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Abstract

The Γ-colored d-complete and Γ-colored minuscule posets unify and gen-
eralize multiple classes of colored posets introduced by Proctor (1984,
1999), Stembridge (2001), and Green (2007). In previous work, we showed
that Γ-colored minuscule posets are necessary and sufficient to build from
colored posets certain representations of Kac–Moody algebras that gener-
alize minuscule representations of semisimple Lie algebras. In this paper
we classify Γ-colored minuscule posets, which also classifies the corre-
sponding representations. We show that Γ-colored minuscule posets are
precisely disjoint unions of colored minuscule posets of Proctor and con-
nected full heaps of Green. Connected finite Γ-colored minuscule posets
can be realized as certain posets of coroots in the corresponding finite Lie
type.

1 Introduction

This paper is the third in a series containing [31] and [32]. In [30, 31], we intro-
duced two new axiomatic definitions of locally finite posets colored by the nodes of
a Dynkin diagram. These “Γ-colored d-complete” and “Γ-colored minuscule” posets
correspond to particular types of representations of Kac–Moody algebras (or sub-
algebras) that generalize the minuscule representations of semisimple Lie algebras.
We classified all Γ-colored d-complete posets in [32] and applied this classification
to λ-minuscule Weyl group elements of Peterson [4] and to “upper P -minuscule”
representations. In this paper, we classify all Γ-colored minuscule posets and, con-
sequently, all corresponding “P -minuscule” representations. For connected posets,
these classifications are summarized in Table 1.1. This table shows that the Γ-colored
minuscule and Γ-colored d-complete posets provide a unified axiomatic framework for
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colored minuscule posets of Proctor [18], dominant minuscule heaps of Stembridge
[29] (which are reformulations of the colored d-complete posets of Proctor [19]), and
full heaps of Green [7].

Connected posets Finite Infinite

Γ-colored minuscule Colored minuscule posets Full heaps
First introduced by: Proctor (1984) Green (2007)
Γ-colored d-complete Dominant minuscule heaps Filters of full heaps
First introduced by: Stembridge (2001) This author (2019)

Table 1.1: The classifications of connected Γ-colored minuscule and Γ-colored
d-complete posets.

A minuscule representation of a semisimple Lie algebra is an irreducible highest
weight representation in which all weights are in the Weyl group orbit of the highest
weight. The weight diagrams of these representations are distributive lattices un-
der the standard order on weights. Proctor proved this fact in [18] and used it to
introduce “irreducible minuscule posets” as the posets of join irreducible elements
of these weight diagrams. While initially uncolored, he then assigned a simple root
to each element of the poset in Theorem 11 of that paper; we view this assignment
as a coloring of the poset with the nodes of the associated Dynkin diagram. This
coloring relies on realizing minuscule posets as certain subsets of coroots for the as-
sociated simple Lie algebra. We review Proctor’s work from [18] in Section 9, and in
Theorem 9.2 we obtain this coroot realization in our axiomatic setting for connected
finite Γ-colored minuscule posets.

Both uncolored and colored minuscule posets have appeared in numerous appli-
cations. They were used to provide a Littlewood–Richardson rule to calculate the
(K-theoretic) Schubert structure constants cνλ,μ of minuscule varieties; see [3, 33].
The rowmotion action on the order ideals of a minuscule poset exhibits the cyclic
sieving phenomenon [25], the order ideal cardinality statistic is homomesic [26], and
the lattice of order ideals satisfies the coincidental down-degree expectations prop-
erty [9, 24]; see [23, §3] for a survey of some of these topics. Wildberger used
colored minuscule posets in Lie types A, D, and E to construct simple Lie alge-
bras of these types as well as Chevalley bases for these algebras in [34]; see also [7,
§7.2]. Of combinatorial interest, Proctor showed that minuscule posets are Sperner
and (with Stanley’s help) Gaussian; see [18, §6] and [7, §11.3] for the latter prop-
erty. Minuscule posets were generalized to uncolored and colored d-complete posets
by Proctor [19, 20], and later to dominant minuscule heaps by Stembridge [29], to
study λ-minuscule Weyl group elements. These finite posets have also been studied
extensively and used in many applications; see [12, 17, 21, 22, 29, 32].

While the original uncolored and colored minuscule and d-complete posets are
finite, full heaps are unbounded above and below by definition. Aside from this dif-
ference, the defining axioms for full heaps are mostly an adaptation of Stembridge’s
defining axioms for dominant minuscule heaps. Green introduced these colored posets
in [5, 6] and wrote a Cambridge monograph [7] exploring many of their uses in rep-
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resentation theory and algebraic geometry. The extended slant lattices of Hagiwara
[8] are early appearances of full heaps colored by Dynkin diagrams of affine type Ã.
Our original work [30, 31] was inspired by Green’s construction of representations
of affine Kac–Moody algebras using raising and lowering operators defined on the
lattices of “proper ideals” of full heaps. Each full heap has a unique “principal sub-
heap” up to isomorphism, which is one of the colored minuscule posets of Proctor.
It appears in an infinitely repeating motif within the full heap. These embedded
principal subheaps provide a connection between Green’s representations of affine
Kac–Moody algebras and minuscule representations of semisimple Lie algebras, as
the latter can be viewed as embedded in the former; see [7, Prop. 5.5.5].

The main result of this paper is the classification of all Γ-colored minuscule posets
in Theorem 8.1. This classification handles the finite and infinite poset cases sep-
arately. Additionally, we split the finite case into simply laced and multiply laced
cases. To handle the finite multiply laced case, we apply Stembridge’s classification
[29] of dominant minuscule heaps colored by multiply laced Dynkin diagrams. This
result was an extension of Proctor’s classification [20] of d-complete posets, which
exist only in the simply laced case. However, our approach in the simply laced case
does not use Proctor’s classification (see Section 5). In the infinite case, we apply the
classification of connected full heaps by Green and McGregor-Dorsey [7, 15]. In both
cases, we also use several results from [32] developed for the more general Γ-colored
d-complete posets; we restate these results in Section 2 for the reader’s convenience.
Theorem 8.1 and Theorem 26 of [32] combine to fill in and justify Table 1.1.

Though our techniques are combinatorial, our motivations include representation
theory. The main result of [31] stated that Γ-colored minuscule posets are necessary
and sufficient to build P -minuscule representations of (derived) Kac–Moody algebras.
So the classification in Theorem 8.1 also classifies all P -minuscule representations,
which we state in Theorem 8.4. Except for a minor difference between our underlying
vector space generated by the filter-ideal “splits” of P and Green’s underlying vector
space generated by the proper ideals of P , the P -minuscule representations created
from connected infinite Γ-colored minuscule posets are precisely the representations
of affine Kac–Moody algebras produced by Green in [5, 7]. The P -minuscule repre-
sentations created from connected finite Γ-colored minuscule posets are precisely the
minuscule representations of semisimple Lie algebras. Hence Γ-colored minuscule
posets provide another framework to link Green’s representations with minuscule
representations.

We give definitions and preliminary results from [32] in Section 2 and dedicate
Sections 3–7 to classifying connected finite Γ-colored minuscule posets. We apply
the above referenced classification of Stembridge in Section 3 to handle the multiply
laced case, and we handle the simply laced case in Sections 4–7. These sections
contain several results that run parallel to results obtained in the classification of
uncolored d-complete posets of Proctor [20], including obtaining the basic form of the
“top tree” and a downward extension process to produce new Γ-colored d-complete
posets from a given top tree. We give the classifications of Γ-colored minuscule posets
and P -minuscule representations in Section 8, and in Section 9 we realize Γ-colored
minuscule posets as certain posets of coroots in the finite case.
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2 Definitions and preliminaries

Let P be a nonempty partially ordered set. We follow [28] for the following com-
monly used terms: interval, covering relations and the Hasse diagram, order ideal
and order filter, saturated chain, linear extension, ranked poset and rank function,
convex subposet, order dual poset, disjoint union of posets, distributive lattice, and
join irreducible element of a lattice. We also follow the definitions and notation es-
tablished in [32]. We will use letters such as z, y, x, . . . to denote elements of P . Let
x, y ∈ P . If x is covered by y, then we write x → y. We say x and y are neighbors
in P if x → y or y → x. If x ≤ y, then we denote the open and closed intervals
between x and y respectively by (x, y) and [x, y]. We often assume P is finite and
always require it to be locally finite, meaning that all intervals in P are finite. If a
poset cannot be written as a disjoint union of two of its nonempty subposets, then
it is connected. The connected components of P are the connected subposets of P
whose disjoint union is P .

Let Γ be a finite set. We use letters such as a, b, c, . . . to denote the elements
of Γ and call them colors. Fix integers θab for a, b ∈ Γ that satisfy the following
requirements:
(i) For all a ∈ Γ, we have θaa = 2.
(ii) For all distinct a, b ∈ Γ, we have θab ≤ 0 and θba ≤ 0.
(iii) For all distinct a, b ∈ Γ, we have θab = 0 if and only if θba = 0.
We say a and b are distant when θab = 0 and adjacent when θab < 0. If a and b are
adjacent, we write a ∼ b and say a is k-adjacent to b (respectively b is l-adjacent to
a) when θab = −k (respectively θba = −l).

This choice of integers may be realized equivalently with a finite graph with
finitely many nodes and no loops. The nodes are the elements of Γ. Let a, b ∈ Γ
be distinct. If θabθba = 0, then there is no edge between a and b. If θabθba = 1,
then there is a single undirected edge between a and b. If θabθba > 1, then there
is a directed edge from a to b (respectively from b to a) decorated with the integer
−θab (respectively −θba). The resulting graph (together, possibly, with some edge
decorations) is the Dynkin diagram corresponding to the above choice of integers,
and will also be denoted Γ. The choice of integers satisfying (i)–(iii) that produces
a given Dynkin diagram Γ is unique and can be easily recovered from Γ itself; this
is our standard practice.

We say a Dynkin diagram Γ is acyclic if the underlying simple graph, obtained
by replacing each pair of directed edges by a single undirected edge, is acyclic. If Γ
is a simple graph (equivalently, if θab ∈ {−1, 0, 2} for all a, b ∈ Γ), then we say Γ is
simply laced. Otherwise Γ is multiply laced.

The elements of P are Γ-colored by equipping P with a surjective coloring function
κ : P → Γ onto the nodes of Γ. By abuse of notation we typically refer to the
triple (P,Γ, κ) as P . If P1 is Γ1-colored by κ1 and P2 is Γ2-colored by κ2, then
P1 is isomorphic to P2 if there is a poset isomorphism π : P1 → P2 and a graph
isomorphism γ : Γ1 → Γ2 such that κ2π = γκ1. We write P1

∼= P2. Unless otherwise
specified, isomorphisms in this paper are Γ-colored poset isomorphisms as defined
here. Whenever we say that a Γ-colored poset with certain properties is unique, it
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is understood to mean unique up to such an isomorphism.
We define properties that P may satisfy with respect to a Γ-coloring:
(EC) Elements with equal colors are comparable.
(NA) Neighbors have adjacent colors.
(AC) Elements with adjacent colors are comparable.

For each color a, we define Pa := {x ∈ P | κ(x) = a}. We say that x, y ∈ Pa are
consecutive elements of the color a if x < y in P and (x, y) contains no elements of
the color a.

(ICE2) For every a ∈ Γ, if x < y are consecutive elements of the color a, then∑
z∈(x,y)−θκ(z),a = 2.

For an element x ∈ P , we define the set U(x, P ) := {y ∈ P | y > x and κ(y) ∼ κ(x)}.
Dually, we define the set L(x, P ) := {y ∈ P | y < x and κ(y) ∼ κ(x)}. Let k ≥ 1.

(UCBk) For every a ∈ Γ, if x is maximal in Pa, then U(x, P ) is finite and∑
y∈U(x,P )−θκ(y),a ≤ k.

(LCBk) For every a ∈ Γ, if x is minimal in Pa, then L(x, P ) is finite and∑
y∈L(x,P )−θκ(y),a ≤ k.

The properties ICE2, UCBk, and LCBk control the “census” of elements of colors
that are adjacent to a given color in either an interval or an upper or lower “frontier”
of the poset. The latter two properties are thus the frontier census properties. These
properties were introduced in [31] in the simply laced case and in [30, 32] in the
multiply laced case. We follow the property naming conventions of [32].

These properties are used to give the main colored poset definitions in this paper.

Definition 2.1. A Γ-colored d-complete poset is a locally finite Γ-colored poset (of
any cardinality) that satisfies EC, NA, AC, ICE2, and UCB1. If it also satisfies
LCB1, then it is a Γ-colored minuscule poset.

We remark that the order dual of a Γ-colored minuscule poset is also Γ-colored
minuscule.

Stembridge introduced and classified dominant minuscule heaps in [29]. These
finite Γ-colored posets correspond to λ-minuscule Weyl group elements for dominant
integral weights λ. We give Stembridge’s definition, translated to our conventions
for notation and terminology.

Definition 2.2. A dominant minuscule heap is a finite Γ-colored poset that satisfies
(S1) All neighbors in P have colors that are equal or adjacent in Γ, and the
colors of incomparable elements are distant.
(S2) For every a ∈ Γ, the open interval between any two consecutive elements
of color a either contains (i) exactly two elements whose colors are adjacent
to a, and their colors are 1-adjacent to a, or (ii) exactly one element, and the
color of this element is 2-adjacent to a.
(S3) For every a ∈ Γ, an element that is maximal in Pa is covered by at most
one element, and this element is maximal among all elements of some color
that is 1-adjacent to a.
(S4) The Dynkin diagram Γ is acyclic.
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Stembridge did not initially require κ to be surjective, and his version of S4 was that
the colors appearing in κ(P ) index an acyclic subdiagram of Γ. Outside of Section
9, we only use his classification of dominant minuscule heaps from Section 4 of [29],
which is completed under the assumption that κ is surjective.

Several of Stembridge’s coloring axioms for dominant minuscule heaps were
slightly modified by Green to define full heaps in [5, 6]. The main difference is
cardinality; while dominant minuscule heaps are finite, full heaps must satisfy

(G3) For every a ∈ Γ, the set Pa is isomorphic as an uncolored poset to Z.
This is the third axiom from Green’s definition of full heaps given in [7], translated to
our conventions for notation and terminology. Hence full heaps are infinite Γ-colored
posets that are unbounded above and below. In [32, Cor. 7], we showed that full
heaps can be defined as follows.

Definition 2.3. A locally finite Γ-colored poset P is a full heap if it satisfies EC,
NA, AC, ICE2, and G3.

We typically only use the following definitions when P is a finite Γ-colored d-
complete poset. We define Ch(P ) to be the set of elements x ∈ P whose principal
filter {y ∈ P | y ≥ x} is a chain. We follow Stembridge and define the top tree T of
P to be the set of maximal elements of each color. The property S3, which holds for
finite Γ-colored d-complete posets by Theorem 2.4 stated below, implies that T is a
filter of P . We usually assume P is connected when considering top trees, in which
case T is a rooted tree. We note that EC and the surjectivity of κ imply κ|T is a
bijection. A finite Γ-colored d-complete poset P is slant irreducible if it is connected
and whenever x, y ∈ T satisfy x → y, the element y is not the only element of its
color in P .

We close this section by stating results appearing in [32] concerning Γ-colored
d-complete posets.

Theorem 2.4 (Theorem 9 of [32]). Let P be a finite Γ-colored poset. Then P is a
Γ-colored d-complete poset if and only if it is a dominant minuscule heap.

Because of Theorem 2.4, we freely use the defining axioms for dominant minuscule
heaps when working with finite Γ-colored d-complete posets.

Theorem 2.5 (Proposition 13 of [32]). Suppose P is a Γ-colored d-complete poset
and for every b ∈ Γ, the set Pb is bounded above. Then P is finite.

Theorem 2.6 (Theorem 22 of [32]). Let P be a connected infinite Γ-colored poset.
Then P is a Γ-colored d-complete poset if and only if it is a filter of some connected
full heap.

3 Connected finite Γ-colored minuscule posets when Γ is
multiply laced

We begin the classification of connected finite Γ-colored minuscule posets in this
section. This classification will be broken into cases by Proposition 3.4. We handle
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the multiply laced case in Theorem 3.7 by applying Stembridge’s classification of
dominant minuscule heaps colored by multiply laced Dynkin diagrams.

Remark 3.1. Corollary 24 of [32] shows that if P satisfies EC, NA, and AC, then
P is connected if and only if Γ is connected. When P satisfies these properties and
we need either P or Γ to be connected, we will assume P is connected and use this
result without comment.

We begin with two straightforward lemmas needed for Proposition 3.4.

Lemma 3.2. Let P be a connected finite Γ-colored d-complete poset. Then the top
tree T is connected.

Proof. Suppose for a contradiction that T is the disjoint union of subposets T1 and
T2. Then κ(T1) and κ(T2) are nonempty, and they partition Γ since κ|T is a bijection.
Since Γ is connected, there are colors a ∈ κ(T1) and b ∈ κ(T2) with a ∼ b. Let x ∈ T1
and y ∈ T2 be the respective elements in T of colors a and b. Then x and y are
comparable by AC; without loss of generality, assume x < y in P . Then x < y in T
as well. This contradiction shows T is connected.

Our second lemma has appeared in other forms; for example, see Proposition F2
of [20].

Lemma 3.3. Let P be a connected finite Γ-colored d-complete poset. Then P has
a unique maximal element. If P is Γ-colored minuscule, then it also has a unique
minimal element.

Proof. Suppose for a contradiction that x and y are distinct maximal elements of P .
Then x and y are in the top tree T . Since T is connected by Lemma 3.2, choose a
path from x to y in the Hasse diagram of T . This path must start by moving down
from x and end by moving up to y. Thus there must be an element z ∈ T along this
path that is covered by two elements. This violates S3, so P has a unique maximal
element.

Now suppose P is Γ-colored minuscule. The order dual poset P ∗ is also Γ-colored
minuscule and hence Γ-colored d-complete. Thus it has a unique maximal element,
which is the unique minimal element of P .

Our next result divides the classification of connected finite Γ-colored minuscule
posets into cases.

Proposition 3.4. Let P be a connected finite Γ-colored minuscule poset. Then either
P is a chain and Γ is simply laced, or P is slant irreducible as a Γ-colored d-complete
poset.

Proof. Suppose P is not slant irreducible as a Γ-colored d-complete poset and let
T be the top tree of P . Choose a pair of neighbors x → y in T such that y is the
only element of its color in P and x is minimal in the set of all pairs of neighbors
satisfying this condition. Note that y is in the top tree T ∗ of the order dual P ∗ as
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well. Applying S3 to P ∗, we see x ∈ T ∗. Since x ∈ T ∩ T ∗, we see that x is the only
element of its color in P .

Let a := κ(x) and b := κ(y). By NA we have a ∼ b. Suppose that there is some
u ∈ P with u → x, and set c := κ(u). The minimality of the choice of x shows
u /∈ T . Thus there is some v ∈ Pc with u < v. By NA we see that a ∼ c, and by
AC we see that x < v. Since x is maximal in Pa, by UCB1 we know there is at most
one element above x with color adjacent to a. This shows v = y, and hence c = b.
This contradicts that y is the only element of its color in P . Hence x is minimal in
P . Since x is the unique minimal element of P by Lemma 3.3, the filter generated
by x is P . By potentially repeated applications of S3 moving upward from x, we see
P is a chain and P = T .

Let e, f ∈ Γ be adjacent. Since P = T , let s and t be the respective unique
elements of colors e and f in P . Since P is a chain, without loss of generality assume
s < t. Then UCB1 (respectively LCB1) shows f is 1-adjacent to e (respectively e is
1-adjacent to f). Hence Γ is simply laced.

Suppose P is a connected finite Γ-colored minuscule poset and Γ is multiply
laced. The preceding proposition shows P is slant irreducible as a Γ-colored d-
complete poset. Since P is a dominant minuscule heap by Theorem 2.4, we can apply
Stembridge’s classification of slant irreducible dominant minuscule heaps colored by
multiply laced Dynkin diagrams. For convenience, we restate that result here using
our conventions for notation and terminology.

Theorem 3.5 (Theorem 4.2 of [29]). Let P be a slant irreducible Γ-colored d-complete
poset. Then either Γ is simply laced or it has the form

• • • • • • ••2
1

i nodes j nodes

for some i, j ≥ 1. If Γ is multiply laced, then either
(a) We have i = 1 and j ≥ 1 and P is isomorphic to an order filter of a poset

of the form displayed in Figure 3.1(a) containing at least one element of each
color, or

(b) We have i > 1 and j ≥ 1 and P is isomorphic to a poset of the form displayed
in Figure 3.1(b).

We use this result to classify the connected finite Γ-colored minuscule posets
when Γ is multiply laced. To state this classification concisely, we name the types of
Γ-colored posets appearing in it.

Definition 3.6. Let P be a finite Γ-colored poset. Refer to the integers i, j ≥ 1
used in Theorem 3.5.
(a) If P is isomorphic to the poset displayed in Figure 3.1(a) for i = 1 and some

j ≥ 1, then P has type B.
(b) If P is isomorphic to the poset displayed in Figure 3.1(b) for some i > 1 and

j = 1, then P has type C.
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Figure 3.1: The two families of slant irreducible Γ-colored d-complete posets from
Theorem 3.5. In both families, vertically aligned elements have the same color. The
first family includes all order filters of the displayed poset containing at least one
element of each color. (a) When i = 1 and j ≥ 1, a Γ-colored minuscule poset of
type B. (b) When i > 1 and j = 1, a Γ-colored minuscule poset of type C.

It is routine to check that Γ-colored posets of types B and C are Γ-colored minuscule.
We have required i > 1 in the type C definition to prevent overlap between types B
and C. Requiring j = 1 for posets of type C results in the absence of gray nodes
and edges in Figure 3.1(b). So posets of type C are chains.

Theorem 3.7. Let P be a connected finite Γ-colored minuscule poset and assume Γ
is multiply laced. Then P has type B or type C.

Proof. We know from Proposition 3.4 that P must be slant irreducible as a Γ-colored
d-complete poset, so we apply Theorem 3.5. Referring to that result, first suppose
that i = 1. The value of j then determines the Dynkin diagram Γ and a poset Q
as displayed in Figure 3.1(a). We know by Theorem 3.5 that P is isomorphic to a
filter of Q containing at least one element of each color. By Lemma 3.3 we know P
has a unique minimal element. If the minimal element of P does not have color a
(as displayed in Figure 3.1(a)), then the minimal element in Pa covers an element
of color b in P , violating LCB1. Hence the unique minimal element of P must have
color a. The only element of color a in Q that is less than an element of every other
color in Γ is the minimal element of Q. Thus P ∼= Q and so P has type B.

Now suppose that i > 1. The value of j determines the Dynkin diagram Γ and
poset P isomorphic to the poset displayed in Figure 3.1(b). Since P must have a
unique minimal element by Lemma 3.3, we must have j = 1. Thus P has type C.
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4 Simply laced top tree lemmas and Γ-colored minuscule
chains

Having classified the connected finite Γ-colored minuscule posets colored by multiply
laced Γ in Section 3, we turn to the simply laced case. We first establish results
regarding top trees of such posets that will be used here and in later sections. In
Theorem 4.6, we obtain the classification of Γ-colored minuscule posets that are
chains when Γ is simply laced, completing one case given in Proposition 3.4.

Lemma 4.1. Let P be a finite Γ-colored d-complete poset and assume Γ is simply
laced. Let x < y in P and suppose that [x, y] is a chain. Then there are no repeated
colors in this interval.

Proof. Suppose for a contradiction that there are repeated colors in [x, y]. Choose
u < v in [x, y] such that κ(u) = κ(v) and there are no other repeated colors in [u, v].
Since Γ is simply laced, the interval [u, v] must contain at least four elements by
ICE2. By NA, moving up in the interval [u, v] corresponds to a path in Γ. This path
must be a cycle since it contains at least three distinct colors starting and ending at
the same color. Hence this path is a cycle in Γ, contradicting S4.

The next lemma shows that in the finite simply laced case, the top tree T is equal
to the set Ch(P ) of all elements whose principal filter is a chain. This is not true for
posets of type B or C. The set Ch(P ) is one version of how top trees are defined for
the d-complete posets of Proctor (e.g. [21, 22]).

Lemma 4.2. Let P be a finite Γ-colored d-complete poset with top tree T and assume
Γ is simply laced. Then T = Ch(P ).

Proof. First suppose x ∈ T . Then S3 shows x is covered by at most one element,
and if this element exists it is in T . By repeating this reasoning, it follows that the
filter generated by x is a chain. Hence x ∈ Ch(P ).

Now suppose x ∈ Ch(P ). Let y ≥ x be a maximal element of P . Since x ∈
Ch(P ), the interval [x, y] is the filter generated by x and is a chain. It has no
repeated colors by Lemma 4.1. Hence we have x ∈ T .

Let P be a finite poset and let T be a convex subposet of P . We define Gr(T ) to
be the simple graph whose vertices are the elements of T and whose edges correspond
to the covering relations in T . In other words, the graph Gr(T ) is just the Hasse
diagram of T without its partial order. We typically use Gr(T ) when T is the top
tree of a finite Γ-colored d-complete poset colored by simply laced Γ. In this case,
the next result shows that Gr(T ) ∼= Γ as graphs, so T is essentially a copy of Γ
embedded in P . Knowing this, Proctor originally defined d-complete posets without
reference to externally present Dynkin diagrams.

Proposition 4.3. Let P be a finite Γ-colored d-complete poset with top tree T and
assume Γ is simply laced. Then κ̃ : Gr(T ) → Γ defined by κ̃ := κ|T is a graph
isomorphism.



M.C. STRAYER/AUSTRALAS. J. COMBIN. 81 (3) (2021), 412–446 422

Proof. We know κ̃ is a bijection. Suppose x and y are adjacent in Gr(T ) and thus
neighbors in T . By NA, we see that κ̃(x) and κ̃(y) are adjacent in Γ.

Now suppose colors a and b are adjacent in Γ. Let u, v ∈ Gr(T ) be such that
κ̃(u) = a and κ̃(v) = b. By AC, we know that u and v are comparable in P , so
assume without loss of generality that u < v. Since u ∈ Ch(P ) by Lemma 4.2, we
know that [u, v] is a chain. By NA, moving up in this chain induces a path in Γ
starting at a and ending at b. There are no repeated colors in [u, v] by Lemma 4.1.
Since a ∼ b, this path produces a cycle in Γ unless u → v. Since Γ is acyclic by S4,
this shows u and v are adjacent in Gr(T ).

We obtain an important result to establish the uniqueness of certain Γ-colored
d-complete posets.

Proposition 4.4. Let P be a finite poset for which Ch(P ) = P . Then P can be
realized uniquely as a Γ-colored d-complete poset colored by simply laced Γ.

Proof. Define Γ := Gr(P ) and equip P with the identity coloring κ : P → Γ on
nodes. Since there is only one element of each color, the properties EC and ICE2 are
satisfied vacuously. The properties NA and AC are satisfied by construction. For
any x ∈ P , the sum

∑
y∈U(x,P )−θκ(y),κ(x) is the number of elements covering x. Since

Ch(P ) = P , this sum is at most one for every element of P . Thus UCB1 holds,
which proves that P is Γ-colored d-complete.

Now suppose P is Γ′-colored d-complete for simply laced Dynkin diagram Γ′ and
coloring κ′ : P → Γ′. By Lemma 4.2, the top tree of P with respect to the coloring
κ′ is Ch(P ) = P . Note that the maps idP , idGr(P ), and κ are all identity on the
elements of P . Hence we obtain the commutative diagram

P P

Γ Gr(P ) Γ′

κ κ

idP

idGr(P ) κ̃′

κ′

where κ̃′ : Gr(P ) → Γ′ is the graph isomorphism of Proposition 4.3. Hence κ̃′ ◦
idGr(P ) : Γ → Γ′ is a graph isomorphism. Clearly idP is a poset isomorphism, so the
triples (P,Γ, κ) and (P,Γ′, κ′) are isomorphic.

We can now classify connected finite Γ-colored minuscule posets that are chains
when Γ is simply laced. To state this classification concisely, we first name the type
of Γ-colored posets appearing in it.

Definition 4.5. Let P be a finite Γ-colored poset. If P is isomorphic to a poset of
the form displayed in Figure 4.1, then P has type A standard.

It is routine to check that a Γ-colored poset of type A standard is Γ-colored
minuscule.



M.C. STRAYER/AUSTRALAS. J. COMBIN. 81 (3) (2021), 412–446 423

Theorem 4.6. Let P be a connected finite Γ-colored minuscule poset and assume Γ
is simply laced. If P is a chain, then P has type A standard.

Proof. The type A standard poset of cardinality |P | is a chain and is Γ-colored minus-
cule (and hence Γ-colored d-complete). Proposition 4.4 shows it must be isomorphic
to P .

a b d e

a

b

d

e

Figure 4.1: A Γ-colored minuscule poset of type A standard.

Remark 4.7. Let P be a connected Γ-colored minuscule poset. If P consists of a
single element, then Γ consists of one color since κ is surjective. If P contains more
than one element, then Γ also contains more than one color; just take neighbors in
P (which exist since P is connected) and note that they must have different colors
by NA. Hence |P | = 1 if and only if |Γ| = 1. The case where P consists of a
single element is handled by Theorem 4.6 and is the only case that satisfies both
possibilities of Proposition 3.4.

5 Possible slant irreducible top trees when Γ is simply laced

Proposition 3.4 showed that a connected finite Γ-colored minuscule poset must be
a chain colored by simply laced Γ or be slant irreducible as a Γ-colored d-complete
poset. We handled the former case in Theorem 4.6 and the multiply laced version
of the latter case in Theorem 3.7. The remaining case is when P is slant irreducible
as a Γ-colored d-complete poset and Γ is simply laced. The next three sections are
dedicated to this case, which culminates in Theorem 7.4. Our main result in this
section is Corollary 5.5, which identifies the structure of the top tree T in this case.

Dominant minuscule heaps (and hence finite Γ-colored d-complete posets) are
reformulations of the colored d-complete posets of Proctor [19], which exist only for
simply laced Dynkin diagrams. Proctor classified the uncolored versions of these
posets in [20] using notions of top tree and slant irreducibility defined for uncolored
posets. When these posets are colored uniquely to become colored d-complete posets
as in [19, Prop. 8.6], Proctor’s definitions are equivalent to the versions used here.

In Section 3 of this paper, we applied Stembridge’s classification of slant irre-
ducible dominant minuscule heaps to classify the connected finite Γ-colored minus-
cule posets colored by multiply laced Γ. It is possible to emulate that approach and
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use Proctor’s classification of slant irreducible uncolored d-complete posets to classify
connected finite Γ-colored minuscule posets colored by simply laced Γ; indeed, that
was our approach in [30]. However, in addition to creating the need to pass between
uncolored and colored versions of these posets, that approach relies on the equiva-
lence between Proctor’s colored d-complete posets and finite Γ-colored d-complete
posets (or equivalently, Stembridge’s dominant minuscule heaps) colored by simply
laced Dynkin diagrams. While the equivalence between Proctor’s and Stembridge’s
posets is known to experts, it has not appeared in any published paper and so we
avoid using it.

Some of the results of this section run parallel to results obtained by Proctor in
the uncolored d-complete setting (e.g. [20, §5]). Given Remark 4.7, we assume that
T has more than one element, or equivalently, that Γ has more than one color. Our
first three lemmas give basic facts about T .

Lemma 5.1. Let P be a slant irreducible Γ-colored d-complete poset and assume Γ
is simply laced. If the top tree T contains more than one element, then T is not a
chain.

Proof. Since T is connected by Lemma 3.2 and |T | > 1, choose neighbors x → y in
T . Since P is slant irreducible, the element y is not the only element of its color in
P . Thus we see that P 
= T . Choose an element z that is maximal in P − T . Since
T = Ch(P ) by Lemma 4.2, the filter generated by z is not a chain and thus contains
incomparable elements. Since z is maximal in P −T , these elements are in T . Hence
T is not a chain.

Lemma 5.2. Let P be a slant irreducible Γ-colored d-complete poset with top tree T .
Every element of T that is not minimal in T covers at most two elements in P .

Proof. Suppose y ∈ T is not minimal in T . By slant irreducibility, we know that
y is not the only element of its color in P . Let x < y be consecutive elements of
color κ(y). By NA, any elements covered by y in P have colors adjacent to κ(y).
By AC, these elements are in (x, y). Then ICE2 shows there are at most two such
elements.

Since a finite Γ-colored poset is Γ-colored d-complete if and only if it is a dominant
minuscule heap by Theorem 2.4, we make use of Lemma 4.1 of [29]. We present
that lemma here for convenience, translating to our conventions for notation and
terminology.

Lemma 5.3 (Lemma 4.1 of [29]). Let P be a slant irreducible Γ-colored d-complete
poset with top tree T . If s ∈ T covers two elements of P , then every element y < s
in T covers an element outside of T .

Now we obtain the key result regarding the structure of T .

Proposition 5.4. Let P be a slant irreducible Γ-colored d-complete poset and assume
Γ is simply laced. If the top tree T contains more than one element, then there exists
a unique element in T that covers more than one element in T . This element covers
exactly two elements in T and is comparable to every element in T .
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Proof. Since T = Ch(P ) by Lemma 4.2, every element of T is covered by at most
one element. We know T is connected by Lemma 3.2. We also know by Lemma 5.1
that T is not a chain. Hence some element s ∈ T covers more than one element in
T . Then Lemma 5.2 shows s covers exactly two elements in T .

Suppose for a contradiction that w ∈ T is incomparable to s. Again using that
every element of T is covered by at most one element, a path from s to w in the
Hasse diagram of T must pass through some element u > s that covers two elements
in T . Then s must cover an element outside of T by Lemma 5.3. Thus s covers three
or more elements in P , violating Lemma 5.2. So every element in T is comparable
to s.

If an element greater than s covers two elements of T , then Lemma 5.3 shows s
covers an element outside of T . Similarly, if an element less than s covers two elements
of T , then Lemma 5.3 shows this element must also cover an element outside of T .
Both situations violate Lemma 5.2. Thus s is the unique element that covers more
than one element in T .

Let P be a slant irreducible Γ-colored d-complete poset and assume Γ is simply
laced. Suppose that the top tree T contains more than one element. Let s ∈ T be
the unique element covering two elements in T guaranteed by Proposition 5.4 and
call s the splitting element of T . Then s is comparable to every element in T . Let
i ≥ 1 be the number of elements in the principal filter generated by s, which is a
chain since T = Ch(P ). Since only s can cover more than one element in T , the two
elements covered by s are each maximal elements of disjoint saturated chains in T
below s. Suppose these chains consist of j ≥ 1 and k ≥ 1 elements in T , respectively.
Following notation used in [20], we say that T has shape Y (i; j, k). We also write
T = Y (i; j, k). Our convention is to require k ≥ j ≥ 1 and for the branch containing
j (respectively k) elements to appear on the left (respectively right) side of the Hasse
diagram of T or P , as in Figure 5.1. This discussion obtains the following result.

Corollary 5.5. Let P be a slant irreducible Γ-colored d-complete poset and assume Γ
is simply laced. If the top tree T contains more than one element, then T = Y (i; j, k)
for some integers i ≥ 1 and k ≥ j ≥ 1.

•
•

•
•

•
•

•

i elements

j elements
k elements

Splitting element s

Figure 5.1: A top tree T of shape Y (i; j, k) for some integers i ≥ 1 and k ≥ j ≥ 1.
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Remark 5.6. Let i ≥ 1 and k ≥ j ≥ 1 and let T = Y (i; j, k). By Proposition 4.4 the
poset T can be realized uniquely as a Γ-colored d-complete poset colored by simply
laced Γ. This will be used in the next two sections, where we start with a Γ-colored
d-complete poset T = Y (i; j, k) and examine its potential to be the top tree of a
Γ-colored minuscule poset for some simply laced Γ. Note that we must require T
to be Γ-colored d-complete since filters of Γ-colored minuscule posets are Γ-colored
d-complete.

6 Extending top trees T = Y (i; j, k) to Γ-colored minuscule

posets

In this section, we describe a process that starts with a Γ-colored d-complete poset
T = Y (i; j, k) for some i ≥ 1 and k ≥ j ≥ 1 and either produces the unique Γ-
colored minuscule poset with top tree T , or shows that no such poset exists. This is
the outcome of Theorem 6.8, which is our main result in this section. This process
occurs through a downward extension similar to the process used by Proctor [20] to
classify the uncolored d-complete posets. We also used a similar downward extension
process to show connected infinite Γ-colored d-complete posets are order filters of full
heaps [32, §5].
Definition 6.1. Let P be a connected finite Γ-colored d-complete poset and let
a ∈ Γ. We say P is extendable by a if there is a connected finite Γ-colored d-complete
poset P ′ such that
(i) The poset P is a filter of P ′,
(ii) The difference P ′ − P consists of a single element, which we call the extending

element, and
(iii) The color of the extending element is a.
We also say P ′ is an extension of P by a and write P ′ a−→ P .

Our first lemma shows that the color extensions of Definition 6.1 are uniquely
determined by the colored structure of the poset being extended. Recall for y ∈ P
that L(y, P ) = {x ∈ P | x < y and κ(x) ∼ κ(y)}.
Lemma 6.2. Let P be a connected finite Γ-colored d-complete poset and let a ∈ Γ.
Suppose P ′ is an extension of P by a with extending element x. Then x → u in P ′

if and only if u is minimal in L(y, P ), where y is the minimal element of Pa.

Proof. The element x is minimal in P ′. So by AC applied to P ′, the set L(y, P )
consists of the elements in (x, y) whose colors are adjacent to a. By NA and AC,
every element that covers x in P ′ has color adjacent to a and is in (x, y). So x → u
in P ′ if and only if u is minimal among elements in (x, y) whose colors are adjacent
to a; that is, if and only if u is minimal in L(y, P ).

We build on this result to show that when colors are distant, the extension order
does not matter.
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Lemma 6.3. Let P be a connected finite Γ-colored d-complete poset and let b, c ∈ Γ

be distant. If there are extensions P ′′ c−→ P ′ b−→ P and Q′′ b−→ Q′ c−→ P , then P ′′ ∼= Q′′.

Proof. Let x and y be the extending elements of colors b and c in P ′−P and P ′′−P ′,
respectively. By NA and the fact that b and c are distant, we see x and y are not
neighbors. Thus they are each only covered by elements in P and are minimal in P ′′.
Hence P ′′ − {x} is a filter of P ′′ and is therefore Γ-colored d-complete. This shows
P can first be extended by c to P ′′ − {x} with extending element y and then by b
to P ′′ with extending element x. Lemma 6.2 shows these extensions are respectively
isomorphic to Q′ and Q′′.

Our main tool for determining when a color extension exists will be the lower
frontier census, defined next. We used a slightly more general version of this tool in
Section 4 of [32].

Definition 6.4. Let P be a Γ-colored poset that satisfies EC and let b ∈ Γ. If y is
minimal in Pb and L(y, P ) is finite, then define

Lb(P ) :=
∑

x∈L(y,P )

−θκ(x),b

and call it the lower frontier census of P for the color b.

We give a necessary and sufficient condition for a color extension to exist.

Lemma 6.5. Let P be a connected finite Γ-colored d-complete poset and let a ∈ Γ.
Then P is extendable by a if and only if La(P ) = 2.

Proof. First suppose that P is extendable by a and suppose that P ′ a−→ P has ex-
tending element x. Let y be minimal in Pa. Then x < y are consecutive elements
of the color a in P ′. By AC applied to P ′, the set L(y, P ) consists of the elements
in (x, y) whose colors are adjacent to a. Hence by ICE2 applied to P ′ we have
La(P ) =

∑
z∈L(y,P )−θκ(z),a =

∑
z∈(x,y)−θκ(z),a = 2.

Now suppose that La(P ) = 2; we produce the required poset P ′. Create a new
element x with color a and set P ′ := P∪{x}. Define the order on P ′ to be the reflexive
transitive closure of the covering relations in P along with the covering relation(s)
x → u if and only if u is minimal in L(y, P ), where y is minimal in Pa. The properties
EC, NA, AC, and UCB1 are immediate in P ′ by construction since these properties
hold in P . Note that x < y is the only occurrence of consecutive elements of the
same color not contained in P , and so this is the only instance we must check to
verify ICE2 for P ′. Also by construction, the elements in (x, y) with colors adjacent
to a are precisely the elements in L(y, P ), and so

∑
z∈(x,y)−θκ(z),a = La(P ) = 2.

Hence ICE2 holds and P ′ is Γ-colored d-complete.

Lemmas 6.2, 6.3, and 6.5 focus on when and how the extension process described
below will proceed. The next result adds three scenarios which would cause it to
terminate.
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Lemma 6.6. Let P be a connected finite Γ-colored d-complete poset.
(a) The poset P is Γ-colored minuscule if and only if Lb(P ) ≤ 1 for every b ∈ Γ.
(b) The poset P is not a filter of any Γ-colored minuscule poset if there exists b ∈ Γ

with Lb(P ) > 2.
(c) The poset P is not a filter of any Γ-colored minuscule poset if there exist adja-

cent b, c ∈ Γ with Lb(P ) = Lc(P ) = 2.

Proof. Since P is finite, the condition Lb(P ) ≤ 1 for every b ∈ Γ is a reformulation
of LCB1. Thus (a) holds.

Now suppose there exists a color b ∈ Γ with Lb(P ) > 2. Suppose for a contra-
diction that P is a filter of some Γ-colored minuscule poset Q. By Theorem 2.5 the
poset Q is finite. The set Q− P must contain an element of color b since Q satisfies
LCB1. Let x be the maximal element of color b in Q− P . Let y be minimal in Pb.
Then x < y are consecutive elements of color b in Q. Every element in L(y, P ) must
be in (x, y) by AC. Since Lb(P ) > 2, this violates ICE2 for Q. Thus (b) holds.

Now suppose there exist adjacent b, c ∈ Γ with Lb(P ) = Lc(P ) = 2. Suppose
again for a contradiction that P is a filter of some Γ-colored minuscule poset Q.
Repeating the reasoning from the above paragraph, we can find consecutive elements
s < t of color b and u < v of color c, with s, u ∈ Q−P and t, v ∈ P . These elements
are pairwise comparable by EC and AC. If s < u, then (s, t) violates ICE2. If u < s,
then (u, v) violates ICE2. Thus (c) holds.

The final lemma in this section provides the starting point for the downward
extension process.

Lemma 6.7. Fix integers i ≥ 1 and k ≥ j ≥ 1 and let T be the unique Γ-colored
d-complete poset of shape Y (i; j, k) colored by simply laced Γ. Then Lb(T ) ≤ 2 for
all b ∈ Γ and Lc(T ) = 2 if and only if c = κ(s), where s is the splitting element of
T .

Proof. The poset T is its own top tree. Using Proposition 4.3, the sum Lb(T ) for
any color b ∈ Γ is just the number of elements covered by the element of color b in
T . The result follows since s covers two elements in T and every other element of T
covers at most one element.

Fix integers i ≥ 1 and k ≥ j ≥ 1 and let T be the unique Γ-colored d-complete
poset of shape Y (i; j, k) colored by simply laced Γ. We now describe the extension
process used to show that either T is not the top tree of any Γ-colored minuscule
poset, or that there is a unique Γ-colored minuscule poset with top tree T . Each
stage in this process has two steps. Here we merely list the steps; we justify why
each step may be performed in the proof of Theorem 6.8. Define P0 := T .

1. Assessment step: Start with a valid Γ-colored d-complete poset Pl for some
l ≥ 0. This poset is either given (if l = 0) or produced in an earlier stage of the
process (if l > 0). Assess the poset Pl and determine if the process terminates,
which can happen in one (or more) of three ways:
(a) The poset Pl satisfies Lb(Pl) ≤ 1 for every b ∈ Γ.
(b) The poset Pl satisfies Lb(Pl) > 2 for some b ∈ Γ.
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(c) The poset Pl satisfies Lb(Pl) = Lc(Pl) = 2 for some pair of adjacent
b, c ∈ Γ.

Otherwise, the process continues and we define the color extension set El+1(T )
:= {b ∈ Γ | Lb(Pl) = 2}.

2. Extension step: Fix an ordering a1, . . . , ar of the colors in El+1(T ) and form

the sequence of extensions P (r) ar−→ P (r−1) ar−1−−→ · · · a2−→ P (1) a1−→ P . Define
Pl+1 := P (r) and return to the assessment step.

We say the posets Pl for l > 0 produced in this process are rank complete and justify
that terminology in the following proof. This process must terminate by Theorem
2.5. We say the final poset produced in this process is a maximal rank complete
Γ-colored d-complete poset with top tree T .

Theorem 6.8. Fix integers i ≥ 1 and k ≥ j ≥ 1 and let T be the unique Γ-colored
d-complete poset of shape Y (i; j, k) colored by simply laced Γ. Then there is a unique
maximal rank complete Γ-colored d-complete poset P with top tree T , and
(a) If Lb(P ) ≤ 1 for all b ∈ Γ, then P is the unique Γ-colored minuscule poset with

top tree T .
(b) If Lb(P ) > 1 for some b ∈ Γ, then there is no Γ-colored minuscule poset with

top tree T .

Proof. It follows from [29, Prop. 3.1(b) and Cor. 3.4] that finite Γ-colored posets
satisfying S1, S2, and S4 are ranked. By Theorem 2.4, this shows that all finite
Γ-colored d-complete posets are ranked. Define the unique maximal element of T to
have rank −i, and choose the rank function such that if x → y in T then the rank of
x is one greater than the rank of y. For example, the rank of the splitting element
s is −1. This particular rank function is chosen for notational reasons that will be
convenient for the proof, and it uniquely determines the rank of any element in a
connected finite Γ-colored d-complete poset with top tree T .

The poset P0 = T never terminates at the assessment step by Lemma 6.7. More-
over, by that lemma we have E1(T ) = {c}, where c is the color of s. Thus the
extension step consists of a single extension by c to produce P1. Lemma 6.2 shows
the extension P1 is unique, with the extending element in P1 − P0 covered precisely
by the elements below s with colors adjacent to c. By NA, these are the two elements
of rank 0 covered by s. Hence the extending element in P1 − P0 has rank 1 in P1.

Now let l > 0 and suppose that there is a unique Γ-colored d-complete poset
Pl produced by this process, and that the elements in Pl − Pl−1 have rank l in Pl.
Suppose the process does not terminate at the assessment step for Pl and define the
color extension set El+1(T ). The colors in El+1(T ) are pairwise distant since the
process did not terminate via condition (c) at the assessment step for Pl. Hence
extending Pl by some b ∈ El+1(T ) does not affect the lower frontier census for any
other a ∈ El+1(T ). This implies by Lemma 6.5 that the extension step may proceed
for Pl, and in any order. Lemma 6.3 implies that the resulting poset Pl+1 is the
unique Γ-colored d-complete poset produced by the extension step applied to Pl. No
color in El+1(T ) was in El(T ), since Lb(Pl) = 0 for all b ∈ El(T ). So colors appeared
in El+1(T ) as a result of the extension step that produced Pl. Hence for every color
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in El+1(T ), there is at least one element in Pl − Pl−1 with an adjacent color. Since
the elements of Pl − Pl−1 are minimal in Pl, this shows by Lemma 6.2 that each
element in Pl+1 − Pl is covered by at least one element in Pl − Pl−1. Since the latter
elements have rank l, the elements in Pl+1 − Pl each have rank l + 1 in Pl+1.

Thus iterating this process produces unique rank complete Γ-colored d-complete
posets until it terminates. Therefore the maximal rank complete Γ-colored d-comp-
lete poset P with top tree T is unique.

Now suppose Q is a Γ-colored minuscule poset with top tree T . By Theorem 2.5
the poset Q is finite. Since T is a filter of Q and Q is ranked, it follows that Q can be
reconstructed from T by filling in elements downwardly rank-by-rank. Since every
filter of Q must be Γ-colored d-complete, any such rank-by-rank extension of T to
Q must proceed via the color extensions of this section. Lemma 6.5 shows extension
opportunities for a given color arise precisely when the lower frontier census of that
color equals two. Since Q satisfies LCB1, we see every possible extension must occur
to successfully produce Q. In other words, we may not proceed with extending by
elements of the next rank until all possible extensions are completed with elements
of the current rank; no extensions may be skipped. Thus the process used to produce
the unique maximal rank complete Γ-colored d-complete poset P is the beginning of
this downward rank-by-rank extension process to produce Q from T , and so P is a
filter of Q. This shows P must be isomorphic to a filter of every Γ-colored minuscule
poset with top tree T .

Now we consider how the extension process terminated to produce P . If Lb(P ) ≤
1 for every b ∈ Γ, then Lemma 6.6(a) shows that P is Γ-colored minuscule and
Lemma 6.5 shows that P cannot be extended by any color. This proves (a). Now
suppose that Lb(P ) > 1 for some b ∈ Γ, so that the process terminated at the
assessment step condition (b) or (c). Then Lemma 6.6(b) or (c), respectively, shows
that P is not a filter of any Γ-colored minuscule poset. This proves (b).

7 Finite Γ-colored minuscule posets with top tree T = Y (i; j, k)

Theorem 7.4 is our main result in this section, where we classify the slant irreducible
Γ-colored minuscule posets for which Γ is simply laced and contains more than one
color. We use this result with Proposition 3.4 and Theorems 3.7 and 4.6 to handle
the connected finite Γ-colored minuscule case in Theorem 8.1.

Our main tool for obtaining Theorem 7.4 is Theorem 6.8. Part (a) of that re-
sult will be used in Proposition 7.1 to produce connected finite Γ-colored minuscule
posets. Part (b) will be used in Proposition 7.2 to rule out all other cases.

Proposition 7.1. Fix integers i ≥ 1 and k ≥ j ≥ 1 and let T be the unique Γ-
colored d-complete poset of shape Y (i; j, k) colored by simply laced Γ. Then there
exists a unique connected finite Γ-colored minuscule poset with top tree T in each of
the following cases:
(a) When i = 1 and k ≥ j ≥ 1, as displayed in Figure 7.1(a),
(b) When i > 1 and k = j = 1, as displayed in Figure 7.1(b),
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(c) When i = 2 and j = 1 and k > 1, as displayed in Figure 7.1(c) separately for
even k and odd k,

(d) When i = 3 and j = 1 and k = 2, as displayed in Figure 7.1(d), and
(e) When i = 4 and j = 1 and k = 2, as displayed in Figure 7.1(e).

Proof. Each poset displayed in Figure 7.1 can be obtained from the downward ex-
tension process of Section 6 starting with the specified top tree T = Y (i; j, k). It is
easily verified that each is Γ-colored minuscule. Theorem 6.8(a) shows they are the
unique Γ-colored minuscule posets with their respective top trees.

Having obtained connected finite Γ-colored minuscule posets in the previous re-
sult, we now examine three cases in which no Γ-colored minuscule posets exist.

Proposition 7.2. Fix integers i ≥ 1 and k ≥ j ≥ 1 and let T be the unique Γ-
colored d-complete poset of shape Y (i; j, k) colored by simply laced Γ. Then there are
no Γ-colored minuscule posets with top tree T in each of the following cases:
(a) When i > 1 and k ≥ j > 1,
(b) When i > 2 and j = 1 and k > 2, and
(c) When i > 4 and j = 1 and k = 2.

Proof. Following the extension process described in Section 6, we produced a nec-
essary portion of the unique maximal rank complete Γ-colored d-complete poset P
with the specified top tree T for each case. The results for (a), (b), and (c) are
respectively displayed in Figure 7.2(a), (b), and (c). Color extension sets obtained
in the process are also displayed. These extension processes terminated respectively
at the third, fifth, and ninth assessment steps. For each P produced, there is a color
q for which Lq(P ) = 3. Hence Theorem 6.8(b) shows there is no Γ-colored minuscule
poset with top tree T in these three cases.

We can now classify the slant irreducible Γ-colored minuscule posets when Γ is
simply laced and contains more than one color. To state this classification concisely,
we first name the types of Γ-colored posets appearing in it.

Definition 7.3. Let P be a finite Γ-colored poset.
(a) If P is isomorphic to a poset of the form displayed in Figure 7.1(a), then P has

type A exterior.
(b) If P is isomorphic to a poset of the form displayed in Figure 7.1(b), then P

has type D standard.
(c) If P is isomorphic to a poset of the form displayed in Figure 7.1(c), then P has

type D spin.
(d) If P is isomorphic to the poset displayed in Figure 7.1(d), then P has type E6.
(e) If P is isomorphic to the poset displayed in Figure 7.1(e), then P has type E7.

Now we obtain the main result of this section.

Theorem 7.4. Let P be a connected finite Γ-colored minuscule poset and assume
Γ is simply laced and contains more than one color. If P is slant irreducible as a
Γ-colored d-complete poset, then P has type A exterior, type D standard, type D
spin, type E6, or type E7.
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Figure 7.1: The Γ-colored minuscule posets of Proposition 7.1 with top trees T =
Y (i; j, k) for i ≥ 1 and k ≥ j ≥ 1. (a) Vertically aligned elements have the same
color. The color h is the k + 1st node from the left in Γ. If j = k, then e = h.
(b) Vertically aligned elements have the same color, except for the unique element
of color f . (c) There are two possibilities depending on whether k is even or odd.
Vertically aligned elements have the same color except for the leftmost elements,
which alternate between colors a and c.

Proof. Since Γ contains more than one color, so does the top tree T . Hence Corollary
5.5 shows T has shape Y (i; j, k) for some integers i ≥ 1 and k ≥ j ≥ 1.

If i = 1, then Proposition 7.1(a) shows P has type A exterior. Now assume i > 1.
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Figure 7.2: Necessary portions of the unique maximal rank complete Γ-colored d-
complete posets P of Proposition 7.2 with top trees T = Y (i; j, k) for i ≥ 1 and
k ≥ j ≥ 1. Gray elements and edges are not part of the top trees. Color extension sets
(or subsets thereof) are written in line with extending elements of the corresponding
colors and ranks. (a) We have Lb(P ) = 3. (b) We have Lc(P ) = 3. (c) We have
Le(P ) = 3.

Proposition 7.2(a) shows that j = 1. If k = 1, then Proposition 7.1(b) shows P has
type D standard. Now assume k > 1. If i = 2, then Proposition 7.1(c) shows P has
type D spin. Now assume i > 2. Proposition 7.2(b) shows k = 2 and Proposition
7.2(c) shows i = 3 or i = 4. Proposition 7.1(d) (respectively 7.1(e)) shows that P
has type E6 (respectively E7) in this case.

8 Main classification results

Our main classification result is presented in Theorem 8.1, where we classify all Γ-
colored minuscule posets. This result is aided by Proposition 25 of [32], which shows
how a Γ-colored minuscule poset decomposes into a disjoint union of connected Γ-
colored minuscule posets. We then give an overview of representation definitions
given in [31] and apply [31, Thm. 38(b)] to obtain the classification of P -minuscule
representations in Theorem 8.4.

The connected finite Γ-colored minuscule posets appearing in Theorem 8.1(i) are
Proctor’s colored minuscule posets. After defining uncolored minuscule posets using
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weight diagrams of minuscule representations, he then identified them with certain
posets of coroots in the associated finite Lie types and used this identification to
produce their original coloring maps. We recover these realizations in Section 9 in
our setting using the classification of Theorem 8.1(i). See Figure 8.1 for the Hasse
diagrams of all connected finite Γ-colored minuscule posets and their corresponding
Dynkin diagrams of finite Lie type.

The connected infinite Γ-colored minuscule posets appearing in Theorem 8.1(ii)
are the full heaps of Green. These posets were the main objects of study in [7]
and were originally used by Green to construct representations of affine Lie algebras
[5] and affine Weyl groups [6]. Green classified all full heaps colored by Dynkin
diagrams of affine Lie type in Theorem 6.6.2 of [7]. His doctoral student, McGregor-
Dorsey, showed in Theorem 4.7.1 of [15] that if a connected Dynkin diagram colors
a full heap, then it must have affine Lie type. Hence Green’s classification lists all
connected full heaps. See [15, Appx. C] for the Hasse diagrams of all connected full
heaps and [15, Appx. A] for the corresponding Dynkin diagrams of affine Lie type.
We translate between our setting and Green’s in Section 9 and describe a connection
between finite and infinite Γ-colored minuscule posets via the “principal subheaps”
of full heaps.

Theorem 8.1. Let P be a Γ-colored poset. Then P is Γ-colored minuscule if and
only if P is a disjoint union of connected posets in which each is isomorphic to one
of the following:
(i) A finite poset of type A standard, A exterior, B, C, D standard, D spin, E6,

or E7, or
(ii) An infinite poset that is one of the connected full heaps of Theorem 6.6.2 of

[7].
In this case Γ is the disjoint union of the Dynkin diagrams coloring the connected
components of P . These Dynkin diagrams have finite Lie type for posets listed in (i)
and affine Lie type for posets listed in (ii).

Proof. By [32, Prop. 25], a poset (P,Γ, κ) is Γ-colored minuscule if and only if
it decomposes into at most |Γ| triples (P1,Γ1, κ1), . . . , (Pr,Γr, κr), where P is the
disjoint union of the connected posets P1, . . . , Pr and Γ is the disjoint union of the
connected Dynkin diagrams Γ1, . . . ,Γr and Pi is Γi-colored minuscule for all 1 ≤
i ≤ r. Hence the proof reduces to the connected case, so we now assume that P is
connected.

Suppose P is a connected finite Γ-colored minuscule poset. If Γ is multiply laced,
then P has type B or type C by Theorem 3.7. Now assume Γ is simply laced. If
P is a chain, then P has type A standard by Theorem 4.6. Now assume P is not a
chain so that Γ contains more than one color by EC. Then P is slant irreducible as
a Γ-colored d-complete poset by Proposition 3.4 and so Theorem 7.4 shows P has
type A exterior, D standard, D spin, E6, or E7. Conversely, all of these types are
Γ-colored minuscule.

Now suppose P is a connected infinite Γ-colored minuscule poset. Then both
P and the order dual P ∗ are connected infinite Γ-colored d-complete posets. Thus
Theorem 2.6 shows both P and P ∗ are filters of connected full heaps. Hence for every
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Figure 8.1: Hasse diagrams and colorings for all connected finite Γ-colored minuscule
posets.
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a ∈ Γ, the set Pa is unbounded above and below and is isomorphic as an uncolored
poset to Z. Thus G3 holds, and so P is a full heap. Conversely, if P is a full heap,
then it satisfies G3. Hence UCB1 and LCB1 hold vacuously, and so P is Γ-colored
minuscule.

The statement about finite and affine Lie types holds by inspection; see [13,
§4.8].

We now show how our work applies to Kac–Moody representation theory. The
algebraic terms used here are precisely defined in [14]. Let Γ be a Dynkin diagram
and set n := |Γ| and [n] := {1, 2, . . . , n}. Fix a bijection ν : Γ → [n] to number the
nodes of Γ. Under this numbering, the matrix [θν(a),ν(b)] becomes a generalized Cartan
matrix. For brevity, we will usually identify a ∈ Γ with ν(a) ∈ [n]; for example, we
will write [θab] for the generalized Cartan matrix with the ordering understood.

Remark 8.2. The generalized Cartan matrix [θab] may or may not be symmetrizable.
If Γ colors either a Γ-colored d-complete or Γ-colored minuscule poset, then [θab]
is symmetrizable. The Γ-colored d-complete case is handled by Proposition 27 of
[32], and the Γ-colored minuscule case follows from Theorem 8.1 since Γ must have
connected components of finite or affine Lie type.

The matrix [θab] can be used to create the Kac–Moody algebra g. The Kac–Moody
derived subalgebra is g′ := [g, g], where [·, ·] is the Lie bracket for g. This subalgebra
can be defined with generators {xa, ya, ha}a∈Γ subject to the following relations:

(XX) [xa, [xa, . . . , [xa︸ ︷︷ ︸
1− θba times

, xb] . . . ]] = 0 for all a, b ∈ Γ such that a 
= b,

(YY) [ya, [ya, . . . , [ya︸ ︷︷ ︸
1− θba times

, yb] . . . ]] = 0 for all a, b ∈ Γ such that a 
= b,

(HH) [hb, ha] = 0 for all a, b ∈ Γ,
(HX) [hb, xa] = θabxa for all a, b ∈ Γ,
(HY) [hb, ya] = −θabya for all a, b ∈ Γ, and
(XY) [xa, yb] = δabha for all a, b ∈ Γ, where δab is the Kronecker delta.

Let P be a locally finite Γ-colored poset. The splits of P are the pairs (F, I) where
F is a filter of P and I := P−F is its corresponding ideal. Let FI(P ) denote the set
of all splits of P and let V := 〈FI(P )〉 be the complex vector space with basis FI(P ).
The basis vector corresponding to (F, I) ∈ FI(P ) is denoted 〈F, I〉. Let a ∈ Γ and
(F, I) ∈ FI(P ). If there are finitely many elements of color a that are minimal
in F (respectively maximal in I), then define Xa.〈F, I〉 :=

∑〈F − {x}, I ∪ {x}〉
(respectively Ya.〈F, I〉 :=

∑〈F ∪ {x}, I − {x}〉), where the sum is taken over those
minimal (respectively maximal) elements of F (respectively I) of color a. If these
sums exist for all b ∈ Γ and (F, I) ∈ FI(P ), then extend these functions linearly to
V and call them the color raising (respectively lowering) operators on V . Note that
the property EC is sufficient to guarantee these operators exist, since then all sums
defining these operators will have at most one term.

We made the following definitions in [30, 31].

Definition 8.3. Suppose P is a locally finite Γ-colored poset and the operators
{Xa, Ya}a∈Γ are defined on V .
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(a) We say FI(P ) carries a representation of g′ if there exist diagonal opera-
tors {Ha}a∈Γ (with respect to the basis of splits) such that the operators
{Xa, Ya, Ha}a∈Γ satisfy the relations XX, YY, HX, HY, and XY for g′ under
the commutator [A,B] := AB − BA on End(V ).

(b) A representation of g′ carried by FI(P ) is P -minuscule if the eigenvalues for
the diagonal operators {Ha}a∈Γ on the basis of splits are in the set {−1, 0, 1}.

There was no need to require the relation HH in Part (a) of Definition 8.3; this
relation holds automatically since the operators {Ha}a∈Γ are diagonal on the basis
of splits.

One of the main results from [31] stated that a Γ-colored poset P is Γ-colored
minuscule if and only if the lattice FI(P ) carries a P -minuscule representation of
g′. This result was obtained in the simply laced case as Theorem 38(b) of [31] and
in the general case as Theorem 6.1.1(b) of [30]. Applying Theorem 8.1 obtains the
classification of P -minuscule representations.

Theorem 8.4. Let P be a Γ-colored poset. Then FI(P ) carries a P -minuscule
representation of g′ if and only if P is a disjoint union of connected posets in which
each is isomorphic to one of the following:
(i) A finite poset of type A standard, A exterior, B, C, D standard, D spin, E6,

or E7, or
(ii) An infinite poset that is one of the connected full heaps of Theorem 6.6.2 of

[7].

For a P -minuscule representation of g′, the diagonal operators {Ha}a∈Γ are uniquely
determined by the rule

Hb.〈F, I〉 =
⎧⎨
⎩

−〈F, I〉 if b is the color of a minimal element of F
〈F, I〉 if b is the color of a maximal element of I

0 otherwise

for every b ∈ Γ and (F, I) ∈ FI(P ). See Proposition 33 and Theorem 35 of [31] for
the simply laced case and Theorem 5.4.2 of [30] for the general case.

9 Minuscule posets, Weyl group elements, and coroots

In Theorem 9.2 we realize connected finite Γ-colored minuscule posets as posets of
colored coroots. This result recreates the 1984 theorem of Proctor [18, Thm. 11]
that produced the first appearance of colored minuscule posets, but in our axiomatic
setting. We also discuss other appearances of Γ-colored minuscule posets. The
algebraic objects we are primarily concerned with are semisimple Lie algebras and
their representations, and so [10] may be consulted for most definitions and basic
facts.

Let g be a semisimple Lie algebra of rank n. Finite dimensional irreducible
representations of g are parameterized by the dominant integral weights via their
highest weights. The Weyl group W acts on the set of weights of each representation.
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If V (λ) is the irreducible representation of g with highest weight λ, then it is a
minuscule representation if the Weyl group action on weights is transitive. Such
highest weights λ are called minuscule weights ; they exist in finite Lie types An for
n > 0, Bn for n > 1, Cn for n > 2, Dn for n > 3, and E6 and E7. (Restrictions on n
prevent redundant types.) Each minuscule weight is one of the fundamental weights
{ω1, . . . , ωn}; the list of minuscule weights is given in [2, Ch. VIII, §7.3].

The Weyl group is generated by the simple reflections in S = {s1, . . . , sn}. If
J ⊆ S, then it generates the parabolic subgroup WJ of W . The left cosets in the
quotient W/WJ each have a unique minimal length representative; let W J denote
the set of these elements. Here W J inherits the Bruhat order from W (see [1]). The
Bruhat poset W J was developed to study the corresponding flag manifold G/PJ .
Denote 〈j〉 := S − {sj}. By 1978, Seshadri had obtained his standard monomial
bases [27] for the minuscule flag manifolds G/P〈j〉 by working with the Bruhat poset
W 〈j〉 when ωj is minuscule.

The weights of any representation of g are ordered by the simple roots {α1, . . . , αn}
via the rule ν ≤ μ if μ − ν is a non-negative integral sum of simple roots. Let ωj
for 1 ≤ j ≤ n be a minuscule weight and let V (ωj) be the corresponding minuscule
representation. Using a process (later called the numbers game of Mozes [16]) to
simultaneously generate the weight diagram of V (ωj) and minimal length coset rep-
resentatives in W 〈j〉, Proctor proved [18, §§3–4] that the weight diagram of V (ωj)
is dual isomorphic to W 〈j〉 and that these structures are distributive lattices. Let
P be the poset of join irreducible elements of the weight diagram of V (ωj). Then
this weight diagram is isomorphic to the distributive lattice J(P ) of order ideals of
P , ordered by inclusion. The set FI(P ) of splits introduced in Section 8 is just a
reformulation of J(P ). If g has finite Lie type Ln for L ∈ {A,B,C,D,E}, then we
denote this uncolored poset P by �n(j).

Posets that arise this way are thus indexed by minuscule weights; the full list is
an(1), an(2), . . . , an(n) for n > 0, bn(n) for n > 1, cn(1) for n > 2, dn(1), dn(n − 1),
and dn(n) for n > 3, e6(1), e6(5), and e7(6), with fundamental weights corresponding
to the node numbering given in [13, §4.8]. These posets are the irreducible minuscule
posets of [18, §4]. We remark that some minuscule posets are isomorphic (e.g. an(j) ∼=
an(n + 1 − j) for 1 ≤ j ≤ n), even across Lie types (e.g. bn−1(n − 1) ∼= dn(n) ∼=
dn(n − 1) for n > 3), but are listed separately to emphasize the distinct minuscule
representations from which they arise.

We introduce an analogous notation for the connected finite Γ-colored minuscule
posets of Theorem 8.1(i) that is also indexed by minuscule weights. Fix such a poset
P with coloring κ : P → Γ, and let n := |Γ|. If P has type L for L ∈ {A,B,C,D,E}
(possibly with standard, exterior, or spin variant), then Γ has finite Lie type Ln. Let
Aut(Γ) be the group of diagram automorphisms of Γ. This group has order one for
A1, two for An for n > 1, one for Bn for n > 1, one for Cn for n > 2, six for D4,
two for Dn for n > 4, two for E6, and one for E7. Fix ϕ ∈ Aut(Γ) and suppose the
maximal element of P has color a. Using the numbering ν : Γ → [n] from [13, §4.8],
we denote by �κn(νϕ(a)) the Γ-colored minuscule poset obtained from P by replacing
all colors with the new set of colors [n] via the bijection νϕ : Γ → [n].

Repeating for each connected finite Γ-colored minuscule poset of type L and each
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Figure 9.1: From left to right: The Γ-colored minuscule posets aκ4(1), a
κ
4(2), a

κ
4(3),

and aκ4(4).

ϕ ∈ Aut(Γ) produces exactly one poset �κn(j) up to Γ-colored poset isomorphism for
each minuscule weight ωj in type Ln. The maximal element of �κn(j) has color j.
This notation for the Γ-colored case is compatible with the uncolored case in the
sense that the uncolored poset �n(j) is the underlying poset for �κn(j).

See Figure 9.1 for aκ4(1), a
κ
4(2), a

κ
4(3), and a

κ
4(4) in type A4. In this example, both

aκ4(1) and a
κ
4(4) come from the type A standard Γ-colored minuscule poset with four

colors and both aκ4(2) and a
κ
4(3) come from the type A exterior Γ-colored minuscule

poset with four colors. Both aκ4(1) and a
κ
4(2) come from the identity automorphism

on Γ and both aκ4(3) and aκ4(4) come from the nonidentity automorphism on Γ.
Sometimes a redundant copy of a poset will be produced, as can be seen in type A5

with aκ5(3) arising twice.
Proctor’s results discussed above first appeared in his 1980 thesis before appear-

ing in Sections 3 and 4 of [18]. After reading this thesis, Robert Steinberg suggested
exploring the relationship between the uncolored minuscule posets �n(j) of join irre-
ducibles and certain sets of roots, at least in types A, D, and E. In Theorem 11 of
[18], Proctor gave a general realization of each poset on his list with certain sets of
coroots in the corresponding finite Lie type. Theorem 11 also contained a coloring of
these coroots. We recover these realizations for connected finite Γ-colored minuscule
posets in Theorem 9.2 below.

Let (Φ∨)+ and (Φ∨)− be the positive and negative coroots in type Ln, respectively,
and Φ∨ := (Φ∨)+ ∪ (Φ∨)−. The standard order on Φ∨ is analogous to the root
order described above. Let P be the connected finite Γ-colored minuscule poset
�κn(j) of finite type Ln. Let F be a nonempty filter of P . Then F is a Γ′-colored d-
complete poset, where Γ′ is the (connected) subdiagram of Γ with colors in κ(F ). This
subdiagram Γ′ corresponds to a coroot subsystem of Φ∨ and a parabolic subgroup
of W ; we consider all Lie objects for Γ′ (e.g. coroots, Weyl group elements) to have
type Ln. In other words, we are considering F to be a Γ-colored d-complete poset
even if its coloring is not surjective.

In [29], Stembridge did not require dominant minuscule heaps to be colored surjec-
tively outside of his classification in Section 4; we use only his Sections 3 and 5 below.
Thus as a Γ-colored d-complete poset, the filter F from the previous paragraph is a
dominant minuscule heap by Theorem 2.4. As in [29, §3], there is a dominant integral
weight λ and λ-minuscule [4] Weyl group element w such that F is the heap of w.
All reduced expressions of w are produced from linear extensions of F by recording
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the order of colors appearing in the linear extension and producing a word inW as a
product of the corresponding simple reflections. Hence the length of w is l(w) = |F |.
Since W also acts on coroots, let Φ∨(w) :=

{
α∨ ∈ (Φ∨)+ | wα∨ ∈ (Φ∨)−

}
be the

inversion set of w; i.e. the positive coroots that become negative under the action
of w.

For use in the proof of Theorem 9.2, we state the following lemma in the con-
text just described. We note that it holds more generally for any connected finite
Γ-colored d-complete poset, which must have symmetrizable Kac–Moody type by
Remark 8.2. Recall by Lemma 3.3 that P has a unique maximal element.

Lemma 9.1. Let P be the connected finite Γ-colored minuscule poset �κn(j). Let F be
a nonempty filter of P and let w be the dominant λ-minuscule Weyl group element
for which F is its heap.
(a) The element w is in W 〈j〉.
(b) The filter F is dual isomorphic as an uncolored poset to Φ∨(w).
(c) Let Φ∨

j be the filter of (Φ∨)+ generated by α∨
j . Then Φ∨(w) is an order ideal of

Φ∨
j .

Proof. Every linear extension of F ends with the unique maximal element of P
colored j, so every reduced expression of w ends in sj. Using this fact, Lemma 2.4.3
and Corollary 2.4.5(i) of [1] show that w ∈ W 〈j〉, proving (a). Theorem 5.5 of [29],
which holds for any symmetrizable Kac–Moody type, implies (b). For (c), note using
(b) that the unique maximal element of F corresponds to a unique minimal element
of Φ∨(w). Since every reduced expression for w ends in sj , Corollary C of [10, §10.2]
shows that α∨

j ∈ Φ∨(w). Hence α∨
j must be the unique minimal element of Φ∨(w)

since it is minimal in (Φ∨)+. Since Φ∨(w) is a convex subposet of coroots [29, Rem.
5.6(a)], we see that Φ∨(w) is an ideal of Φ∨

j .

We now obtain the realization of P = �κn(j) as a poset of colored coroots. Recall
by Lemma 3.3 that P has a unique minimal element.

Theorem 9.2. Let P be the connected finite Γ-colored minuscule poset �κn(j). For
every x ∈ P , we define Fx to be the filter generated by x and wx to be the dominant
λ-minuscule Weyl group element for which Fx is its heap. Let Φ∨

j be the filter of

(Φ∨)+ generated by α∨
j ; its unique maximal element is the highest coroot in Φ∨.

(a) For all x ∈ P , the filter Fx is dual isomorphic as an uncolored poset to Φ∨(wx).
This poset Φ∨(wx) of coroots is an ideal of Φ∨

j generated by a single element,
which we denote γ∨x .

(b) If x is the unique minimal element of P , then Φ∨(wx) = Φ∨
j and wx is the

longest element w
〈j〉
0 of W 〈j〉.

(c) The map ψ : P → Φ∨
j defined by ψ(x) := γ∨x for all x ∈ P is a dual isomorphism

of uncolored posets.
(d) The map ψ induces a coloring κψ : Φ∨

j → Γ of Φ∨
j defined by κψ (γ

∨
x ) := κ(x).

Under this coloring, the posets P and Φ∨
j are dual isomorphic as Γ-colored

posets. Hence Φ∨
j is Γ-colored minuscule.



M.C. STRAYER/AUSTRALAS. J. COMBIN. 81 (3) (2021), 412–446 441

Proof. Let x ∈ P . We apply Lemma 9.1 to the filter Fx and Weyl group element wx.
Part (b) shows that Fx is dual isomorphic as an uncolored poset to Φ∨(wx) and Part
(c) shows that Φ∨(wx) is an ideal of Φ∨

j . Since Fx has a unique minimal element,
this shows Φ∨(wx) has a unique maximal element, proving (a). As in the statement,
we denote this element by γ∨x .

Now suppose x is the unique minimal element of P , so that Fx = P . Since the
unique minimal element of Φ∨(wx) has height 1 and since P and Φ∨(wx) are dual
isomorphic, the largest coroot height appearing in Φ∨(wx) is given by the number of
ranks of P . Note that P is one of the posets displayed in Figure 8.1. By inspecting
these Hasse diagrams, this largest coroot height is n, 2n− 1, 2n− 1, 2n− 3, 11, and
17 in types An, Bn, Cn, Dn, E6, and E7, respectively. These are the heights of the
unique highest coroot in each respective type, and so Φ∨(wx) contains the highest
coroot. That is, the highest coroot is γ∨x and so Φ∨(wx) = Φ∨

j .

We note that wx ∈ W 〈j〉 by Lemma 9.1(a). An alternate characterization of W 〈j〉

is the set of Weyl group elements whose actions on the coroots in (Φ∨)+−Φ∨
j remain

positive; see [14, Exer. 1.3.E]. Thus Φ∨
(
w

〈j〉
0

)
⊆ Φ∨

j for the longest element w
〈j〉
0 of

W 〈j〉. Since Weyl group length satisfies l(u) = |Φ∨(u)| for every u ∈ W , it follows

that l
(
w

〈j〉
0

)
≤ |Φ∨

j |. Hence l(wx) = |Φ∨(wx)| =
∣∣Φ∨

j

∣∣ shows that wx has maximum

possible length in W 〈j〉, i.e. wx = w
〈j〉
0 . This finishes the proof of (b).

The second paragraph of this proof shows that P is dual isomorphic to Φ∨
j . Hence

|P | = ∣∣Φ∨
j

∣∣, and so to show ψ is a bijection it suffices to show it is injective. Suppose
that x, y ∈ P with ψ(x) = ψ(y). Since the ideals Φ∨(wx) and Φ∨(wy) of Φ∨

j are
respectively generated by γ∨x and γ∨y , which are equal by assumption, this shows that
Φ∨(wx) = Φ∨(wy). Hence wx = wy since distinct Weyl group elements have distinct
inversion sets. Since reduced expressions for wx and wy are respectively produced
from linear extensions of the filters Fx and Fy, this shows Fx = Fy. Thus x = y and
so ψ is injective.

Now let x be any element of P ; we produce an explicit realization of Φ∨(wx).
Suppose |Fx| = f and let xf := x → · · · → x1 be any linear extension of Fx. Set
ik := κ(xk) for 1 ≤ k ≤ f . Then sif · · · si1 is a reduced expression for wx and Φ∨(wx)
is given by

α∨
i1
, si1

(
α∨
i2

)
, . . . , si1 · · · sif−2

(
α∨
if−1

)
, si1 · · · sif−1

(
α∨
if

)
; (9.1)

for example, see [11, Ex. 5.6.1]. If f = 1, then x is the unique maximal element of
P and so γ∨x = α∨

j = α∨
i1. If f > 1, then this realization can be repeated with the

filter F ′ := F − {x} and its corresponding Weyl group element w′ := sif−1
· · · si1,

producing Φ∨ (w′) as the first f − 1 coroots in sequence (9.1). Since Φ∨ (w′) is an
ideal of Φ∨

j by Lemma 9.1(c), we have Φ∨(w′) = Φ∨(wx) − {γ∨x }. So γ∨x is the final
coroot in (9.1).

Suppose that x ≤ y in P . Form a linear extension of Fy and extend it to a linear
extension of Fx. By the previous paragraph, this linear extension for Fx produces
a coroot sequence as in (9.1) culminating in γ∨x . The coroot in position |Fy| of this
sequence is γ∨y (also by the preceding paragraph), so γ∨y ∈ Φ∨(wx). Since γ∨x is the
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Figure 9.2: The Γ-colored minuscule poset aκ4(2) is displayed on the left, with colors
displayed as subscripts. Positive coroots of type A4 are displayed on the right, with
the set Φ∨

2 in the dashed box.

unique maximal element of Φ∨(wx), we see that γ∨x ≥ γ∨y . Hence ψ is an order
reversing bijection. Since we know that P is dual isomorphic to Φ∨

j , it follows that ψ
must be a dual isomorphism; i.e. that γ∨x ≥ γ∨y implies x ≤ y as well. This proves (c).

Let idΓ : Γ → Γ be the identity automorphism. Then κψψ = idΓκ by definition,
so P and Φ∨

j are dual isomorphic as Γ-colored posets, proving (d).

Remark 9.3. (a) Let P be a connected finite Γ-colored d-complete poset and sup-
pose Γ has finite Lie type Ln. Suppose that j is the color of the unique maximal
element of P . Lemma 9.1 and Theorem 9.2 can be viewed as showing that the
downward color extension process used in Section 6 to produce new Γ-colored
d-complete posets corresponds to lengthening elements of W 〈j〉 by multiplying
by simple reflections on the left and to growing ideals of Φ∨

j upwardly. These

parallel extensions respectively produce �κn(j), w
〈j〉
0 , and Φ∨

j when the process
terminates with a Γ-colored minuscule poset.

(b) The coloring of Φ∨
j given in Theorem 9.2(d) can be seen to be the coloring given

by Proctor in [18, Thm. 11] after adjusting for differing conventions. Proctor
was not using the axiomatically defined poset �κn(j), so he instead produced
the Weyl group words and coroot actions appearing in Section 11 of [18] using
the numbers game. These colored sets of coroots were the first appearance of
colored minuscule posets, as noted in the top left corner of Table 1.1 displayed
in the introduction.

See Figure 9.2 for an example consisting of the Γ-colored minuscule poset aκ4(2)
and the dual isomorphic poset Φ∨

2 in type A4. As in Theorem 9.2, each element
s ∈ aκ4(2) maps to γ∨s under the dual isomorphism ψ; a linear extension of Fs gives a
reduced expression for ws, which recovers γ∨s as the last coroot of the sequence (9.1).
For example, the linear extension z → y → x → w → v → u of Fz produces the
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Weyl group element wz = s3s4s2s3s1s2, which is the longest element w
〈2〉
0 in W 〈2〉.

Then γ∨z = s2s1s3s2s4 (α
∨
3 ) = α∨

1 + α∨
2 + α∨

3 + α∨
4 . Colors for Φ∨

2 given by κψ are
displayed under each coroot in the figure.

If one is only interested in uncolored posets, then there is no need to dualize since
uncolored minuscule posets are self-dual. Likewise, in the uncolored minuscule poset
context, one may identify the poset �n(j) with the filter Φj of roots generated by αj
in type Ln; for example, see [7, Thm. 8.3.10]. But in the case of roots, the analogous
inversion set Φ(ws) for s ∈ �κn(j) is not necessarily an ideal of Φj in multiply laced
types, and so attempting to color Φj as was done in Theorem 9.2 to produce a Γ-
colored minuscule poset fails. One may use the poset bκ2(2) and roots Φ2 in type B2

as an example.
Connected finite Γ-colored minuscule posets also appear as the principal subheaps

of Green’s full heaps (see [7, Def. 5.5.3]). His notation for full heaps in Theorem
6.6.2 of [7], which we cite in our classification Theorem 8.1(ii), uses this association.
Let ε : FH(Γ(j)) → Γ be one of the connected full heaps from Theorem 6.6.2. Then
Γ is a connected Dynkin diagram of affine Lie type, and deleting the node labeled
0 (again labeled by [13, §4.8]) produces a Dynkin diagram Γ0 of finite Lie type Ln
for L ∈ {A,B,C,D,E} and n := |Γ| − 1. The principal subheap of this full heap
appears in an infinitely repeating motif within its Hasse diagram and is isomorphic
as a Γ0-colored poset to �κn(j). Chapter 6 of [7] contains figures of principal subheaps
embedded within Hasse diagrams of full heaps. For example, the principal subheap
displayed in [7, Fig. 6.12] is the connected finite Γ-colored minuscule poset eκ6(5) (cf.
Figure 7.1(d)). Hence by applying Theorem 8.1 we see that connected finite Γ-colored
minuscule posets are embedded within connected infinite Γ-colored minuscule posets
in infinitely repeating motifs. Each connected finite Γ-colored minuscule poset is
embedded in at least one connected infinite Γ-colored minuscule poset.

Finally, as described in Section 8, the Γ-colored minuscule posets are necessary
and sufficient to build P -minuscule Kac–Moody representations from colored posets.
Influenced by Proctor, Stembridge, and Green, this author developed the defining ax-
ioms for Γ-colored d-complete and Γ-colored minuscule posets as part of his doctoral
work under Proctor when examining which poset coloring properties were required
to satisfy which Lie bracket relations under the actions of the colored raising and
lowering operators, and vice versa. The full results of this pursuit can be found
in [30, 31]. Here we note that the connected finite Γ-colored minuscule poset �κn(j)
produces the P -minuscule representation with basis {〈F, I〉 | (F, I) ∈ FI(P )}, and
this representation is isomorphic to the minuscule representation V (ωj) in type Ln.
The weight diagram of V (ωj) under the standard root order on weights has struc-
ture isomorphic to FI(P ) ordered under inclusion of ideals within the splits. The
actions of the generators {xi, yi, hi}1≤i≤n are given by the operators {Xi, Yi, Hi}1≤i≤n
described in Section 8. For example, the four posets aκ4(1), a

κ
4(2), a

κ
4(3), and a

κ
4(4) in

Figure 9.1 can be used to construct the four minuscule representations of the simple
Lie algebra g = sl5(C) of type A4 with respective highest weights ω1, ω2, ω3, and
ω4. We note that aκ4(1) and a

κ
4(4) (and similarly aκ4(2) and a

κ
4(3)) are isomorphic as

Γ-colored posets, but produce non-isomorphic minuscule representations of g.
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