⋃

ẽ∈Pv
ẽ = V2;

• Ē =
⋃

v∈V1{e | e = v ∪ ẽ, ẽ ∈ Pv};
• ∀u ∈ V2,

∑
u∈ẽ,
ẽ∈Pvi

w(ẽ ∪ vi) =
∑

u∈ẽ,
ẽ∈Pvj

w(ẽ ∪ vj), ∀vi, vj ∈ V1.

(C.2) ∀v1 ∈ V1, ∀v2 ∈ V , v1 6= v2, @e ∈ E \ Ē such that {v1, v2} ⊆ e.

If there exists a generalized (m, k)-hyperstar on the hypergraph H, then we say
that the hypergraph H has a generalized (m, k)-hyperstar.

An (m, k)-hyperstar and a generalized (m, k)-hyperstar on hypergraphs are rep-
resented in Figures 1 and 2, respectively.

By defining the concepts of degree and weight of a generalized (m, k)-hyperstar
we simplify the statement of the theorems on eigenvalues multiplicity.

Definition 3.3 (Degree of a generalized (m, k)-hyperstar: deg(GHSm,k)). The de-
gree of a generalized (m, k)-hyperstar is defined as follows.

deg(GHSm,k) := m− 1.

The degree of a set S of some GHS such that |S| = l is defined as the sum over each
generalized (mi, ki)-hyperstar degree, i ∈ {1, . . . , l}, i.e.

deg(S) :=
l∑

i=1

deg(GHSmi,ki).

Definition 3.4 (Weight of a generalized (m, k)-hyperstar: w(GHSm,k)). The weight
of a generalized (m, k)-hyperstar with vertex set V1 ∪ V2, edge set E and weight
function w, is defined as follows:

w(GHSm,k) :=
∑

v2∈V2,{v1,v2}⊂e∈E

w(e) for any v1 ∈ V1.
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(a) A GHS3,4 on a hypergraph H

(b) Incidence matrix

Figure 2: In this example N = 8 and M = 10, V1 = {1, 2, 3} and V2 = {4, 5, 6, 7}.
The degree and weight of the HS3,4 are deg(GHS3,4) = 2 and w(GHS3,4) = w4 +
w5 + w6 + w7 = 1 + 1 + 2 + 2 = 6, respectively.

Before stating the extension to generalized (m, k)-hyperstars of [2, Theorem 3.1],
we shall prove two useful lemmas. Given a hypergraph H = (V , E , w) associated with
the adjacency matrix A, denoting mA(λ) the algebraic multiplicity of the eigenvalue
λ in A (thanks to Remark 2.2, we can simply denote mA(λ) as the multiplicity of λ
for A), the following lemma holds.
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Lemma 3.5. Let GHS be a generalized (m, k)-hyperstar. Then

λ := 0 is an eigenvalue and mA(λ) ≥ deg(GHS).

Proof. Without loss of generality we consider only connected hypergraphs. In fact,
if a hypergraph is not connected the same result holds, since the generalized (m, k)-
hyperstar degree on the hypergraph is the sum of the generalized hyperstar degrees
of the connected components and the characteristic polynomial of A is the product
of the characteristic polynomials of the connected components.

Under a suitable permutation of the rows and columns of the weighted incidence
matrix H, we can label the vertices in V1 with the indices 1, . . . ,m, and the vertices
in V2 with the indices m+ 1, . . . ,m+ k.

Let v, u ∈ V , v 6= u. Then the entry v, u of the adjacency matrix is

Avu = Auv =
∑
e∈E

√
HveHue =

∑
e∈E,{v,u}⊆e

w(e).

From condition (C.2), if v ∈ V1 and u ∈ V2 (or u ∈ V1 and v ∈ V2), then
Avu = Auv =

∑
{u,v}⊂e∈E =: wu .

From condition (C.1), if v ∈ V1 and u ∈ V\V2 (or u ∈ V1 and v ∈ V\V2), then
Avu = Auv = 0.

Let v1(A), . . . , vm(A) be the rows corresponding to vertices in V1 = {1, . . . ,m};
then the adjacency matrix has the following form

A =



v1(A) v2(A) vm(A)

v1(A) 0 0 . . . 0 wvm+1 . . . wvm+k
0 . . . 0

v2(A) 0 0
. . .

...
... . . .

... 0 . . . 0
...

. . . . . . 0
... . . .

... 0 . . . 0
vm(A) 0 . . . 0 0 wvm+1 . . . wvm+k

0 . . . 0
wvm+1 . . . . . . wvm+1

... . . . . . .
...

wvm+k
. . . . . . wvm+k

0 . . . . . . 0
... . . . . . .

... A22

0 . . . . . . 0


where the block A22 is any (N −m)× (N −m) symmetric matrix with zero diagonal
and nonnegative elements. Because the matrix A has m rows (and m columns)
v1(A), . . . , vm(A) that are linearly dependent and such that v1(A) = · · · = vm(A), it
follows that m− 1 of these row vectors belong to the kernel of A. Hence

µ1 := 0, . . . , µm−1 := 0 are eigenvalues of A.
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Similarly, let L be the Laplacian matrix associated with the hypergraph H. De-
noting by mL(λ) the algebraic multiplicity of the eigenvalue λ in L, the following
lemma holds.

Lemma 3.6. Let GHS be a generalized (m, k)-hyperstar of weight w(GHS), then

λ := w(GHS) is an eigenvalue and mL(λ) ≥ deg(GHS).

Proof. Under a suitable permutation of the rows and columns of the weighted in-
cidence matrix H, we can label the vertices in V1 with the indices 1, . . . ,m, and
the vertices in V2 with the indices m + 1, . . . ,m + k. By Lemma 3.5, in the matrix
(−L + w(HS)IN) there are the linearly dependent vectors vi, i ∈ {1, . . . ,m}, and
hence m− 1 of these row vectors belong to ker(L− w(GHS)IN) and

∃µ1, . . . , µm−1 eigenvalues of L− w(GHS)IN such that µ1 = · · · = µm−1 = 0.

Let µi be one of these eigenvalues; then

0 = det((L− w(GHS)IN)− µiIN) = det(L− (w(GHS) + µi)IN)

so that λ := w(GHS) is an eigenvalue of L with multiplicity greater or equal to
deg(GHS).

We are now ready to enunciate the theorem which extends [2, Theorem 3.1] to
hypergraphs.

Theorem 3.7. Let

• r be the number of GHS in H with different weights, w1, . . . , wr, i.e. wi 6= wj

for each i 6= j, where i, j ∈ {1, . . . , r};

• Swi be the set defined as follows

Swi := {GHS ∈ H | w(GHS) = wi}, i ∈ {1, . . . , r}.

Then for any i ∈ {1, . . . , r},

λ := wi is an eigenvalue and mL(λ) ≥
∑

GHS∈Swi

deg(GHS).

Proof. By using the same arguments as in Lemma 3.6, we can trivially prove that
λ := wi is an eigenvalue and mL(λ) ≥ deg(GHS) for any GHS ∈ Swi . In fact, the
Lemma 3.6 is valid for any hyperstar in the hypergraph.
Let us now prove that mL(λ) ≥

∑
GHS∈Swi

deg(GHS). Let Ri be the number of

GHS ∈ Swi , and we assume that the first R1 indexes refer to the GHS in Sw1 ,
whereas the indexes R1 + 1, . . . , R1 + R2 refer to the GHS in Sw2 , and so on. We
focus on the Ri GHS in Swi . Then, from condition (C.2) and (C.1) it is easy to
prove that λ := 0 is an eigenvalue and mA(λ) ≥

∑
GHS∈Swi

deg(GHS) and therefore

λ := wi is an eigenvalue and mL(λ) ≥
∑

GHS∈Swi
deg(GHS).
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Some corollaries on the normalized Laplacian matrix L and transition matrix T
can be obtained by similar proofs.

Corollary 3.1. Let r be the number of GHS with different weights, w1, . . . , wr, i.e.
wi 6= wj for each i 6= j, where i, j ∈ {1, . . . , r}; Swi be the set defined as follows

Swi := {GHS ∈ H | w(GHS) = wi}, i ∈ {1, . . . , r};

then for any i ∈ {1, . . . , r},

λ := 1 is an eigenvalue and mL(λ) ≥
∑

GHS∈Swi

deg(GHS).

Corollary 3.2. Let r be the number of GHS with different weight, w1, . . . , wr, i.e.
wi 6= wj for each i 6= j, where i, j ∈ {1, . . . , r}; Swi be the set defined as follows

Swi := {GHS ∈ H | w(GHS) = wi}, i ∈ {1, . . . , r};

then for any i ∈ {1, . . . , r},

λ := 0 is an eigenvalue and mT (λ) ≥
∑

GHS∈Swi

deg(GHS).

4 Generalized (m, k)-hyperstar dimensional reduction

According to the previous results, we have defined a class of hypergraphs whose
Laplacian matrices have an eigenvalues spectrum with known multiplicities and val-
ues. Now, our aim is to simplify the study of such hypergraphs by collapsing these
vertices into a single vertex replacing the original hypergraph with a reduced hyper-
graph. For this purpose we have defined two ways of collapsing the vertices. In the
case of simple graphs these two modes are equivalent.

In Subsection 4.1 we define the generalized (m, k)-hyperstar q-reduction: this
reduction consists in removing some vertices and reducing the cardinality of the hy-
peredges that contain them. In the case when H is a p-uniform hypergraph, then
it is not guaranteed that the q-reduced hypergraph Hq is a p-uniform hypergraph
too. In Subsection 4.2 we define the generalized (m, k)-hyperstar q∗-reduction: this
reduction consists in removing some vertices together with the hyperedges that con-
tain them. In the case when the hypergraph H is a p-uniform hypergraph, then the
q∗-reduced hypergraph Hq∗ is a p-uniform hypergraph too.

After defining these two reduction classes of hypergraphs we will derive a spec-
trum correspondence between reduced and initial hypergraphs.
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4.1 Generalized (m, k)-hyperstar q-reduction

Definition 4.1 (Generalized (m, k)-hyperstar q-reduced: GHSq
m,k). Given q <

m, a generalized q-reduced (m, k)-hyperstar is obtained from a generalized (m, k)-
hyperstar with vertex sets V1,V2 by removing q of its vertices in V1.

In other words: let H be a generalized (m, k)-hyperstar (V1,V2, E , w). A GHSq
m,k

is defined for any choice {v1, . . . , vq} ⊂ V1 as the hypergraph

({V1\{v1, . . . , vq},V2}, Eq, w∣∣Eq),
where Eq := {e | e := ẽ\{v1, . . . , vq}, ẽ ∈ E}. Hence, the order (of the matrix) and
the degree of the GHSq

m,k are m+ k − q and m− q − 1, respectively.

Definition 4.2 (q-reduced hypergraph: Hq). A q-reduced hypergraphHq is obtained
from a hypergraph H := (V , E , w) with a generalized (m, k)-hyperstar (of vertex sets
V1,V2 ⊂ V) by removing q of the vertices in the set V1 of H and the set of hyperedges
becomes Eq := {e | e := ẽ\{v1, . . . , vq}, ẽ ∈ E}, where {v1, . . . , vq} are the removed
vertices. Then

Hq := (V\{v1, . . . , vq}, Eq, w∣∣Eq).
Remark 4.1. Whenever the hypergraph H is a p-uniform hypergraph, then it is not
guaranteed that the q-reduced hypergraph Hq is a p-uniform hypergraph too.

Now we derive a spectrum correspondence between the hypergraphs H and Hq.

Definition 4.3 (Mass matrix of GHSq
m,k). Let V1,V2 be the vertex sets of the

hypergraph GHSq
m,k, q < m. The mass matrix of GHSq

m,k,M, is a diagonal matrix
of order m+ k − q such that

Mvv =

{
m

m−q , if v ∈ V1\{v1, . . . , vq},
1 otherwise.

Similarly, we define the mass matrix M for a hypergraph Hq, with a GHSq
m,k,

by means of a diagonal matrix of order N − q.

Definition 4.4 (Mass matrix of Hq). Let V be the vertex set of the hypergraph H,
| V |= N , and V1,V2 be the vertex sets of the hypergraph GHSq

m,k, q < m. The
mass matrix of Hq,M, is a diagonal matrix of order N − q such that

Mvv =

{
m

m−q , if v ∈ V1\{v1, . . . , vq},
1 otherwise.

For simplicity of notation we gave the definition of mass matrix of Hq with only
one GHSq

m,k, but it can easily be extended to the case of multiple GHSq
m,k.

Theorem 4.5 (Generalized (m, k)-hyperstar adjacency matrix q-reduction theo-
rem). Let
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Figure 3: Examples of generalized q-reductions of the hypergraph H described in
Figure 2: (a) GHS1

3,4 and (b) GHS2
3,4.

• H be a hypergraph, on N vertices, with a GHSm,k, m+ q ≤ N ;

• Hq be the q-reduced hypergraph with a GHSq
m,k instead of GHSm,k, on N − q

vertices;
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• A be the adjacency matrix of H;

• B be the adjacency matrix of Hq;

• M be the diagonal mass matrix of Hq.

Then

1. λ is an eigenvalue of A if and only if λ is an eigenvalue of MB.

2. There exists a matrix K ∈ RN×(N−q) such that M1/2BM1/2 = KTAK and
KTK = I. Therefore, if x is an eigenvector of M1/2BM1/2 for an eigenvalue
µ, then Kx is an eigenvector of A for the same eigenvalue µ.

Before proving Theorem 4.5, we recall a well-known result for eigenvalues of
symmetric matrices; [16].

Lemma 4.6 (Interlacing theorem). Let A ∈ SymNA
(R) with eigenvalues µ1(A) ≥

· · · ≥ µNA
(A). For M < N , let K ∈ RNA,NB be a matrix with orthonormal columns,

KTK = I, and consider the B = KTAK matrix, with eigenvalues µ1(B) ≥ · · · ≥
µNB

(B). If

• the eigenvalues of B interlace those of A, that is,

µv(A) ≥ µv(B) ≥ µNA−NB+v(A), v = 1, . . . , NB,

• the interlacing is tight, that is, for some 0 ≤ u ≤ NB,

µv(A) = µv(B), v = 1, . . . , u and µv(B) = µNA−NB+v(A), v = u+ 1, . . . , NB,

then KB = AK.

Proof. (of Theorem 4.5). First we prove the existence of the K matrix: let P =
{P1, . . . , PN−q} be a partition of the vertex set {1, . . . , N}. The characteristic matrix
H is defined as the matrix where the u-th column is the characteristic vector of Pu

(u = 1, . . . , N − q).
Let A be partitioned according to P ,

A =

 A1,1 . . . A1,N−q
...

...
AN−q,1 . . . AN−q,N−q

 ,

where Avu denotes the block with rows in Pv and columns in Pu.

The matrix B = (bvu), whose entries bvu are the averages of the Avu rows, is
called the quotient matrix of A with respect P , i.e. bvu denotes the average number
of hyper-neighbours in Pu of the vertices in Pv.
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The partition is equitable if for each v, u, any vertex in Pv has exactly bvu hyper-
neighbours in Pv. In such a case, the eigenvalues of the quotient matrix B belong to
the spectrum of A (σ(B) ⊂ σ(A)) and the spectral radius of B equals the spectral
radius of A: for more details cf. [5], Chapter 2.

Also, we have the relations

MB = HTAH, HTH =M.

Considering a q-reduced (m, k)-hyperstar with adjacency matrix B, we weight it by
a diagonal mass matrix M whose diagonal entries are all one except for the m − q
entries of the vertices in V1,

Mvv =

{
m

m−q , if v ∈ V1
1 otherwise

,

and we get
MB ∼M1/2BM1/2 = KTAK, KTK = I,

where K := HM1/2. In addition to Theorem 3.7, the eigenvalues of MB (with
multiplicity) are also eigenvalues of A, the adjacency matrix of the corresponding
HSm,k hypergraph

σ(MB) ⊂ σ(A).

Provided q < m− 1, we get σ(MB) = σ(A), up to the multiplicity of the eigenvalue
µ = 0.

Finally, if x is an eigenvector of M1/2BM1/2 with eigenvalue µ, then Kx is an
eigenvector of A with the same eigenvalue µ.

In fact from the equation

M1/2BM1/2x = µx,

taking into account that the partition is equitable, we have KM1/2BM1/2 = AK
and

AKx = KM1/2BM1/2x = µKx.

We obtain a similar result for the Laplacian matrix.

Theorem 4.7 (Generalized (m, k)-hyperstar Laplacian matrix q-reduction theo-
rem). If

• H is a hypergraph, on N vertices, with a GHSm,k, m+ q ≤ N ,

• Hq is the q-reduced hypergraph with a GHSq
m,k instead of GHSm,k, of N − q

vertices,

• L(A) is the Laplacian matrix of H,
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• L(B) is the Laplacian matrix of Hq,

• M is the diagonal mass matrix of Hq,

then

1. λ is an eigenvalue of L(A) if and only if λ is an eigenvalue of L(MB);

2. There exists a matrix K ∈ RN×(N−q) such that M1/2BM1/2 = KTAK and
KTK = I. Therefore, if x is an eigenvector of L̃(MB) := diag(MB) −
M1/2BM1/2 for an eigenvalue λ, then Kx is an eigenvector of L(A) for the
same eigenvalue λ.

The proof for the Laplacian version of the Reduction Theorem 4.5 is similar to
that for the adjacency matrix, in fact using the same arguments as in the proof of
4.5, we can say that 1. is true and that the K matrix exists. Hence we prove directly
only the second part of point 2. of the theorem.

Proof. Let v be an eigenvector of L̃(MB) := diag(MB)−M1/2BM1/2 for an eigen-
value λ, then

L̃(MB)v = λv.

Since KM1/2BM1/2 = AK and diag(A)K = Kdiag(MB), we obtain

L(A)Kx = diag(A)Kx− AKx

= Kdiag(MB)x−KM1/2BM1/2x

= λKx.

According to the previous results, a hypergraph with a generalized (m, k)-hyper-
star and its q-reduced hypergraphs can be partitioned in the same way, up to removed
vertices.

Corollary 4.1. Under the hypothesis of Theorem 4.7, if x is a (left or right) eigen-
vector of L(MB) with eigenvalue λ, then its entries have the same signs as the
entries of the eigenvector y of L(A), with the same eigenvalue λ.

Proof. Now L̃(MB) and L(MB) are similar by means of the matrix M1/2; in fact

M−1/2L(MB)M1/2 = M−1/2diag(MB)M1/2 −M−1/2MBM1/2

= diag(MB)−M1/2BM1/2

= L̃(MB).

Also L(MB) preserves the sign of the eigenvectors of L̃(MB). If x̃ is an eigen-
vector of L̃(MB) of the eigenvalue λ ∈ σ(L̃(MB)), then

L̃(MB)x̃ = λx̃ if and only if M−1/2L(MB)M1/2x̃ = λx̃

if and only if L(MB)M1/2x̃ = λM1/2x̃.
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As a consequence, x :=M1/2x̃ is an eigenvector of L(MB) for the eigenvalue λ, and
xv = (Mx̃)v,

xv =

N−q∑
r=1

Mvrx̃r =Mvvx̃v.

4.2 (m, k)-hyperstar q∗-reduction

In this section we focus on uniform hypergraphs and define a reduction that maintains
the property of a uniform hypergraph. In order to maintain the property of uniform
hypergraph in the reduction, we give the following definitions.

Definition 4.8 (p-uniform (m, k)-hyperstar: p-UHSm,k). A p-uniform (m, k)-hyper-
star is a hypergraph H = (V , E , w) whose vertex set V can be written as the union
of two disjoint subsets V1 and V2, V = V1∪̇V2, of cardinalities m and k respectively,
and such that ∃P ∈ P(V2) with

•
⋃

ẽ∈P ẽ = V2,

• ∀ẽ ∈ P, | ẽ |= p− 1,

• E = {e | e = v1 ∪ ẽ, ẽ ∈ P, v1 ∈ V1},

• w(ẽ ∪ vi) = w(ẽ ∪ vj),∀ẽ ∈ P, vi, vj ∈ V1.

By p-UHSm,k we denote a p-uniform (m, k)-hyperstar of subsets V1 and V2 of
cardinalities |V1| = m and |V2| = k. When not else specified, we shall denote p-
UHSm,k simply by UHSm,k or UHS.

Definition 4.9 (Uniform (m, k)-hyperstar q∗-reduced: UHSq∗
m,k). A q∗-reduced uni-

form (m, k)-hyperstar is a uniform (m, k)-hyperstar of vertex sets V1,V2, such that
q of its vertices in V1 are removed together with all the hyperedges to which they
belong. In other words: let H be an (m, k)-hyperstar (V1,V2, E , w). A UHSq∗

m,k is
defined for any choice {v1, . . . , vq} ⊂ V1 as the hypergraph

({V1\{v1, . . . , vq},V2}, Eq∗ , w∣∣Eq∗ ),

where Eq∗ := {e | vi /∈ e, i = {1, . . . , q}, e ∈ E}. The order and the degree of UHSq∗
m,k

are m+ k − q and m− q − 1, respectively.

Definition 4.10 (q∗-reduced hypergraph: Hq∗). A q∗-reduced hypergraph Hq∗ is
obtained from a hypergraph H = (V , E , w) with a generalized (m, k)-hyperstar (of
vertex sets V1,V2 ⊂ V) by removing q of the vertices in the set V1 of H and the set
of hyperedges becomes Eq∗ := {e | vi /∈ e, i ∈ {1, . . . , q}, e ∈ E}, where {v1, . . . , vq}
are the removed vertices. Then Hq∗ := (V\{v1, . . . , vq}, Eq∗ , w∣∣Eq∗ ).
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We now derive a spectrum correspondence between hypergraphs H and Hq∗ .

Definition 4.11 (Vertices mass matrix of UHSq∗
m,k). Let V1,V2 be the vertex sets of

the hypergraph UHSq
m,k, q < m. The vertices mass matrix of UHSq∗

m,k, M∗, i is a
diagonal matrix of order m+ k − q such that

M∗
vv =

{
m−q
m
, if v ∈ V1\{v1, . . . , vq},

1 otherwise.

Definition 4.12 (Edges mass matrix of UHSq∗
m,k). Let V1,V2 be the vertex sets of the

hypergraph UHSq∗
m,k, q < m. The edges mass matrix of UHSq∗

m,k, N , is a diagonal
matrix of order | Eq∗ | such that

Nee =

{
m

m−q , if e ∩ V1\{v1, . . . , vq} 6= ∅,
1 otherwise.

Similarly, we define the mass matricesM∗ and N for a hypergraph Hq∗ , with one
(or more) UHSq∗

m,k. Even in this case, for simplicity of notation, we give the definition
of mass matrices of Hq∗ with only one UHSq∗

m,k, but it can easily be extended to the
case of multiple UHSq∗

m,k.

Definition 4.13 (Vertices mass matrix of Hq∗). Let V be the vertex set of the
hypergraph H, |V| = N , and V1,V2 be the vertex sets of the hypergraph UHSq∗

m,k,
q < m. The vertices mass matrix of Hq∗ , M∗, is a diagonal matrix of order N − q
such that

M∗
vv =

{
m

m−q , if v ∈ V1\{v1, . . . , vq},
1 otherwise.

Definition 4.14 (Edges mass matrix of Hq∗). Let V be the vertex set of the hyper-
graph H, |V| = N , and V1,V2 be the vertex sets of the hypergraph UHSq∗

m,k, q < m.
The edges mass matrix of Hq∗ , N , is a diagonal matrix of order | Eq∗ | such that

Nee =

{
m

m−q , if e ∩ V1\{v1, . . . , vq} 6= ∅,
1 otherwise.

Theorem 4.15 (Uniform (m, k)-hyperstar adjacency matrix q∗-reduction theorem).
Let

• H be a hypergraph, on N vertices, with a UHSm,k, m+ q ≤ N ;

• Hq∗ be the q∗-reduced hypergraph with a UHSq∗
m,k instead of UHSm,k, of N − q

vertices;

• A be the adjacency matrix of H;

• Iq∗ be the incidence matrix of Hq∗;
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• M∗ and N be the diagonal vertices and edges mass matrices of Hq∗;

then

1. σ(A) = σ(MB), whereB := I
1/2
q∗ N (ITq∗)1/2 − diag(I

1/2
q∗ N (ITq∗)1/2).

2. There exists a matrix K ∈ RN×(N−q) such that M1/2BM1/2 = KTAK and
KTK = I. Therefore, if x is an eigenvector of M1/2BM1/2 for an eigenvalue
µ, then Kx is an eigenvector of A for the same eigenvalue µ.

Proof. By using the same arguments as in the proof of Theorem 4.5, we can say that
items 1 and 2 hold.

We obtain a similar result for the Laplacian matrix.

Theorem 4.16 (Uniform (m, k)-hyperstar Laplacian matrix q∗-reduction theorem).
If

• H is a hypergraph, of N vertices, with a UHSm,k, m+ q ≤ N ;

• Hq∗ is the q∗-reduced hypergraph with a UHSq∗
m,k instead of UHSm,k, of N − q

vertices;

• L(A) is the Laplacian matrix of H;

• Iq∗ is the incidence matrix of Hq∗;

• M∗ and N are the diagonal vertices and edges mass matrices of Hq∗;

then

1. σ(L(A)) = σ(L(MB)).

2. There exists a matrix K ∈ RN×(N−q) such that M1/2BM1/2 = KTAK and
KTK = I. Therefore, if x is an eigenvector of L̃(MB) := diag(MB) −
M1/2BM1/2 for an eigenvalue λ, then Kx is an eigenvector of L(A) for the
same eigenvalue λ.

The proof for the uniform versions of the Reduction Theorems are similar to the
general one; in fact by using the same arguments as in the proofs of Theorems 4.5
and 4.7, we can prove the theorem.

According to the previous results, hypergraphs with (m, k)-hyperstars and q-
reduced hypergraphs can be partitioned in the same way, up to the removed vertices.

Corollary 4.2. Under the hypothesis of Theorem 4.16, if x is a (left or right) eigen-
vector of L(MB) with eigenvalue λ, then its entries have the same signs of the entries
of the eigenvector y of L(A) with the same eigenvalue λ.



E. ANDREOTTI / AUSTRALAS. J. COMBIN. 82 (1) (2022), 74–94 92

5 Conclusions

In this work, we have considered the problem of reducing the vertex set of a hyper-
graph while preserving spectral properies. In presenting a vertex set reduction for
hypergraphs, we defined the (m, k)-hyperstar, which generalizes the (m, k)-star [2],
and which, in turn, generalizes the star [15]. We also generalized results concerning
the value and the multiplicity of adjacency and Laplacian matrix eigenvalues, as was
done in [2] and [14]. Unlike graphs with (m, k)-stars, for hypergraphs with (m, k)-
hyperstars it is possible to define two different vertex set reductions, which lead to
two different results on the reduction of the hypergraph: one can be performed on all
types of hypergraphs, and the other can be performed only on uniform hypergraphs.

The hyperstars introduced in this paper, together with the generalization of struc-
tures already defined for graphs, allow one to describe structures that are present in
transportation networks, and to analyze when these structures have invariant charac-
teristics, such as the spectrum or the sign of the eigenvectors. Thanks to these results
we therefore know how to reduce the number of peripheral stations with an appro-
priate increase in the service provided, represented by the new hyperedge weights in
the reduced graph. Future developments of the model concern the study of oriented
and bipartite hypergraphs, in order to involve different means of transport.
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