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Abstract

We address the structure of reconfiguration graphs by considering the
questions of whether the classes of shortest path, coloring, and matroid
independent set reconfiguration graphs are closed under taking union,
Cartesian product, connected components, and Cartesian factors, ex-
panding what is known. In order to give uniform proofs and highlight
the similarities between these classes of graphs we introduce the notion
of abstract reconfiguration spaces and show how certain properties of the
space imply properties of the associated family of graphs.

1 Introduction

A reconfiguration graph for a given search problem has as vertices all feasible so-
lutions to the problem, and two solutions are adjacent if and only if one can be
obtained from the other by one application of a specific reconfiguration rule. The
question of whether the reconfiguration graph is connected has been addressed in
a number of settings, including vertex coloring [5, 8], list-edge coloring [17], clique,
set cover, integer programming, matching, spanning tree, matroid bases [16], block
puzzles [15], shortest path [19], vertex independent set [15, 16, 24, 20], and Boolean
satisfiability [12]. Intimately related to this are the questions of deciding whether two
feasible solutions are in the same connected component and finding paths between
them [6, 10, 9, 16], as well as finding the diameter of the reconfiguration graph, see [4]
for example. Graph theorists have also addressed the questions of classifying the re-
configuration graphs for certain problems such as the shortest path [1], k-coloring [3],
and domination graphs [13]. While a lot of results have been established in this direc-
tion, full characterization of the structure of various classes of reconfiguration graphs
has not been found.

Our initial motivation involved the shortest path reconfiguration problem, which
is interesting in the following sense: While the shortest path problem is polynomially
solvable, the corresponding reconfiguration problem is PSPACE-complete [19]. With
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this in mind, the authors of [1] initiated the study of the structure of shortest path
graphs.

A natural question for a class of graphs is to consider if it is closed under certain
well-known graph operations. Graph products are especially well studied. Median
graphs, of which hypercubes represent a special case, are closed under Cartesian
product [25]. The closure under the Cartesian and other types of graph products of
1-perfectly orientable graphs was addressed in [14]. Graham’s pebbling conjecture
[11] is that the pebbling number of the Cartesian product of two graphs is bounded
above by the product of the pebbling numbers of those graphs. Another natural
operation is disjoint union. Obviously, planar graphs are closed under disjoint union,
as are k-colorable graphs, bipartite graphs, and many more.

In [1] a very natural proof is provided that the class of shortest path graphs
is closed under Cartesian product. A nice intuitive explanation of why k-coloring
reconfiguration graphs are also closed under Cartesian product is given in [3] . With
a bit of effort the authors of [1] showed that shortest path graphs are closed under
disjoint union.

We were intrigued by the “reverse” questions: namely, are shortest path graphs
closed under connected components and under Cartesian factors? In the process
of determining that the answer to the first question is affirmative we realized that
our result was in fact rather general. This lead to a new concept—an abstract
reconfiguration space, the topic of the present paper. To illustrate the power of
our generalization we explore three reconfiguration problems chosen because they
represent, in a sense, a spectrum of possibilities. For k ≥ 4, the vertex coloring
problem is NP-complete, as is its corresponding reconfiguration problem. See [10]
for an interesting discussion of the case k = 3. The matroid independence problem
and its reconfiguration problem are both easy from a complexity point of view.

Thus, in the process of addressing the classification problem, four natural ques-
tions arise:

(Q1) Is a given class of reconfiguration graphs closed under disjoint union?

(Q2) Is a given class of reconfiguration graphs closed under Cartesian product?

(Q3) Is a connected component of a reconfiguration graph necessarily a reconfigura-
tion graph for the same problem (e.g. shortest path, coloring, etc.)?

(Q4) Is a Cartesian factor of a reconfiguration graph necessarily a reconfiguration
graph for the same problem?

In the case of the shortest path reconfiguration graphs, questions (Q1) and (Q2)
have been answered affirmatively in [1]. In the case of k-coloring graphs, question
(Q2) has been addressed affirmatively in [3]. The work in the present paper started
with the goal to answer the remaining questions for these two classes of reconfigura-
tion graphs. The initial proofs we discovered revealed similarities between the two
classes which led us to define abstract reconfiguration spaces and prove properties
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about the closure under these four operations in a more general setting. In order to
show that our setting of abstract reconfiguration spaces is not restrictive to just the
two cases by which it was motivated we answer questions (Q1)-(Q4) for the collection
of independent set reconfiguration graphs of matroids as well, where we apply the
results for abstract reconfiguration spaces.

We see our results as primarily an important contribution to our understanding
of the structure of shortest path reconfiguration graphs. Secondly, we propose that
abstract reconfiguration sequences may yield results in the arena of reconfiguration
more broadly.

We begin, in Section 2, by giving the complete definitions of the three recon-
figuration spaces that we will analyze, as well as giving the necessary notation. In
Section 3 we define abstract reconfiguration spaces and derive some properties about
them. Then, in Section 4 we come back to shortest paths, coloring, and matroid
independent set reconfiguration graphs and we answer questions (Q1)-(Q4) for each
of them, applying the theory of abstract reconfiguration spaces whenever possible.
Table 1 summarizes the results about the reconfiguration graphs under consideration.

Shortest Path Graphs Coloring Graphs Matroid Indep’t Set Graphs
Q1 Yes, [1] No, Example 4.5 No, Section 2.3
Q2 Yes, [1] Yes, [3] Yes, Section 4.3
Q3 Yes, Theorem 4.2 No, Example 4.7 Vacuously true, Sec. 2.3
Q4 Yes, Theorem 4.4 Yes if connected, Thm. 4.10 Yes, Theorem 4.12

Table 1: Answering (Q1)–(Q4) for three classes of reconfiguration problems

2 Background

The disjoint union of graphs G and H will be denoted by G+H. It is the graph with
vertex set (edge set, respectively) equal to the disjoint union of the vertex sets (edge
sets, respectively) of G and H. The Cartesian product G�H of graphs G and H is
a graph such that the vertex set of G �H is the Cartesian product V (G) × V (H);
and two vertices (u, v) and (u′, v′) are adjacent in G�H if and only if either u = u′

and v is adjacent to v′ in H, or u′ = v′ and u is adjacent to v in G. H is a Cartesian
factor of a graph G if there is a graph K such that G = H �K.

2.1 Shortest path reconfiguration graphs

For a graph G and two vertices a and b of G, we will denote by S(G, a, b) the recon-
figuration graph for the shortest paths between a and b. The vertices of S(G, a, b)
are the shortest paths between a and b and two vertices in S(G, a, b) are connected
by an edge if the paths in G differ in exactly one vertex. We say that a graph is a
shortest path reconfiguration graph, or shortest path graph, if it is equal to S(G, a, b)
for some graph G and vertices a and b. The shortest path reconfiguration problem
is noteworthy in that while efficient polynomial time algorithms exist for finding a
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shortest path in a graph, the problem of deciding if a shortest path reconfiguration
graph is connected is PSPACE-complete [6]. The study of the structure of shortest
path reconfiguration graphs was initiated in [1], where the questions (Q1) and (Q2)
were answered.

Theorem 2.1 ([1]). If H and K are shortest path graphs then H + K and H �K
are also shortest path graphs.

Our main results include the affirmative answers to (Q3) and (Q4) for shortest
path graphs. This is done in Section 4.1.

2.2 Coloring reconfiguration graphs

For a positive integer k and a graph G, we will denote by Ck(G) the coloring re-
configuration graph for the proper k-colorings of G. A proper k-coloring of G is an
assignment of one of k colors, typically denoted 1, 2, . . . , k, to each vertex of G such
that no two adjacent vertices are assigned the same color. These form the vertex set
of Ck(G). Two colorings in Ck(G) are adjacent if they differ in the color of exactly
one vertex in G.

The coloring graph arises in theoretical physics when studying the Glauber dy-
namics of an anti-ferromagnetic Potts model at zero temperature (see [2] and the
references therein for the connections). The set of all proper k-colorings of a graph
G forms the state space for a Markov chain with iterations given by randomly recol-
oring a randomly selected vertex of G. When this process exhibits rapid mixing, good
estimates of the total number of proper k-colorings of G are obtained [18, 23, 27].

The connectivity of the k-coloring graph has been addressed in [8], while the
decidability of whether two solutions are in the same connected component has been
addressed in [7].

The positive answer to question (Q2) for k-coloring graphs follows from the fol-
lowing result.

Theorem 2.2 ([3]). If G =
∑n

i=1Gi then Ck(G) = �n
i=1Ck(Gi).

In Section 4.2 we give examples that show that the answers to the questions
(Q1), (Q3), and (Q4) are negative in general, but we show that a Cartesian factor
of a k-coloring reconfiguration graph G is also a k-coloring graph if G is connected.
We will make use of the the following property of coloring graphs that has already
been observed in [3]. We include a proof for completeness.

Lemma 2.3. The order of a k-coloring graph is either 1 or a multiple of k.

Proof. The number of k-colorings of a graph is known to be a polynomial function of
k and given by the so called chromatic polynomial [28]. The claim follows from the
fact that the constant term of the chromatic polynomial is always 0, because there
are no ways to color a graph using zero colors.
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2.3 Matroid independent set reconfiguration graphs

A matroid is a structure that generalizes the properties of independence in vector
spaces, see [26]. It can be defined in several equivalent ways. Here we give the
definition in terms of independent sets.

A finite matroid M is a pair (E, I) where E is a finite set (called the ground set)
and I is a nonempty family of subsets of E (called the independent sets) with the
following properties:

1. (hereditary property) Every subset of an independent set is independent.

2. (augmentation property) If A and B are two independent sets and A is larger
than B, then there exists x ∈ A\B such that B ∪ {x} is in I.

The direct sum of two matroids M1 = (E1, I1) and M2 = (E2, I2) is the matroid
M = (E, I) with E = E1 t E2 and I = {I1 ∪ I2 : I1 ∈ I1, I2 ∈ I2}.

We denote by G(M) the reconfiguration graph for the independent set recon-
figuration problem associated with the matroid M . The vertices of G(M) are the
independent sets of M and two vertices are adjacent if their incidence vectors differ
by one element. If G = G(M) for some matroid M , we refer to G as a matroid inde-
pendent set graph. It follows from the hereditary property that G(M) is connected
for every matroid M . The fact that all matroid independent set graphs are connected
implies that the class is not closed under disjoint union. It is vacuously true that
if G + H is a matroid independent set graph, so are G and H. The fact the direct
sum of matroids is a matroid implies that the Cartesian product of two matroid
independent set graphs is an independent set graph. We will show in Section 4.3
that if G � H is a matroid independent set graph, then so are G and H. We note
that a related concept, namely the basis graph of a matroid has been well studied,
see for example [21, 22].

3 Abstracting reconfiguration graphs

In this section we introduce the concept of ‘reconfiguration space’, one of the goals
being to give uniform treatment to the reconfiguration graphs from Section 2. The
motivation for our definition is the fact that in each of the three cases that we
consider, an instance of the problem corresponds to a collection of sequences. For
example, in the case of shortest path reconfiguration, the shortest paths between a
and b are sequences of vertices in the base graph. We will omit the vertices a and
b in this list. For the coloring reconfiguration problem, we fix an ordering of the
vertices in the base graph, say v1, . . . , vn. Then a coloring c is given by the sequence
c(v1), . . . , c(vn). Lastly, for the matroid independent set reconfiguration problem,
we again fix the ordering of the elements in the ground set and an independent set
is represented by a corresponding 0/1 incidence vector. In each case the sequences
correspond to vertices in the reconfiguration graph. Note that the sequences all have
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the same length and they are adjacent in the reconfiguration graph if they differ in
exactly one position.

In order to delineate between various classes of reconfiguration problems we in-
troduce the term ‘reconfiguration space’.

Definition 3.1. A sequence set S is a finite set of sequences each of the same length,
called the length of S. A reconfiguration space S is a collection of sequence sets.

Definition 3.2. For a sequence set S in a reconfiguration space S we denote by
GS the corresponding reconfiguration graph. Namely, GS is the graph whose vertices
are the elements of S and there is an edge between two vertices if and only if the
corresponding sequences differ in exactly one position. The set {GS : S ∈ S} is called
the graph set of S and will be denoted by {GS}. When the reconfiguration space S
is understood, by a reconfiguration graph we mean a graph G so that G is in {GS}.
If the sequences in a sequence set S corresponding to two adjacent vertices a and a′

in GS are a1 . . . ai−1aiai+1 . . . an and a1 . . . ai−1a
′
iai+1 . . . an, we say that those vertices

differ in the i-th index, or that i is the difference index of the edge aa′.

We first prove some properties in the abstract context, namely Lemma 3.3 and
Proposition 3.4, that were proven already in the context of shortest path reconfigu-
ration graphs in [1].

Lemma 3.3. Let G be a reconfiguration graph.

(i) If p1 and p2 are two paths in G between vertices v1 and v2, and the difference
index c appears exactly once in p1, then it must appear in p2.

(ii) If vertices v1, v2, and v3 form a triangle in G, then all the edges v1v2, v2v3,
and v1v2 must have the same difference index. Furthermore, if there exist edges
v1v2 and v2v3 in G with the same difference index, then v1v3 is also an edge in
G.

(iii) If v1v2v3v4 is a (not necessarily induced) 4-cycle in G then the edges v1v2 and
v3v4 must have the same difference index.

Proof. (i) The fact that the difference index c appears exactly once in p1 implies
that the sequences v1 and v2 differ at index c. Therefore, any other path from
v1 to v2 must account for the change in that index as well.

(ii) Note that v1v2 and v1v3v2 are both paths between v1 and v2. By part (i), the
difference index of v1v2 must also appear in v1v3v2. By symmetry we conclude
that no difference index can appear exactly once in the triangle, which means
all three difference indices must be the same.

Suppose now that v1v2 and v2v3 are two different edges in G that share the
same difference index. Then the sequences v1, v2, and v3 all differ in the same
position, which implies that v1 and v3 are connected by an edge (with the same
difference index).
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(iii) Here, v1v2 and v1v4v3v2 are both paths from v1 to v2, so, by part (i), they must
both contain the difference index of v1v2. If the difference index of v4v3 is the
same, then we are done, so we may assume without loss of generality that v1v4
has the same difference index as v1v2. Then, by part (ii), v2v4 is an edge in G
and has the same difference index as v1v2. Then we may conclude that v2v4v3
is another triangle, and thus has all edges sharing the same difference index.
Thus v1v2 has the same difference index as v2v4 which has the same difference
index as v4v3.

Proposition 3.4. Let G = H �K be a connected reconfiguration graph.

(i) Any two edges in G of the form (ai, b)(aj, b) and (ai, b
′)(aj, b

′) have the same
difference index.

(ii) Any two edges in G of the form (ai, bj)(ak, bj) and (a`, bm)(a`, bn) have distinct
difference indices.

Proof. (i) Since G is connected, so are H and K. Therefore, there is a path
b = b0, b1, b2, b3, . . . , b` = b′ in H from b to b′. Then for every k ∈ {1, . . . , `},
(ai, bk−1), (aj, bk−1), (aj, bk), (ai, bk) is a 4-cycle in G and, by part (iii) of
Lemma 3.3, the edges (ai, bk−1)(aj, bk−1) and (ai, bk)(aj, bk) have the same dif-
ference index, which imples the claim.

(ii) By part (i), the edge (a`, bm)(a`, bn) has the same difference index as (ai, bm)(ai,
bn). Also the edge (ai, bj)(ak, bj) has the same difference index as(ai, bm)(ak, bm).
Suppose (ai, bj)(ak, bj) and (a`, bm)(a`, bn) have the same difference index. Then
the edges (ai, bm)(ak, bm) and (ai, bm)(ai, bn) also have the same difference index.
This by part (ii) of Lemma 3.3, implies that there is an edge between (ak, bm)
and (ai, bn), which is a contradiction. Therefore, the edges (ai, bj)(ak, bj) and
(a`, bm)(a`, bn) cannot have the same difference index.

Definition 3.5. The product of two sequence sets A and B in a reconfiguration
space S contains all possible concatenations of a sequence in A and a sequence in
B. Namely, their product is the set AB = {ab : a ∈ A, b ∈ B}. A reconfiguration
space S is closed under sequence concatenation if for any sequence sets A and B in
S, their product AB is also in S.

The following is a straightforward generalization of the results about shortest
path (Theorem 2.1) and coloring reconfiguration graphs (Theorem 2.2).

Theorem 3.6. Let S be a reconfiguration space. If S is closed under sequence con-
catenation then for any GA, GB ∈ {GS} we have GA �GB = GAB, and consequently
the graph set {GS} is closed under Cartesian product.
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Definition 3.7. Let S be a sequence set in a reconfiguration space S. Let n be
the length of S. We refer to [n] = {1, 2, . . . , n} as the index set of S. Let J =
{i1, i2, . . . , i`} be any non-empty subset of the index set of S with i1 < i2 < · · · < i`.
Let a = (a1, a2, . . . , an) ∈ S. Then by the restriction of a to J , denoted a|J , we mean
the subsequence (ai1 , ai2 , . . . , ai`) of a. By the restriction of S to J , we mean the
set S|J = {a|J : a ∈ S}. Note that the latter is a set: if the restriction results in
multiple copies of some elements, we keep only one. If for all S ∈ S, and all subsets
J of the index set of S, the set {a|J : a ∈ S} is also in S, we say that S is closed
under taking subsequences.

Next we establish a property of reconfiguration spaces closed under taking subse-
quences. Specifically, we show that the collection of connected reconfiguration graphs
arising in such a space are closed under taking Cartesian prime factors.

We first need another definition, a proposition, and a technical lemma.

Definition 3.8. Let S be a sequence set in a reconfiguration space S with index set
I = [n]. Let J ⊆ I. If a is a sequence in S1 = S|J and b is a sequence in S2 = S|I\J
then we say that the mix of a and b, denoted a ×J b, is the sequence of length n
whose restriction to J is a and whose restriction to I \ J is b. We will say that S is
the mix of S1 and S2 with respect to {J, I \ J}, denoted S1 ×J S2, if

S = {a×J b : a ∈ S1 and b ∈ S2}.

We will use a× b and S1 × S2 when J is understood.

Note that concatenation is a special kind of mixing. The following result is in
the same vein as Theorem 3.6 and its proof is also straightforward.

Proposition 3.9. If S is the mix of Sa and Sb, then GS = GSa �GSb
.

Lemma 3.10. Let G = H � K be a connected reconfiguration graph. Let S be a
sequence set with G = GS. Then S is the mix of two collections of subsequences, say
Sa and Sb, with H ∼= GSa and K ∼= GSb

.

Proof. Let H�K be a connected reconfiguration graph, GS, arising from a sequence
set S. Let k be the length of S. By part (ii) of Proposition 3.4, the index set I = [k]
can be partitioned into Ia = {i1, i2, . . . , im} and Ib = {j1, j2, . . . , jr}, with m+ r = k,
where we let the former correspond to edges in H � K of the form (ai, bj)(ak, bj),
and the latter to edges of the form (a`, bm), (a`, bn) together with any index that is
not a difference index in G (note that because G is connected any such index has
constant value in S). Let Sa = S|Ia and let Sb = S|Ib .

Claim: S = Sa × Sb, where the mixing is with respect to {Ia, Ib}.

Proof of Claim. By construction, S ⊆ Sa× Sb. Assume for a contradiction that this
set containment is strict. So there is a sequence u1 ∈ Sa, and a sequence v2 ∈ Sb,
for which u1× v2 6∈ S. The sequence u1 is the restriction of some vertex u = u1× u2
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in GS to Ia. Similarly, v2 is the restriction of some vertex v = v1 × v2 in GS to Ib.
As u and v are both in H �K, we can express u and v, respectively, as (ai, bj) and
(a`, bm). By the nature of Cartesian product, there is a shortest path in H �K of
the form

(ai, bj), . . . , (a`, bj), . . . , (a`, bm),

where the subpath between (ai, bj) and (a`, bj), uses only indices in Ia, while in
the subpath between (a`, bj) and (a`, bm), all changes occur in Ib. It follows that
(a`, bj) = u1 × v2, a contradiction. We conclude that S = V (H � K) = Sa × Sb,
proving the claim.

It now follows from Proposition 3.9 that G = GSa �GSb
. Hence we have a second

factorization for G = H �K.

To see that H ∼= GSa , we construct a function f : Sa 7→ V (H) as follows: Fix a
specific sequence, say w, in Sb. For a given sequence u ∈ Sa, let f1(u) be the mix of
u and w, u × w, with respect to {Ia, Ib}. For a given sequence s ∈ S, let f2(s) be
the unique vertex in G = H �K to which it corresponds. Lastly, for a given vertex
(ai, bj) ∈ H �K, define f3(ai, bj) to be ai. Now, letting f be the composition of f1,
f2, and f3, we see that f is an edge-preserving bijection, establishing that H ∼= GSa .

An analogous argument shows that K ∼= GSb
.

Note that the statement of Lemma 3.10 did not specify that Sa and Sb are re-
configuration sets in S. But, if S is closed under taking subsequences, then Sa and
Sb are indeed in S, and in this case our desired result follows easily:

Theorem 3.11. If S is a reconfiguration space closed under taking subsequences then
the collection of connected graphs in {GS} is closed under taking Cartesian factors.

Proof. Let G = H �K be a connected reconfiguration graph in a graph set {GS},
where S is closed under taking subsequences. Then, by Lemma 3.10, H and K are
also in {GS}.

Our results in this section address questions (Q2) and (Q4). We answer questions
(Q1) and (Q3) for each of our example reconfiguration spaces separately in the next
section.

4 Answering our four questions

4.1 Shortest path graphs

Recall that for a shortest path reconfiguration graph GS, the sequences in the shortest
path sequence set S correspond to shortest a, b-paths in the base graph, where we do
not include a, b in the list. Assuming that all vertices in the base graph contribute
to a shortest a, b-path, the base graph is completely determined by S. For clarity,
we will say that a sequence set S is connected if GS is connected. Furthermore, we
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say that a subset S ′ of a sequence set S is a connected component of S if GS′ is a
connected component of GS. If the length of S is n and 1 ≤ i ≤ n with x a value at
index i, then we denote by Si(x) the set of all subsequences in S|[i], that terminate
in the value x at index i. When Si(x) is connected (not connected) we say that Si is
connected (not connected) at the index value x.

In this section we answer questions (Q3) and (Q4) affirmatively for the class of
shortest path reconfiguration graphs. For (Q3), we unfortunately, could not rely on a
general theory for reconfiguration spaces. Specifically, we note that if S is a shortest
path sequence set then the presence of a sequence having values u and v at indices
i − 1 and i, respectively, indicates an edge uv in the base graph. Hence for every
sequence s in Si−1(u), there is a sequence in Si(v) obtained from s by appending the
value v at index i. We call this phenomenon the add-an-edge property. In fact, it is
straightforward to show that this property characterizes shortest path sequence sets.
Any abstraction in the context of general sequence sets that we could think of to
answer (Q3) required the add-an-edge property and thus the resulting class would
be very similar to the one of shortest path graphs. The answer to (Q4), on the other
hand, follows as an application of Theorem 3.11 and our affirmative answer to (Q3).

The following lemma shows that while keeping the reconfiguration graph the
same, we can change the corresponding base graph so that the shortest path recon-
figuration graphs of certain important subgraphs of the base graph are connected.

Lemma 4.1. If S is a shortest path sequence set of length n and size m, then there
exists a shortest path sequence set S ′ of the same length and size, so that GS

∼= GS′

and so that the following connectivity property holds:

For 1 ≤ i ≤ n, the sequence set S ′i(x) is connected for every value x at
index i.

Proof. Fix a counter-example, S, of size m and length n. Of all sequence sets with
reconfiguration graph GS, assume we have chosen S so that the smallest index, i,
for which the connectivity property fails is largest possible. Assume further that of
all such sequence sets, S is chosen so that the number of index values at which Si is
not connected is smallest as well. Clearly i > 1, as GS1(x) = K1 for all values x at
index 1. For a contradiction, we construct a sequence set S ′ of size m, of length n,
with GS = GS′ , with S ′k connected for all values at index k provided k < i, but with
S ′i failing to be connected at one fewer index values than does Si. Let x be a value
at index i for which Si fails to be connected.

(i) If a = (a1, a2, . . . , ai−1, x) and b = (b1, b2, . . . , bi−1, x) are two sequences in Si(x)
with ai−1 = bi−1, then a and b are in the same connected component of Si(x).

Proof of (i). Let ai−1 = bi−1 = y. Since Si−1(y) is connected there is a path
in GSi−1(y) between a|[i−1] and b|[i−1]. Since S is a shortest path sequence set
it has the add-an-edge property. Hence we may append the value x to each
sequence in this path in GSi−1(y) thereby attaining a path in GSi(x) between a
to b. This establishes (i).
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Let r be the number of connected components of Si(x) and denote them as
H1, H2, . . . , Hr.

(ii) The set of index values at i− 1 in Si(x) can be partitioned into blocks X1, X2,
. . . , Xr so that for 1 ≤ ` ≤ r, a sequence in Si(x) is in the component H` if
and only if its index at i− 1 is in X`. The proof is immediate from (i).

To construct S ′ we introduce r new values, x1, x2, . . . , xr and for each sequence
s ∈ S having value x at i, we replace x with x` if index i − 1 of s is in X`. See
Figure 1 for an illustration. We note that the length of S ′ is n and the size of S ′

is m.

(iii) For k < i, the sequence set S ′k is connected at every index value; if y is an
index value at i but y /∈ {x1, x2, . . . , xr}, then S ′i(y) is connected if and only
if Si(y) is connected. Indeed, in replacing each occurrence of the index value
x at index i with the appropriate value x`, none of the sequence sets in the
statement of (iii) are changed at all.

(iv) The smallest index for which S ′i fails to be connected for some index value is
greater than or equal to i, and the number of index values at which S ′i fails to
be connected is one less than that of Si. The proof is immediate from (iii) and
the fact that, by construction, each S ′i(x`) is connected.

(v) GS′
∼= GS. Indeed, in replacing each occurrence of the index value x at index

i with the appropriate value x`, no new adjacencies are created. On the other
hand, let a and b be adjacent sequences in S and let a′ and b′ be their new
versions in S ′. Let k be the unique index at which a and b differ. If k 6= i, then
a|[i] and b|[i] are either identical or adjacent and hence in the same connected
component in Si whence the index value of a′ and b′ at i remain equal. If k = i,
then at most one of {a, b} has index value x at i whence a′ and b′ also differ at
index i only. In either case, a′ is adjacent to b′.

To see that S ′ is a shortest path sequence set, we note that

(vi) S ′ satisfies the add-an-edge property. Indeed, suppose that for some 2 ≤ i ≤ n,
u and v are values at indices i − 1 and i for some sequence a in S ′. Let s
be a sequence in S ′i−1(u). We need to show that by appending v to s we get
a sequence in S ′i(v). If neither u nor v is contained in {x1, . . . , xr} then the
add-an-edge property is ‘inherited’ from S. If v is contained in this set, say
v = xj, then, in S, the sequence s can be extended to a path b whose ith
index is x. By the induction hypothesis, Si−1(u) is connected and, therefore,
the sequences a|[i−1] and s extended by x are in the same component of Si(x).
That means that the sequences a|[i−1] and s extended by xj are both in S ′i(xj).
The case when u = xj is even simpler.

This completes the proof of the lemma.
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Figure 1: Successive changes to base graph as described in the proof of Lemma 4.1

Theorem 4.2. If G is a shortest path reconfiguration graph, and H is a connected
component of G then H is a shortest path reconfiguration graph.

Proof. If G is a shortest path reconfiguration graph, then there is a shortest path
sequence set S for which G = GS. Let n be the length of S. By Lemma 4.1, we may
choose S so that the sequence set Sn(x) is connected for all values x at index n. Let
H be a connected component of G. Let S[H] be the subset of S that induces H,
i.e., GS[H] = H. Say there are r distinct values of S at index n and denote them as
z1, z2, . . . , zr. Note that S is the disjoint union of r connected subsets:

S =
r⋃

j=1

Sn(zj).

Furthermore, as S[H] is itself a connected subset of S, it follows that for 1 ≤
j ≤ r, Sn(zj) is either contained in or disjoint from S[H]. Let J = {j ∈ [r] :
Sn(zj) is disjoint from S[H]}. Construct a subset S ′ of S by removing all sequences
whose nth index is in {zj : j ∈ J}. Then S ′ is a sequence set with GS′ = H. To see
that S ′ is a shortest path sequence set, we note that removing all sequences ending
in zj is equivalent to removing the corresponding vertex in the base graph.

Next we show that shortest path reconfiguration spaces enjoy the property of
being closed under taking subsequences and thus we can apply Theorem 3.11.

Proposition 4.3. Let S be the reconfiguration space of shortest path graphs. Let
S = S(G, a, b) be an element in S of length k and let J ⊆ [k]. Then S|J ∈ S.

Proof. It suffices to establish the result for J = I \ {j} for some j ∈ I. So let j ∈ I
and let S ′ = S|J , where J = I \ {j}. We construct a graph G′ from G so that
a, b ∈ V (G′) and so that S ′ is the set of shortest a, b paths in G′. Specifically, start
with G and do the following to construct G′:

(a) If 2 ≤ j ≤ k − 1, then add all edges uw for which the index of u is j − 1, the
index of w is j + 1 and there is at least one vertex, v, ‘between’ u and w at
index j, i.e. with uv and vw both edges of G. If j = 1, add the edge au for all
vertices u at index 2. If j = k, add the edge ub for all vertices u at index k− 1.

(b) Delete all vertices originally at index j.
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To complete the proof, note that, by construction,

a1 − a2 − · · · − aj−1 − aj+1 − · · · − ak

is a shortest a, b path in G′ if and only if

a1 − a2 − · · · − aj−1 − aj − aj+1 − · · · − ak

is a shortest a, b path in G for some aj.

Theorem 4.4. If H �K is a shortest path graph, then H and K are shortest path
graphs.

Proof. If H �K is connected then the claim follows from Proposition 4.3 and The-
orem 3.11. Otherwise, assume that H and K split into connected components as
H = H1 + · · ·+ Hk and K = K1 + · · ·+ K`. Then

H �K =
∑
1≤i≤k
1≤j≤`

Hi �Kj

and by Theorem 4.2, each component Hi�Kj is a shortest path graph. Since Hi�Kj

is connected we conclude that all Hi, 1 ≤ i ≤ k and Kj, 1 ≤ j ≤ ` are shortest path
graphs, and hence, by Theorem 2.1, so are H and K.

4.2 Coloring graphs

In this section we address the questions (Q1) - (Q4) for coloring graphs. As we
pointed out in Section 1, (Q2) has been answered affirmatively in [3]. The disjoint
union of two k-coloring graphs is not necessarily a k-coloring graph as can be seen
from the following example.

Example 4.5. Take G to be a k-coloring graph that does not have Kk as a fac-
tor. Note that Kk is the k-coloring graph of the graph with 1 vertex. However,
we claim that the disjoint union G + Kk is not a k-coloring graph. To see this,
suppose otherwise, i.e., G + Kk is a k-coloring graph of a base graph B. Then Kk

corresponds to colorings of B that are only different in the color of a fixed vertex v
(Lemma 3.3 (ii)). Since v can assume all k colors without any other changes in the
coloring, v is isolated. By Theorem 2.2,

G + Kk = Ck(B \ v) �Kk,

which implies that G has Kk as a factor. Since this is a contradiction with the
starting assumption, we see that G + Kk is not a k-coloring graph.

In the light of the previous example, it is interesting to see how difficult it is to
find a k-coloring graph that does not have Kk as a factor. The next proposition
shows that it is not difficult at all.
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Proposition 4.6. The k-coloring graph of B has Kk as a factor if and only if B has
an isolated vertex.

Proof. If B has an isolated vertex, its k-coloring graph contains Kk as a factor by
Theorem 2.2. For the converse, suppose that the k-coloring graph of B has Kk as
a factor. Then, in particular, it contains Kk as a subgraph. Fix one occurrence of
Kk as a subgraph. As discussed before, the k colorings correspond to changes in one
vertex, which must be isolated.

Unlike the case of path reconfiguration graphs, G+H may be a k-coloring graph,
but as can be seen from the next example, G and H need not be. In fact, in the next
example even the connected components of a k-coloring graph need not be k-coloring
graphs if k > 1.

Example 4.7. Take for example, G and H to be empty graphs (no edges) whose
total number of vertices is k!. Then G + H is the k-coloring graph of Kk, but if |G|
and |H| are not divisible by k, then by Lemma 2.3, neither G nor H is a k-coloring
graph.

The class of k-coloring graphs is not closed under taking Cartesian factors as can
be seen from the following example.

Example 4.8. G � H may be a k-coloring graph, but G and H need not be. Let
D(k) be the largest power of k that divides k!, and let ej be the empty graph on j
vertices. Then ek! is a k-coloring graph, but its Cartesian factor er where r = k!

D(k)
is

not by Lemma 2.3.

One will notice that the graphs in the previous example are not connected. In-
deed, as we will show in Theorem 4.10, the class of connected coloring graphs is
closed under taking Cartesian factors. However, the following infinite class of ex-
amples shows that for the k-coloring reconfiguration problem, the reconfiguration
space is not closed under taking subsequences and, therefore, we cannot apply The-
orem 3.11.

Example 4.9. Let G be the complete bipartite graph Kk,1, also known as a k-star.
List the vertices of G as v1, v2, . . . , vk, vk+1, where vk+1 is the unique vertex of degree
k. Let S be the set of sequences of proper k-colorings of G. Restricting S to the first
k indices yields the set of all multisequences (a1, a2, . . . , ak) taken from {1, 2, . . . , k}
with at least two entries the same. The resulting set, say S ′, is of cardinality kk − k!
and cannot be the colorings of any graph: Such a graph would necessarily be edge-
less as at least one member of S ′ would color the ends of any edge identically. But
the coloring set of Kn is the collection of all kk colorings.

Although we cannot apply Theorem 3.11 directly, we are able to apply Lemma 3.10
to establish our next result.

Theorem 4.10. If H � K is a connected k-coloring graph, then H and K are k-
coloring graphs.
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Proof. Let H �K = Ck(G) for some base graph G and k a positive integer. Assume
H �K is connected. Let S be the sequence set of the k-colorings of H �K. (Note
that this means GS, the reconfiguration graph associated with S, is our coloring
graph, H�K.) The index set, I, of our coloring graph corresponds to the vertex set
of the base graph. To emphasize the fact that for a coloring graph each difference
index corresponds to a vertex in the base graph we call such vertices in G difference
vertices.

By Lemma 3.10, S is the mix of two subsequences, Sa and Sb where the mix is
with respect to disjoint index sets, say Ia and Ib. It is an easy exercise to show that for
a connected coloring graph every vertex is a difference vertex. Hence, by the proof of
Lemma 3.10, Ia and Ib correspond to a partition {VA, VB} of V (G), where difference
vertices in VA correspond to adjacencies in H � K of the form (ai, b`) ∼ (aj, b`),
and difference vertices in VB to adjacencies of the form (a`, bi) ∼ (a`, bj). Also by
Lemma 3.10, we have H ∼= GSa and K ∼= GSb

.

Claim: GSa and GSb
are the coloring graphs of the subgraphs induced by the vertex

sets VA and VB, respectively.

To establish the claim, by Theorem 2.2 it suffices to show that there is no edge in
the base graph with one end in VA and the other in VB. To show that this is true,
assume for a contradiction that (va, vb) ∈ E(G) with va ∈ VA and vb ∈ VB. Consider
some coloring C of G. Then C = (CA, CB) with CA ∈ GSa and CB ∈ GSb

. Let c1 be
the color of va in C and let c2 be the color of vb. Now consider the (proper) coloring
C ′ of G obtained by interchanging the roles of c1 and c2. We have C ′ = (C ′A, C

′
B)

for some C ′A ∈ GSa and C ′B ∈ GSb
. Because H �K = GSa � GSb

, by the nature of
Cartesian product, it follows that (C ′A, CB) is also a coloring of G. But the color of
va in C ′A is c2 and the color of vb in CB is also c2, contradicting our assumptions that
C is a proper coloring and that va ∼ vb. This completes the proof of the claim and
of the theorem.

4.3 Matroid independent set reconfiguration graphs

As we have observed in Section 2.3, (Q1) is false and (Q3) is vacuously true because
all matroid independent set graphs are connected. The answer to (Q2) is affirmative
because Theorem 3.6 applies immediately as evidenced by the concept of direct sum
of two matroids. We next show that if H �K is an independent set graph, then so
are H and K.

Lemma 4.11. LetM be the reconfiguration space of matroid independent set graphs.
Then M is closed under taking subsequences.

Proof. Let S be a reconfiguration set in I and let k be the the common length of
the sequences in S, i.e., the number of elements in the ground set E = {1, 2, . . . , k}
of the corresponding matroid M = (E, I). Let E ′ = {i1, i2, · · · , i`} be a subset of
{1, . . . , k}. Let I ′ = {I ∩ E ′ : I ∈ I}. Then the pair M ′ = (E ′, I ′) is known to be a
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matroid, called the restriction of M to E ′. The set of sequences that corresponds to
the independent sets of M is clearly S|E′ and thus S|E′ ∈ I.

Theorem 4.12. If H �K is a matroid independent set reconfiguration graph, then
H and K are matroid independent set reconfiguration graphs.

Proof. If H � K is an independent set reconfiguration graph than it is connected.
Therefore, Lemma 4.11 and Theorem 3.11 imply that H and K are both independent
set reconfiguration graphs.
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