The minimum number of vertices of graphs containing two monochromatic triangles for any edge 2-coloring

NAOKI MATSUMOTO

Research Institute for Digital Media and Content Keio University, Yokohama Kanagawa 232-0062, Japan naoki.matsumo10@gmail.com

MASAKI YAMAMOTO MASAHITO YAMAZAKI

Department of Computer and Information Science Faculty of Science and Technology, Seikei University 3-3-1 Kichijoji-Kitamachi, Musashino-shi Tokyo 180-8633, Japan yamamoto@st.seikei.ac.jp

Abstract

We show that the minimum number of vertices of K_6 -free graphs containing (at least) two monochromatic triangles for any edge 2-coloring is ten, giving a concrete (minimal) graph on ten vertices with such a property. Moreover, we show the uniqueness of the graph of all K_6 -free graphs on (at most) ten vertices.

1 Introduction

Ramsey theory, initiated by Ramsey [22], is one of the most important areas of combinatorics. Ramsey theory studies how many elements of some structure there need to be to guarantee that a particular property on the structure holds. (See [9] as a classical textbook.) The simplest problem in graph theoretic Ramsey theory is to ask for the minimum number of vertices of complete graphs, say, K_n , such that there is one monochromatic triangle (i.e., K_3) for any edge 2-coloring. The answer to this question is six, that is, K_6 . In fact, there are at least two monochromatic triangles in K_6 for any 2-coloring; Harary [11] listed all 2-colorings of K_6 which result in exactly two monochromatic triangles. Thus, any graph containing K_6 satisfies such a property.

From this fact, it is natural to ask for a structure of graphs with such a property that does not contain K_6 , which was posed by Erdős and Hajnal [5]. Here, we say that a graph G = (V, E) satisfies property Z_1 if for any 2-coloring to E, there is (at least) one monochromatic triangle in G. In what follows, we consider graphs that do not contain K_6 , called K_6 -free graphs. Answering the question posed by Erdős and Hajnal [5], Graham [8] presented a K_6 -free graph satisfying Z_1 , called here the *Graham graph*, which is on eight vertices, depicted in Figure 3 in the next section. In fact, it is unique of all K_6 -free graphs satisfying Z_1 on (at most) eight vertices.

More generally, a graph is minimal (with respect to 2-colorings to edges and monochromatic triangles) if the graph does not properly contain any graph satisfying Z_1 . Thus, K_6 as well as the Graham graph are both minimal. Following the Graham graph, Nenov [16] presented a minimal graph on nine vertices, called here the Nenov graph (see Figure 1). Moreover, it is unique of all minimal graphs on nine vertices, and all minimal graphs on at most thirteen vertices are known in [1].

Figure 1: The Nenov graph

In this paper, we generalize the study on minimal graphs towards another way, in which we care for the number of monochromatic triangles. This is motivated by the fact that there are at least *two* monochromatic triangles in K_6 itself for any 2coloring. That is, we further ask for a structure of K_6 -free graphs such that there are at least *two* triangles for any edge 2-coloring. In fact, the Graham graph does not satisfy this property. (See the colorings presented in Figure 4.) Furthermore, neither does the Nenov graph [16], and all minimal graphs on at most thirteen vertices in [1] except K_6 do not have this property. Thus, the lower bound on the minimum number of vertices of graphs with such a property is nine. It is easy to see that the upper bound is eleven, which is guaranteed by the graph obtained by combining two Graham graphs via sharing the two cycles of size five. Note that the graph does not share any triangle in the two Graham graphs. Thus, given any 2-coloring, at least one monochromatic triangle comes from each of the two Graham graphs, giving (at least) two monochromatic triangles in total.

We show that the minimum number of vertices is ten, giving a concrete graph G_0 on ten vertices with such a property (see Figure 2)¹. In fact, the graph G_0 contains four Graham graphs in an elaborate way. Thus, it takes more benefit from the Graham graph than the Nenov graph. In fact, the graph on ten vertices does not

¹The graph G_0 is a join of K_2 and the maximal graph of order 8 showing the Ramsey number $R(4,3) \ge 9$.

Figure 2: The graph G_0

contain the Nenov graph. Moreover, we show the uniqueness of G_0 for all K_6 -free graphs on (at most) ten vertices.

Theorem 1.1. The minimum number of vertices of K_6 -free graphs containing (at least) two monochromatic triangles for any edge 2-coloring is ten. Moreover, the graph G_0 is unique of all K_6 -free graphs with such property on (at most) ten vertices.

Related results

Generalizing the stream of research raised by Erdős and Hajnal [5], and Graham [8], Folkman [6] introduced a new concept similar to the Ramsey number, called the *Folkman number*. Let $\mathcal{F}(r, k, l)$ with k < l be the set of K_l -free graphs G such that every edge r-coloring of G produces a monochromatic K_k . The *Folkman number* (or *edge Folkman number*) f(r, k, l) is the minimum order of $G \in \mathcal{F}(r, k, l)$, i.e., $f(r, k, l) = \min_{G \in \mathcal{F}(r, k, l)} |V(G)|$, where V(G) denotes the vertex set of G. It is shown in [6] that $\mathcal{F}(2, k, l) \neq \emptyset$, and more generally, $\mathcal{F}(r, k, l) \neq \emptyset$ for any $r \geq 2$ holds [18]. Observe that f(2, 3, l) = 6 for any l > 6 by the fact on K_6 . Thus the most interesting and important study on the Folkman number is to determine f(2, 3, l) for $4 \leq l \leq 6$. For l = 6, we see f(2, 3, 6) = 8 from the Graham graph. For l = 5, the upper bound by Nenov [17] and the lower bound by Piwakowski, Radziszowski, and Urbański [19] determined f(2, 3, 5) = 15. For l = 4, the lower and upper bounds of f(2, 3, 4) are summarized in Table 1.

As is mentioned above, it is known that every edge 2-coloring of K_6 produces at least two monochromatic triangles. On the other hand, the Graham graph admits an edge 2-coloring with exactly one monochromatic triangle. Thus, it is natural to extend the Folkman number f(r, k, l) to $f_s(r, k, l)$ along with the number s of monochromatic K_k . In this notation, $f(r, k, l) = f_1(r, k, l)$, and Theorem 1.1 states $f_2(2, 3, 6) = 10$.

year	authors	lower	upper
1970	Frankl and Rödl [7]		$8 \cdot 10^{11}$
1988	Spencer [23]		$3 \cdot 10^9$
2008	Lu [14]		9697
2008	Dudek and Rödl [4]		941
2014	Lange, Radziszowski, and Xu [15]		786
2017	Bikov and Nenov [2]	20	
2020	Bikov and Nenov [3]	21	

Table 1: The summary of the upper and lower bounds for f(2, 3, 4)

Organization

In Section 2, we depict the Graham graph, denoted by GH, as well as two edge 2colorings of GH, which are used in the sequel. In Section 3, we enumerate all maximal K_6 -free graphs on ten vertices, and show that there is an edge 2-coloring for all of them, except for G_0 , such that at most one monochromatic triangle exists. In Section 4, we present the exceptional graph G_0 as well as its minimality and we prove Theorem 1.1.

2 Preliminaries

In this paper, we mostly follow the standard notation and concepts of graph theory. For example, P_n, C_n , and K_n are a path graph, a cycle graph, and a complete graph on n vertices, respectively. For a graph G = (V, E), a path $v_1, \ldots, v_k \in V$ (respectively a cycle $u_1, \ldots, u_\ell, u_1 \in V$) in G is denoted by $P_k = (v_1, \ldots, v_k)$ (respectively $C_\ell =$ (u_1, \ldots, u_ℓ)). Thus, an edge $e \in E$ is denoted by e = (u, v) for the end vertices u and v. We call K_3 a triangle. The complement graph of G is denoted by \overline{G} . Thus, $\overline{K_n}$ is the empty graph, which is the graph on n vertices that does not have any edges. For a subset $V' \subseteq V$, the induced subgraph of G by V' is denoted by G[V'].

In what follows, for a graph G = (V, E), the set of vertices of G is denoted by V(G), and the set of edges of G by E(G). (That is, V = V(G) and E = E(G).) We say that a graph G = (V, E) contains a graph G' = (V', E') if $V' \subseteq V$ and $E' \subseteq E$, which is (crudely) denoted by $G' \subseteq G$. Furthermore, for a subset $E' \subseteq E$, we (crudely) denote the graph $G' = (V, E \setminus E')$ by $G' = G \setminus E'$. An isolated vertex of a graph G is a vertex which any edge of G does not have as an endpoint. For a graph G = (V, E), a set $V' \subseteq V$ is called an independent set if the induced subgraph G[V'] by V' is an empty graph. The independence number of G, denoted by $\alpha(G)$, is the maximum size of independent sets of G. A graph G is α -critical if for any edge $e \in E(G)$, $\alpha(G \setminus \{e\}) = \alpha(G) + 1$.

In this paper, we focus on the simplest case of graph theoretic Ramsey theory, that is, edge 2-colorings and monochromatic triangles. In what follows, we use blue

and red as two colors. (In fact, we use blue and red for coloring edges of graphs depicted below in figures.)

Definition 2.1. For a natural number r, let R(r) be the minimum number n of vertices such that there is a monochromatic K_r in K_n for any 2-coloring to $E(K_n)$. (Note that R(r) is the same as the Ramsey number R(r, r).)

Fact 1. R(3) = 6.

In fact, if we differently color the inside C_5 and the outside C_5 of $E(K_5)$, there is no monochromatic triangle in K_5 . Moreover, it is easy to see (by a counting argument) that there are at least two monochromatic triangles in K_6 for any 2coloring. From this fact, there is one (further at least two) monochromatic triangle in any graph containing K_6 . Thus, people search for a structure of graphs that have one monochromatic triangle for any 2-coloring but do not contain K_6 .

Definition 2.2 ([8]). We call the graph depicted in the left in Figure 3 the *Graham* graph, denoted by GH. The graph in the right is the complement of the Graham graph, denoted by \overline{GH} .

Figure 3: The Graham graph

Note that GH consists of C_5 , C_3 , and edges between C_5 and C_3 . Thus, emphasizing the two cycles, we sometimes denote it by $GH(C_5, C_3)$, and depict it omitting all the edges between C_5 and C_3 . Note further that the complement of C_5 is again C_5 .

Fact 2 ([8]). The Graham graph does not contain K_6 , and there is at least one monochromatic triangle in GH for any 2-coloring to E(GH). Furthermore, the structure of GH is unique of all graphs with such a property on at most eight vertices.

Figure 4 shows the 2-colorings of GH such that there is exactly one monochromatic triangle. In fact, there are several 2-colorings of GH such that there is exactly one monochromatic triangle in GH. The colorings in Figure 4 are simple and symmetrical, where dashed lines and arcs can be colored in either way. We call the coloring in (A) of type A and in (B) of type B, respectively². In the following sections, we will make

²Here, we explain the coloring of type B in more detail. Let (a, b) be the backbone for $a \in V(C_5)$ and $b \in V(C_3)$. Consider a vertex of C_3 which is not incident to the backbone (a, b), the upper vertex u, for example. The edge (u, a) is colored red. Starting x with x = a, walking on C_5 in the anticlockwise way, (u, x) is alternately colored red and blue. On the other hand, for the lower vertex v, starting x with x = a, walking on C_5 in the clockwise way, (v, x) is alternately colored red and blue.

(a) The monochromatic triangle in C_3

(b) The monochromatic triangle between C_5 and C_3

Figure 4: Colorings of the Graham graph

use of the two 2-colorings, where dashed lines and arcs are colored properly. We call the dashed line in the middle in (A) and (B), respectively, the *backbone*.

In Ramsey theory, people focus on the existence of a monochromatic clique in a large complete graph, that is, they do not care for the number of monochromatic cliques. Here, we focus on the property that there are at least *two* monochromatic triangles.

Definition 2.3. Given a graph G = (V, E) that does not contain K_6 , we say that G satisfies property Z_2 if for any edge 2-coloring, there are at least two monochromatic triangles in G.

Note that the Graham graph GH indeed satisfies Z_1 (defined in the introduction), but does not satisfy Z_2 , as shown in the 2-colorings in Figure 4. As is mentioned in the introduction, there is a graph on eleven vertices that satisfies Z_2 , which is the graph consisting of two Graham graphs $GH(C_5, C_3)$ and $GH(C_5, C'_3)$ via sharing C_5 . In Section 4, we will see that there is a graph on ten vertices that satisfies Z_2 . In the next section, we will see that all K_6 -free graphs on ten vertices, except for that graph, do not satisfy Z_2 .

3 The enumeration of maximal K_6 -free graphs on ten vertices

Consider the lattice over all the graphs on ten vertices, where the top is K_{10} and the bottom is the empty graph. We enumerate all *maximal* graphs that do not contain K_6 , and show that all of them, except for one graph, do not satisfy Z_2 . We here denote the exceptional graph by G_0 (see Figure 2), the complement graph of which is enumerated in Lemma 3.2, and in fact presented in Figure 19 in the next section. For our enumeration, we divide graphs into two classes: graphs that contain the Graham graph GH or not. In what follows, we consider complement graphs so that we enumerate *minimal* (complement) graphs³ that do not contain $\overline{K_6}$, and hence it

³Here, we use the term of minimal as the one in the usual way, i.e., a graph is minimal if $G \setminus \{e\}$ for any edge e in E(G) does contain \overline{K}_6 as an induced subgraph.

suffices to consider graphs with independence number exactly 5. We do it in terms of the number of isolated vertices.

For a graph G = (V, E) (on ten vertices) that does not contain K_6 , consider the complement graph of G, denoted by H. It is easy to see that the number of isolated vertices of H is at most four since otherwise there exists at least one K_6 in G. It is also easy to see that it is not four since otherwise H must be $\overline{K_4} \cup K_6$ so that G does not contain K_6 , and hence G does not satisfy \mathbb{Z}_2 . (In fact, we can color it without monochromatic triangles; see Theorem 3.2) Therefore, it suffices to consider complement graphs with at most three isolated vertices.

For guaranteeing the correctness of our enumeration, we make use of the following fact on α -critical graphs of small order, which can be seen in Table 1 in [20]. In Figure 5, we present all the α -critical connected graphs of order at most 7 with independence number at least 2.

Fact 3. Any α -critical connected graphs of order at most 7 is isomorphic to a complete graph or one of the graphs presented in Figure 5.

Figure 5: All the α -critical connected graphs of order at most 7 with independence number at least 2

We further make use of the following fact on α -critical graphs of order almost equal to 2α . (In fact, the order of any α -critical graph is at least 2α . See, for example, [21] for details.)

Fact 4. Let G be an α -critical connected graph of order n. Then the following holds:

- If n is even and $\alpha(G) = n/2$, then $G = K_2$.
- If n is odd and $\alpha(G) = (n-1)/2$, then $G = C_n$.

Let \mathcal{M} be the set of graphs on ten vertices whose complements are maximal K_6 free graphs. Let \mathcal{M}_1 and \mathcal{M}_2 be subsets of \mathcal{M} in which any graph in \mathcal{M}_1 (respectively \mathcal{M}_2) whose complement contains (respectively does not contain) GH. In the following, we consider graphs in \mathcal{M}_1 in Subsection 3.1 and ones in \mathcal{M}_2 in Subsection 3.2. As a consequence of results in those subsections, we have the following theorem.

Theorem 3.1. The set \mathcal{M} contains exactly eighteen graphs; $\overline{G_0}$ (Figure 19), H_1^{GH} , H_2^{GH} , H_3^{GH} (Figure 6), H_4^{GH} , H_5^{GH} , H_6^{GH} (Figure 7), H_7^{GH} (Figure 10), H_1^{nGH} , H_2^{nGH} (Figure 12), H_3^{nGH} , H_4^{nGH} , H_5^{nGH} (Figure 13), H_6^{nGH} , H_7^{nGH} , H_8^{nGH} (Figure 16), $\overline{K_4} \cup K_6$, $5K_2$. Equivalently, all 18 maximal K_6 -free graphs on ten vertices are completely enumerated.

3.1 Graham graph

We first present all maximal graphs that contain GH, but do not contain K_6 . As is mentioned above, we consider complement graphs H of those graphs, that is, $H \in \mathcal{M}_1$. Fix five vertices that constitute C_5 of GH, denoted by $S \subseteq V$. Note that H[S] itself must be isomorphic to C_5 . (Remember $\overline{\text{GH}}$ depicted in Figure 3.) Thus, we can not have the other edges (i.e., chords) within S.

Consider first that there are exactly three isolated vertices in H, the set of which is denoted by S_1 .

Lemma 3.1. The graphs in \mathcal{M}_1 with three isolated vertices are the graphs H_1^{GH} , H_2^{GH} and H_3^{GH} , presented in Figure 6. Moreover, all the complement graphs of these graphs do not satisfy Z_2 .

Figure 6: The minimal graphs in \mathcal{M}_1 with three isolated vertices

Proof. Let H be a graph in \mathcal{M}_1 with three isolated vertices. Note first that $G[S \cup S_1]$ is isomorphic to GH. Let a, b be the two vertices other than $S \cup S_1$. We consider $E(H[S \cup \{a, b\}])$. Note that $\alpha(H[S \cup \{a, b\}]) = 2$, and that any vertex $u \in \{a, b\}$ is adjacent to at least a vertex in S since otherwise G contains K_6 . Thus, $H[S \cup \{a, b\}]$ is an α -critical connected graph of order 7. Since $\alpha(H[S \cup \{a, b\}]) = 2$, by Fact 3, we have H_1^{GH} , H_2^{GH} , and H_3^{GH} as H if $H[S \cup \{a, b\}]$ is isomorphic to L_7^1 , L_7^2 , and L_7^3 in Figure 5, respectively. We show that all the complement graphs of these graphs in Figure 6, denoted by $G_1^{\text{GH}}, G_2^{\text{GH}}, G_3^{\text{GH}}$, do not satisfy Z₂. For this, we present a concrete coloring to each graph of $G_1^{\text{GH}}, G_2^{\text{GH}}, G_3^{\text{GH}}$ that produces at most one monochromatic triangle. In fact, we show it only for G_1^{GH} since it is almost same for the other two graphs. Note first that G_1^{GH} contains exactly one GH. (So do the other two graphs). The coloring of GH in G_1^{GH} is of type A, that is, the cycles of C_3 and C_5 are colored red, and the all the edges between C_3 and C_5 blue. In this case, the triangle of C_3 is monochromatic. We will see that this is the only one monochromatic triangle in G_1^{GH} . The edges between C_3 and $\{a, b\}$ are colored blue, and the edges between C_5 and $\{a, b\}$ are colored red. Finally, the edge (a, b) is colored red. (Note that there is no edge between a and bin the other two graphs.) Note that there is no triangle in $G[V(C_5) \cup \{a, b\}]$. It is easy to check that this coloring gives only one monochromatic triangle, that is, the one consisting of the three isolated vertices in H.

Next, suppose that there are exactly two isolated vertices in H, the set of which is denoted by S_2 .

Lemma 3.2. The graphs in \mathcal{M}_1 with three isolated vertices are the graphs H_4^{GH} , H_5^{GH} , H_6^{GH} presented in Figure 7 and $\overline{G_0}$ presented in Figure 19. Moreover, the complement graphs of H_4^{GH} , H_5^{GH} and H_6^{GH} do not satisfy Z_2 .

Figure 7: The minimal graphs in \mathcal{M}_1 with two isolated vertices

Proof. Let H be a graph in \mathcal{M}_1 with two isolated vertices. Let a, b, c be the three vertices other than $S \cup S_2$. Designate b so that $G[S \cup S_2 \cup \{b\}]$ is isomorphic to GH. We consider $E(H[S \cup \{a, b, c\}])$. Note that $\alpha(H[S \cup \{a, b, c\}]) = 3$, and that b is not adjacent to any vertex of S, but is adjacent to at least one vertex of $\{a, c\}$, say c.

If $H[S \cup \{a, b, c\}]$ is disconnected, then the graph has exactly two connected components D_1 and D_2 , where $S \subseteq V(D_1)$ and $\{b, c\} \subseteq V(D_2)$. If D_1 contains a, then H is isomorphic to H_4^{GH} since $\alpha(D_1) = 2$, and hence D_1 must be L_6 in Figure 5. Otherwise, H is isomorphic to H_6^{GH} since D_2 must be K_3 . Suppose that $H[S \cup \{a, b, c\}]$ is connected. It is known in [13, Corollary 12.1.8] that every α -critical graph has no cut vertex. By this fact, b is adjacent to both a and c. Moreover, there must be three consecutive vertices in S, say a', x, y, which are neighbors of a or c (since otherwise $H[S \cup \{a, b, c\}] \ge 4$). Thus, depending on neighbors of a and c, we have the following three cases:

- If a is adjacent to all of a', x, y, then H is a super-graph of H_4^{GH} .
- If a is adjacent to both of a', x, and if c is adjacent to y, then H is isomorphic to H_5^{GH} .
- If a is adjacent to both of a', y, and if c is adjacent to x, then H is isomorphic to $\overline{G_0}$.

As before, we show that all the complement graphs of these graphs in Figure 7, denoted by G_4^{GH} , G_5^{GH} , G_6^{GH} , do not satisfy Z₂. However, the colorings of G_4^{GH} and G_5^{GH} are not so simple as before. First, we show the coloring of G_4^{GH} . For this, we explain the structure of G_4^{GH} . (See the left in Figure 8.) The graph G_4^{GH} consists of the sum of two

Figure 8: The graph G_4^{GH} and the coloring of G_4^{GH}

GHs, say, $\operatorname{GH}(C_5^a, C_3^b)$ where C_5^a (respectively C_3^b) is the cycle of size five (respectively three) containing a (respectively b) and $\operatorname{GH}(C_5^{a'}, C_3^c)$ where $C_5^{a'}$ (respectively C_3^c) is the cycle of size five (respectively three) containing a' (respectively c), as well as the two additional edges (a, c) and (a', b). Note that all the edges between C_5^a and C_3^b and between $C_5^{a'}$ and C_3^c are omitted in the figure. The two vertices corresponding to the isolated vertices in H_4^{GH} are depicted rather largely in the figure of G_4^{GH} . The cycles C_5^a and $C_5^{a'}$ share the four vertices except for a and a', and the cycles C_5^b and C_3^c share the two vertices (corresponding to the isolated vertices) except for b and c. Thus, the coloring of G_4^{GH} is the one coupling the two colorings of $\operatorname{GH}(C_5^a, C_3^b)$ and $\operatorname{GH}(C_5^{a'}, C_3^c)$ both of type B that share the unique monochromatic triangle. See the right in Figure 8, where the monochromatic triangle is colored red so that the two backbones are (b, w) and (c, w), which are omitted in the figure and colored in either way. Note that coloring red to the two additional edges (a, c) and (a', b) does not yield any monochromatic triangle. This comes from the following observation: consider a triangle (a, c, v) containing the edge (a, c), for example. Then, v must be a neighbor

to a and c, and hence v must be a vertex on C_5^a or C_3^c . Thus, either (a, v) or (c, v) must be colored blue, and hence the triangle (a, c, v) can not be monochromatic.

Next, we show the coloring of G_5^{GH} . For this, we explain the structure of G_5^{GH} . (See the left in Figure 9.) The graph G_5^{GH} consists of the sum of two GHs, say, $\text{GH}(C_5^b, C_3^{b'})$

Figure 9: The graph G_5^{GH} and the coloring of G_5^{GH}

and $GH(C_5^{b'}, C_3^b)$, where u and v depicted largely in the figure of G_5^{GH} correspond to the isolated vertices in H_5^{GH} , and

$$\begin{array}{rcl} C_5^b &=& (a,y,b,x,c), & C_3^{b'} &=& (b',u,v), \\ C_5^{b'} &=& (a',y,b',x,c'), & C_3^b &=& (b,u,v), \end{array}$$

as well as the three additional edges (a, c'), (a', c), and (c, c'). Note that all the edges between C_5^b and $C_3^{b'}$ and between $C_5^{b'}$ and C_3^b (except for those overlapping with the cycles of size five and three) are omitted in the figure. The cycles C_5^b and $C_5^{b'}$ share the two vertices x and y, and the cycles C_3^b and $C_3^{b'}$ share u and v (corresponding to the isolated vertices). Thus, the coloring of G_5^{GH} is the one coupling the coloring of $\text{GH}(C_5^b, C_3^{b'})$ of type A and the coloring of $\text{GH}(C_5^{b'}, C_3^b)$ of type B that share the unique monochromatic triangle. See the right in Figure 9, where the monochromatic triangle $C_3^{b'}$ is colored red so that the two backbones of type A and B are commonly (b, b'), which are omitted in the figure and colored in either way.

Here, we explain the coloring of G_5^{GH} in more detail. For the coloring of type A depicted in the left in Figure 4, letting the backbone be (b, b'), C_5 colored red corresponds to $C_5^b = (a, y, b, x, c)$ and C_3 corresponds to $C_3^{b'} = (b', u, v)$. On the other hand, for the coloring of type B depicted in the right in Figure 4, letting the backbone be (b', b), C_5 colored blue corresponds to $C_5^{b'} = (a', y, b', x, c')$ and C_3 corresponds to $C_3^b = (b, u, v)$. Thus, (u, x) (respectively (v, y)) is colored blue and (u, c') (respectively (v, a')) is colored red, and so on anticlockwise (respectively clockwise) on $C_5^{b'}$.

Observe that (u, y) and (v, x), which correspond to the two dashed arcs in Figure 4, should be colored red in the coloring of $GH(C_5^b, C_3^{b'})$ of type A so that it is coincident with the coloring of $GH(C_5^{b'}, C_3^b)$ of type B. In fact, for this case of coupling the two

colorings of type A and B, we have been making the coloring of type A in Figure 4 rather flexible, that is, the dashed lines and arcs can be colored in either way. It is easy to see that if we ignore the three additional edges (a, c'), (a', c), and (c, c'), there is no monochromatic triangle other than $C_3^{b'}$. We claim that for the three additional edges (a, c'), (a', c), and (c, c'), coloring (a', c), (c, c') (respectively (a, c')) red (respectively blue) does not yield any monochromatic triangle. This is done by coloring (u, c) and (v, a) blue and red, respectively, which correspond to the two dashed lines in Figure 4. Consider a triangle (a, c', w) containing the edge (a, c'), for example. Then, w must be a neighbor of a and c', and hence $w \in \{u, v, c\}$. Thus, since the edges (u, c'), (v, a), (c, c') are all colored red, the triangle (a, c', w)can not be monochromatic. (It is similarly shown for a triangle (a', c, w) containing the edge (a', c), via the fact that the edges (u, c), (v, c), (c', a') are all colored blue.) Similarly, consider a triangle (c, c', w) containing the edge (c, c'). Then, w must be a neighbor of c and c', and hence $w \in \{u, v, a, a', x\}$. Thus, since the edges (u, c), (v, c), (a, c'), (a', c'), (x, c') are all colored blue, the triangle (c, c', w) can not be monochromatic.

Finally, the coloring of G_6^{GH} is settled by appealing to those for GH. Note that $\{a, b, c\}$ are isolated from all the other vertices in H_6^{GH} , and hence the graph obtaining from G_6^{GH} by identifying $\{a, b, c\}$ to one vertex v is isomorphic to GH. Since $\{a, b, c\}$ are independent in G_6^{GH} , we make use of any coloring of GH where the unique monochromatic triangle avoids the vertex v, say, the coloring of type B.

Next, suppose that there is exactly one isolated vertex in H, the set of which is denoted by S_3 .

Lemma 3.3. There exists a unique graph in \mathcal{M}_1 with one isolated vertex, namely H_7^{GH} , presented in Figure 10. Moreover, the complement graph of the graph does not satisfy Z_2 .

Figure 10: The minimal graph in \mathcal{M}_1 with one isolated vertex

Proof. Let H be a graph in \mathcal{M}_1 with one isolated vertex. Let a, b, c, d be the four vertices other than $S \cup S_3$. Designate b and c so that $G[S \cup S_3 \cup \{b, c\}]$ is isomorphic

to GH. We consider $E(H[S \cup \{a, b, c, d\}])$. Note that $\alpha(H[S \cup \{a, b, c, d\}]) = 4$, and that $(b, c) \notin E(H[S \cup \{a, b, c, d\}])$, and both of b and c are not adjacent to any vertex of S, but is adjacent to at least one vertex of $\{a, d\}$.

Consider first the case that the two vertices adjacent to b and c are different, say, $(a, b), (c, d) \in E(H)$. Then, H is isomorphic to H_7^{GH} . Consider next the case that the two vertices adjacent to b and c are same, say, $(a, b), (a, c) \in E(H)$. In this case, we may assume that $(b, d), (c, d) \notin E(H)$ since otherwise it gives a super-graph of H_7^{GH} . Then, as before, there are three consecutive vertices in S adjacent to d, which gives a super-graph of H_4^{GH} .

As before, we show that the complement graph of the graph in Figure 10, denoted by G_7^{GH} , do not satisfy Z₂. The coloring of G_7^{GH} is again settled by appealing to those for GH, as in the previous lemma. Note that $\{a, b\}$ and $\{c, d\}$ respectively are isolated from all the other vertices in H_7^{GH} , and hence the graph obtaining from G_7^{GH} by identifying $\{a, b\}$ and $\{c, d\}$ to one vertex u and v respectively is isomorphic to GH. Since $\{a, b\}$ and $\{c, d\}$ are independent in G_7^{GH} , we make use of any coloring of GH where the unique monochromatic triangle avoids the two vertices u and v. Such a coloring is neither of type A nor type B, which is, for example, shown in Figure 11, where the other vertex in C_3 is denoted by w.

Figure 11: A coloring of GH used for H_7^{GH}

Finally, suppose that there is no isolated vertex in H.

Lemma 3.4. No graph H in \mathcal{M}_1 without an isolated vertex exists.

Proof. Let a, b, c, d, e be the five vertices other than S. Designate a, b, c so that $G[S \cup \{a, b, c\}]$ is isomorphic to GH. Since H has no isolated vertex (and there is no edge among $\{a, b, c\}$), each vertex of $\{a, b, c\}$ is adjacent to d or e. If the set of neighbors of $\{a, b, c\}$ is $\{d, e\}$, then H is a super-graph of H_7^{GH} . Thus, we may assume that the neighbor of $\{a, b, c\}$ is, say, d. Then, as before, whether $(d, e) \in E(H)$ or not, there are three consecutive vertices in S adjacent to e, which gives a super-graph of H_4^{GH} .

3.2 Non-Graham graph

We next present all maximal graphs that do not contain GH. As is mentioned before, we consider complement graphs H of those graphs so that we enumerate minimal (complement) graphs that do not contain $\overline{K_6}$, that is, $H \in \mathcal{M}_2$. Recall that it suffices to consider graphs H with independence number *exactly* five, and the number of isolated vertices in H is at most three.

Before starting the proof, we introduce the following theorem which is a complementary version (with some small change) of the result in [12] that every vertex 5-colorable graph G has an edge 2-coloring of G without a monochromatic triangle⁴.

Theorem 3.2. Let G be a graph. If each component of \overline{G} is a complete graph and the number of components in \overline{G} is at most 5, then there exists an edge 2-coloring of G without a monochromatic triangle.

Consider first that there are exactly three isolated vertices in H, the set of which is denoted by S_1 .

Lemma 3.5. The graphs in \mathcal{M}_2 with three isolated vertices are the graphs H_1^{nGH} and H_2^{nGH} , presented in Figure 12. Moreover, all the complement graphs of these graphs do not satisfy Z_2 .

Proof. Let H be a graph in \mathcal{M}_2 with three isolated vertices. Since $\alpha(H[V \setminus S_1]) = 2$, fix two independent vertices arbitrarily, denoted by a, b. We first suppose that $H[V \setminus S_1]$ is disconnected. Since both of a and b have degree at least one, and the two components must be complete, we immediately have that H is isomorphic to H_1^{nGH} or H_2^{nGH} .

We next suppose that $H[V \setminus S_1]$ is connected. Then, $H[V \setminus S_1]$ is an α -critical connected graph of order 7. As before, since $\alpha(H[V \setminus S_1]) = 2$, by Fact 3 we have $H[V \setminus S_1]$ is isomorphic to one of L_7^1 , L_7^2 , and L_7^3 , and hence it is isomorphic to H_1^{GH} , H_2^{GH} or H_3^{GH} .

By Theorem 3.2, the complement graphs of G_1^{nGH} and G_2^{nGH} do not satisfy Z_2 .

Next, suppose that there are exactly two isolated vertices in H, the set of which is denoted by S_2 .

⁴More precisely, Theorem 3.2 is a complement version of Lin's result for a maximal vertex 5-colorable graph G, that is, G is isomorphic to a complete five partite graph K_{a_1,a_2,a_3,a_4,a_5} .

Figure 12: The minimal graphs in \mathcal{M}_2 with three isolated vertices

Lemma 3.6. The graphs in \mathcal{M}_2 with two isolated vertices are the graphs H_3^{nGH} , H_4^{nGH} and H_5^{nGH} , presented in Figure 13. Moreover, all the complement graphs of these graphs do not satisfy Z_2 .

Figure 13: The minimal graphs in \mathcal{M}_2 with two isolated vertices

Proof. Let H be a graph in \mathcal{M}_2 with two isolated vertices. Since $\alpha(H[V \setminus S_2]) = 3$, fix three independent vertices arbitrarily, denoted by a, b, c. We first suppose that $H[V \setminus S_2]$ is disconnected, and has three connected components. Similar to the first case in the previous lemma, we have that H is isomorphic to H_3^{nGH} or H_4^{nGH} .

We next suppose that $H[V \setminus S_2]$ has two connected components D_1, D_2 , in decreasing order of $\alpha(D_i)$. We may assume that $\alpha(D_1) = 2$ and $\alpha(D_2) = 1$, and hence D_1 has at least five vertices by Fact 3. Since D_2 has at least two vertices, D_1 has at most six vertices. If $D_2 = C_5$, then $D_1 = K_3$, and hence $H = H_6^{\text{GH}}$. If $D_2 = L_6$, then $H = H_4^{\text{GH}}$.

Finally, we suppose that $H[V \setminus S_2]$ is connected. Recall that every α -critical graph has no cut vertex [13, Corollary 12.1.8]. Moreover, it is known in [10] that the degree of any vertex in an α -critical graph of order n is at most $n - 2\alpha + 1$. Thus, $H[V \setminus S_2]$ is 3-regular or it has a vertex of degree 2. In the former case, it is known in [13, Exercise 12.1.16] that such a graph is of order at most 4. In the latter case, it is known in [13, Lemma 12.1.4] that if an α -critical graph of order n has a vertex of degree 2, then the graph can be obtained from some $(\alpha - 1)$ -critical graph of order n - 2 by splitting some vertex into two vertices y and z, and by creating a new vertex x so that x is adjacent to y and z. Thus, by applying the operation to a vertex of L_6 , we can obtain all α -critical connected graphs of order 8 with $\alpha = 3$ which have a vertex of degree 2. See Figure 14 for all those graphs.

Figure 14: Three α -critical connected graphs of order 8 with $\alpha = 3$ having a vertex of degree 2

 $H[V \setminus S_2]$ is isomorphic to L_8^1 , L_8^2 , and L_8^3 , then H is isomorphic to H_5^{GH} , H_5^{nGH} , and G_0 , respectively.

As before, we show that all the complement graphs of these graphs in Figure 13, denoted by G_3^{nGH} , G_4^{nGH} , G_5^{nGH} , do not satisfy Z₂. By Theorem 3.2, the complements of G_3^{nGH} and G_4^{nGH} do not satisfy Z₂. On the other hand, the coloring of G_5^{nGH} is not so simple as the two graphs. We first explain the structure of G_5^{nGH} , which indeed is close to that of G_4^{GH} . (See the left in Figure 15, comparing to the left in Figure 8.) The

Figure 15: The graph G_5^{nGH} and the coloring of G_5^{nGH}

graph G_5^{nGH} consists of the two parts B_1 and B_2 . The part B_1 is over a, b, x, y, z, vand the part B_2 is over c, u and the two isolated vertices (depicted rather largely), which correspond to vertices of H_5^{nGH} in Figure 13. Observe that there is one edge on every pair between vertices of B_1 and B_2 , except for the two pairs (b, u) and (c, v), where the formers are omitted and the latters are depicted in dashed lines. We next present a coloring of G_5^{nGH} so that there is only one monochromatic triangle ⁵, which is on x and the two isolated vertices. For this, we focus on the differences between G_4^{GH} and G_5^{nGH} by the following equation:

$$G_5^{\text{nGH}} = (G_4^{\text{GH}} \cup \{(b, v)\}) \setminus \{(b, u), (c, v)\},\$$

where we employ the labels of vertices in Figure 15, discarding those in Figure 8. Then, the coloring of G_5^{nGH} is almost same as that of G_4^{GH} shown in the right in Figure 8. Recall that we have made use of the coloring of type B so that we share the unique monochromatic triangle between the two GHs. It is easy to see that there is only one monochromatic triangle if we apply the coloring of G_4^{GH} to edges of $E(G_4^{GH}) \cap E(G_5^{nGH})$, and do not care for the color of the edge (b, v). We claim that the additional edge (b, v) colored red does not produce any monochromatic triangle. This is because (1) there is no edge on (b, u) and (c, v) in G_5^{nGH} , and (2) (b, w) and (v, w) must be differently colored for any isolated vertex w.

Next, suppose that there is exactly one isolated vertex in H, the set of which is denoted by S_3 .

Lemma 3.7. The graphs in \mathcal{M}_2 with one isolated vertex are the graphs H_6^{nGH} , H_7^{nGH} and H_8^{nGH} , presented in Figure 16. Moreover, all the complement graphs of these graphs do not satisfy Z_2 .

Figure 16: The minimal graphs in \mathcal{M}_2 with one isolated vertex

Proof. Let H be a graph in \mathcal{M}_2 with one isolated vertex. Since $\alpha(H[V \setminus S_3]) = 4$, fix four independent vertices arbitrarily, denoted by a, b, c, d. We first suppose that $H[V \setminus S_3]$ is disconnected, and has four connected components. Similar to the proofs of the previous lemmas, we have that H is isomorphic to H_6^{nGH} ,

⁵There might exist a coloring of G_5^{nGH} so that that there is no monochromatic triangle.

Suppose that $H[V \setminus S_3]$ has three connected components D_1, D_2, D_3 , in decreasing order of $\alpha(D_i)$. We may assume that $\alpha(D_1) = 2$ and $\alpha(D_2) = \alpha(D_3) = 1$. Since each of D_2 and D_3 has at least two vertices, D_1 has at most five vertices. This means that $D_1 = C_5$ by Fact 3, and hence $H = H_7^{\text{GH}}$. Suppose that $H[V \setminus S_3]$ has two connected components D_1, D_2 , in decreasing order of $\alpha(D_i)$. If $\alpha(D_1) = 3$, then $D_1 = C_7$ by Fact 4 since $|V(D_1)| \leq 7$, and hence $H = H_7^{\text{nGH}}$. Otherwise, i.e., $\alpha(D_1) = \alpha(D_2) = 2$, at least one of D_1 and D_2 does not exist by Fact 3 since min $\{|V(D_1)|, |V(D_2)|\} \leq 4$.

Finally, suppose that $H[V \setminus S_3]$ is connected. Then, $H[V \setminus S_3] = C_9$ by Fact 4 since $|V \setminus S_3| = 9$ and $\alpha(H[V \setminus S_3]) = 4$, and hence $H = H_8^{\text{nGH}}$.

As before, we show that all the complement graphs of these graphs in Figure 16, denoted by G_6^{nGH} , G_7^{nGH} , G_8^{nGH} , do not satisfy Z₂. By Theorem 3.2, the complement of G_6^{nGH} does not satisfy Z₂. On the other hand, the colorings of G_7^{nGH} and G_8^{nGH} are not so simple, which are presented individually in the following two claims.

Claim 1. The graph $\widetilde{G_7^{nGH}}$ obtained from G_7^{nGH} by identifying the two vertices d and ein H_7^{nGH} is depicted in the left in Figure 17. All the edges among $V(\overline{C_7})$ and the two vertices, the isolated vertex and identified vertex, are omitted in the figure. Then, there is only one monochromatic triangle in the coloring of $\widetilde{G_7^{nGH}}$ depicted in the right in Figure 17, where the following colorings are omitted: let $C_5 = (a, y, x, c, b)$ be the cycle of size five. The coloring of edges between the identified vertex w and $V(C_5)$ is as follows: starting p with p = a, walking on C_5 in the anticlockwise way, the edge (w, p) is alternately colored blue and red so that (w, a) and (w, b) are both colored blue.

Figure 17: The graph $\widetilde{G_7^{\text{nGH}}}$ and the coloring of $\widetilde{G_7^{\text{nGH}}}$

Proof. We explain the structure of $\overline{G_7^{nGH}}$, in particular, the complement of $C_7 = (a, x, b, y, c, v, u)$ in H_7^{nGH} . We extract C_5 with the chord (a, c) from $\overline{C_7}$, and put aside the other two vertices u and v. Note that u (respectively v) is neither adjacent to v nor a (respectively u nor c) in $\overline{G_7^{nGH}}$. Moreover, triangles within $\overline{C_7}$ other than (a, b, c) are incident to either u or v.

We confirm that there is only one monochromatic triangle in the coloring of G_7^{nGH} . Here, we make sure of important features in the coloring. Let q be the isolated vertex and w be the identified vertex. Then,

- 1. All the edges except for (a, b) on C_5 as well as the chord (a, c) are colored blue.
- 2. The edges between u (respectively v) and $\{b, c, x, y\}$ (respectively $\{b, a, y, x\}$) are alternately colored.
- 3. All the edges between $V(C_5)$ and q are colored red.
- 4. All the edges between $V(C_5)$ and w are alternately colored as in the claim.

Firstly, it is easy to see that there is no monochromatic triangle within $\overline{C_7}$ because of the feature 1 and 2 above. Next, consider triangles containing the isolated vertex q within $\widetilde{G_7^{n\text{CH}}}[V(C_7) \cup \{q\}]$. It is easy to see that there is only one monochromatic triangle between C_5 and q because of the feature 1 and 3 above. It is also easy to see that there is no monochromatic triangle containing (q, u) and (q, v) since they are colored blue and because of the feature 3 above. Finally, consider triangles containing the identified vertex w in $\widetilde{G_7^{n\text{CH}}}$. Firstly, it is obvious that there is no monochromatic triangle between C_5 and w because of the feature 1 and 4 above. It is also easy to see that there is no monochromatic triangle containing (w, u) and (w, v) since these are colored red and because of the feature 2 and 4 above. Note here about the feature 2 that the edges (x, u), (x, v) (respectively (y, u), (y, v)) are colored red (respectively blue) while (x, w) (respectively (y, w)) is colored blue (respectively red). It is also easy to see that there is no monochromatic triangle containing (w, q) since it is colored blue and because of the feature 3 above. \Box

From this claim, it is easy to see that G_7^{nGH} does not satisfy Z_2 since the monochromatic triangle in the claim avoids the identified vertex which corresponds to d and e in G_7^{nGH} .

Claim 2. The graph G_8^{nGH} is depicted in the left in Figure 18. All the edges between $V(\overline{C_9})$ and the isolated vertex are omitted in the figure. Moreover, adjacent vertices z, d (respectively u, v) on C_9 in H_8^{nGH} are bundled up (but not identified) in one dotted circle in the figure, where one common edge is depicted for each vertex adjacent to z and d (respectively u and v) in $G_8^{nGH}[V(C_9)]$. Then, there is only one monochromatic triangle in the coloring of G_8^{nGH} depicted in the right in Figure 18.

Proof. We explain the structure of G_8^{nGH} , in particular, the complement of $C_9 = (a, x, b, y, c, z, d, v, u)$ in H_8^{nGH} . As the previous claim, we extract $C_5 = (a, y, x, c, b)$ with the chord (a, c) from $\overline{C_9}$, and put aside the other four vertices z, d, u, v, bundling adjacent vertices z and d (respectively u and v) as one vertex. Remark that we do not *identify* the two vertices. Note that z (respectively d) is neither adjacent to d nor c (respectively z nor v) in G_8^{nGH} . It is symmetrically similar for u and v.

Figure 18: The graph G_8^{nGH} and the colorings of G_8^{nGH}

We confirm that there is only one monochromatic triangle in the coloring of G_8^{nGH} . Here, we make sure of important features in the coloring. Let q be the isolated vertex. Then,

- 1. All the edges are colored red on C_5 .
- 2. The common edges between the bundle $\{z, d\}$ (respectively $\{u, v\}$) and $\{a, y, x\}$ (respectively $\{c, x, y\}$) are alternately colored, but the two edges corresponding to the commonly depicted edge incident to b is exclusively colored in $\{z, d\}$ (respectively $\{u, v\}$).
- 3. All the edges between the two bundles are colored blue.
- 4. All the edges between $V(C_5)$ and q are colored blue.
- 5. All the edges between the two bundles and q are colored red.

Firstly, it is easy to see that there is only one monochromatic triangle within $G_8^{nGH}[V(C_5)]$. Next, consider triangles containing z within $\overline{C_9}$. It is easy to see that there is no monochromatic triangle between C_5 and z because of the feature 2 above. It is also easy to see that there is no monochromatic triangle containing (z, u) because of the feature 3 and the following observation on the feature 2: the edge between the bundle $\{z, d\}$ and x (respectively y) is colored blue (respectively red) while the edge between the bundle $\{u, v\}$ and x (respectively y) is colored red (respectively blue). This fact on (z, u) is similar for (z, v) except for the existence of a triangle (z, v, a). These facts on z are similar for d except for the existence of a triangle (b, c, d). Moreover, those facts about z and d are symmetrically same for u and v. Finally, consider an arbitrary triangle (q, s, t) in G_8^{nGH} for some $s, t \in V(C_9)$. Firstly, for the case of $s, t \in V(C_5)$, it is obvious that (q, s, t) is not monochromatic because of the feature 1 and 4. For the case of $s, t \in V(C_9) \setminus V(C_5)$, it is obvious

that (q, s, t) is not monochromatic because of the feature 3 and 5. For the case of $s \in V(C_5)$ and $t \in V(C_9) \setminus V(C_5)$, it is obvious that (q, s, t) is not monochromatic because of the feature 4 and 5.

From this claim, we see that G_8^{nGH} does not satisfy Z_2 .

Finally, suppose that there is no isolated vertex in H.

Lemma 3.8. There exists a unique graph in \mathcal{M}_2 without an isolated vertex, namely the bipartite graph $5K_2$. Moreover, $K_{2,2,2,2,2} = \overline{5K_2}$ does not satisfy Z_2 .

Proof. Let H be a graph in \mathcal{M}_2 without an isolated vertex. Since $\alpha(H) = 5$, we may suppose that H is disconnected (since otherwise $H = K_2$ by Fact 4). If H has five connected components, then each component is K_2 , and hence, $H = 5K_2$.

Suppose that H has four connected components D_1, D_2, D_3, D_4 , in decreasing order of $\alpha(D_i)$. Since $\alpha(D_1) = 2$ and $|V(D_1)| \leq 4$, such a connected graph D_1 does not exist by Fact 3.

Next, suppose that H has three connected components D_1, D_2, D_3 , in decreasing order of $\alpha(D_i)$. If $\alpha(D_1) = 3$, such a connected graph D_1 does not exist by Fact 3 since $|V(D_1)| \leq 6$. Otherwise, $\alpha(D_1) = \alpha(D_2) = 2$, and hence at least one of D_1 and D_2 does not exist by Fact 3 since min{ $|V(D_1)|, |V(D_2)|$ } ≤ 4 .

Finally, suppose that H has two connected components D_1, D_2 , in decreasing order of $\alpha(D_i)$. There are two cases; $(\alpha(D_1), \alpha(D_2))$ is equal to (4, 1) or (3, 2). In either case, similar to the above cases, no such graph exists by Fact 3 and Fact 4.

By Theorem 3.2, $K_{2,2,2,2,2} = \overline{5K_2}$ has an edge 2-coloring without a monochromatic triangle.

4 Proof of Theorem 1.1

We present the maximal K_6 -free graph on ten vertices satisfying Z_2 , denoted by $G_0 = (V, E_0)$ (see Figure 2) where $V = \{v_1, \ldots, v_{10}\}$. We depict the complement graph of G_0 in Figure 19. Before we show that the graph G_0 satisfies Z_2 , we explain

Figure 19: The graph $\overline{G_0}$

the structure of the complement graph $\overline{G_0}$. The following induced sub-graphs of G_0

are all isomorphic to GH.

$$\begin{array}{rcl}
G_1 & \stackrel{\mathrm{def}}{=} & G_0[\{v_1, v_2, v_3, v_4, v_5\} \cup \{v_8, v_9, v_{10}\}], \\
G_2 & \stackrel{\mathrm{def}}{=} & G_0[\{v_1, v_2, v_3, v_4, v_6\} \cup \{v_7, v_9, v_{10}\}], \\
G_3 & \stackrel{\mathrm{def}}{=} & G_0[\{v_3, v_5, v_6, v_7, v_8\} \cup \{v_2, v_9, v_{10}\}], \\
G_4 & \stackrel{\mathrm{def}}{=} & G_0[\{v_4, v_5, v_6, v_7, v_8\} \cup \{v_1, v_9, v_{10}\}]
\end{array}$$

Thus, emphasizing the two cycles in GH, for each $1 \leq i \leq 4$, we denote G_i by $\operatorname{GH}(C_5^i, C_3^i)$. It is easy to see that G_0 is K_6 -free. This comes from the following observation. It suffices to show that there is no independent set of size four in $\overline{G_0}[\{v_1, \ldots, v_8\}]$. Let $I \subseteq \{v_1, \ldots, v_8\}$ be an arbitrary independent set in $\overline{G_0}[\{v_1, \ldots, v_8\}]$. Consider the case of $I \cap \{v_3, v_4, v_5, v_6\} = \emptyset$. Then, it is easy to see $|I| \leq 2$. Otherwise, suppose w.l.o.g. that $v_3 \in I$. In this case, $v_1, v_5, v_6 \notin I$. Then, it is easy to see $|I| \leq 3$. It is also easy to see the maximality of G_0 . This comes from the fact that there is an independent set of size four in $\overline{G_0}[\{v_1, \ldots, v_8\}] \setminus \{e\}$ for any $e \in E(\overline{G_0})$.

Lemma 4.1. The graph $G_0 = (V, E_0)$ satisfies Z_2 .

Proof. Fix an edge 2-coloring of G_0 arbitrarily. Note that there is at least one monochromatic triangle in G_0 since the graph G_0 contains GH and because of Fact 2. Let $\{a, b, c\} \subseteq V$ be the set of the vertices of a monochromatic triangle in G_0 . We show that there exists another monochromatic triangle in G_0 .

Claim 3. For any $v \in \{v_1, \ldots, v_8\}$, there is one G_i such that $v \notin V(G_i)$.

Proof. Consider $v = v_1$, for example. Then, $v_1 \notin V(G_3)$. It is similarly proven for any $v \in \{v_2, \ldots, v_8\}$.

At least one from $\{a, b, c\}$ must be from $\{v_1, \ldots, v_8\}$. Thus, from this claim, there is one G_i which does not contain the triangle (a, b, c). Thus, there is another monochromatic triangle in the graph G_i , which is guaranteed by Fact 2.

Lemma 4.2. The graph G_0 is minimal with respect to the property Z_2 , that is, for any edge $e \in E(G_0)$, there is a coloring for $G_0 \setminus \{e\}$ such that at most one monochromatic triangle exists.

Proof. For proving the lemma, we deal with the complement graph of G_0 , denoted by H_0 , so that we consider to add an edge e to H_0 . We will see that any graph $H_0 \cup \{e\}$ except for some graph, denoted by H'_0 , is a super-graph of some graph presented in the previous section, resulting in the contradiction to Z_2 .

We first consider an edge e incident to v_{10} . (By symmetry, we similarly consider an edge e incident to v_{9} .) For any $v \in \{v_1, \ldots, v_9\}$, it is easy to check that the graph $H_0 \cup \{e\}$ for $e = (v, v_{10})$ is a super-graph of H_7^{GH} .

We next consider an edge e incident to v_1 . (By symmetry, we similarly consider an edge e incident to v_2, v_7, v_8 .) Observe that for any $v \in \{v_4, \ldots, v_8\}$, the graph $H_0 \cup \{(v_1, v)\}$ with $v = v_5$ (respectively v_7) is isomorphic to the graph with $v = v_6$ (respectively v_8). The exceptional graph H'_0 is the graph $H_0 \cup \{(v_1, v)\}$ with $v = v_7$, which is not a super-graph of any graph presented in the previous section. It is easy to check that the graph $H_0 \cup \{e\}$ for $e = (v_1, v_5)$ is a super-graph of H_5^{GH} . It is also easy to check that the graph $H_0 \cup \{e\}$ for $e = (v_1, v_4)$ is a super-graph of H_6^{GH} .

We next consider an edge e incident to v_3 . (By symmetry, we similarly consider an edge e incident to v_4, v_5, v_6 .) It suffices to consider the case of $e = (v_3, v_4)$. Then, it is easy to check that the graph $H_0 \cup \{e\}$ for $e = (v_3, v_4)$ is a super-graph of H_4^{GH} .

We finally show the coloring of the complement graph of H'_0 , denoted by G'_0 . For this, we explain the structure of G'_0 . (See the left in Figure 20.) The graph

Figure 20: The graph G'_0 and the coloring of G'_0

as well as the coloring are very close to those of G_5^{GH} depicted in Figure 9. The difference of the two graphs is about additional edges, that is, the three additional edges (a, c'), (a', c), (c, c') in G_5^{GH} are replaced with the two edges (v_1, v_6) and (v_4, v_7) in G'_0 . The coloring of G'_0 is almost same as that of G_5^{GH} so that there is the unique monochromatic triangle (v_2, v_9, v_{10}) , denoted by $C_3^{v_2}$. (See the right in Figure 20.) As same as that case, it is easy to see that if we ignore the two additional edges (v_1, v_6) and (v_4, v_7) , there is no monochromatic triangle other than $C_3^{v_2}$. We claim that coloring the two additional edges (v_1, v_6) and (v_4, v_7) red does not yield any monochromatic triangle. This is done by coloring (v_6, v_9) and (v_7, v_{10}) blue, which correspond to the two dashed lines in Figure 4. Consider a triangle (v_1, v_6, w) containing the edge (v_1, v_6) . Then, w must be a neighbor of v_1 and v_6 , and hence $w \in \{v_5, v_9, v_{10}\}$. Thus, since the edges $(v_5, v_1), (v_9, v_6), (v_{10}, v_1)$ are all colored blue, the triangle (v_1, v_6, w) can not be monochromatic. Similarly, consider a triangle (v_4, v_7, w) containing the edge (v_4, v_7) . Then, w must be a neighbor of v_4 and v_7 , and hence $w \in \{v_3, v_9, v_{10}\}$. Thus, since the edges $(v_3, v_4), (v_9, v_4), (v_{10}, v_7)$ are all colored blue, the triangle (v_4, v_7, w) can not be monochromatic.

Finally, we give a proof of Theorem 1.1.

Proof of Theorem 1.1. By Lemmas 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7 and 3.8, any maxi-

mal K_6 -free graph except G_0 does not have property Z_2 . Moreover, by Lemmas 4.1 and 4.2, G_0 satisfies Z_2 and it is minimal with respect to the property Z_2 . Therefore, the theorem holds.

5 Conclusions

We have shown that the minimum number of vertices of K_6 -free graphs containing (at least) two monochromatic triangles for any edge 2-coloring is ten, giving a concrete (minimal) graph on ten vertices with such a property. Moreover, we show the uniqueness of the graph of all K_6 -free graphs on (at most) ten vertices.

Recall that $f_1(2,3,6) = f(2,3,6) = 8$ and that our result implies $f_2(2,3,6) = 10$, where $f_s(r,k,l)$ is a generalized concept of the Folkman number defined in the introduction. A straightforward future work is to generalize the construction of the graph G_0 , which gives an upper bound on the value of $f_s(2,3,6)$ for any $s \ge 1$.

Acknowledgments

The authors are grateful to the anonymous referees for carefully reading the paper and giving some useful advice to improve the paper.

References

- A. Bikov, Small minimal (3,3)-Ramsey graphs, Ann. Univ. Sofia Fac. Math. Inform. 103 (2016), 123–147.
- [2] A. Bikov and N. Nenov, The edge Folkman number $F_e(3,3;4)$ is greater than 19, *Geombinatorics* **27** (2017), 5–14.
- [3] A. Bikov and N. Nenov, On the independence number of (3, 3)-Ramsey graphs and the Folkman number $F_e(3, 3; 4)$, Australas. J. Combin. **77** (2020), 35–50.
- [4] A. Dudek and V. Rödl, On the Folkman number f(2, 3, 4), *Exp. Math.* **17** (2008), 63–67.
- [5] P. Erdős and A. Hajnal, Research Problem 2-5, J. Combin. Theory 2 (1967), 104.
- [6] J. Folkman, Graphs with monochromatic complete subgraphs in every edge coloring, SIAM J. Appl. Math. 18 (1970), 19–24.
- [7] P. Frankl and V. Rödl, Large triangle-free subgraphs in graphs without K_4 , *Graphs Combin.* **2** (1986), 135–144.
- [8] R. L. Graham, On edgewise 2-colored graphs with monochromatic triangles and containing no complete hexagon, J. Combin. Theory 4 (1968), 300.

- [9] R. Graham, B. Rothschild and J. H. Spencer, Ramsey Theory, New York: John Wiley and Sons (1990).
- [10] A. Hajnal, A theorem on k-saturated graphs, Canad. J. Math. 17 (1965), 720– 724.
- [11] F. Harary, The two-triangle case of the acquaintance graph, Math. Mag. 45 (1972), 130–135.
- [12] S. Lin, On Ramsey numbers and K_r -coloring of graphs, J. Combin. Theory Ser. B. 12 (1972), 82–92.
- [13] L. Lovász and M. D. Plummer, Matching theory, New York: North-Holland (1986).
- [14] L. Lu, Explicit construction of small Folkman graphs, SIAM J. Discrete Math. 21 (2008), 1053–1060.
- [15] A. R. Lange, S. P. Radziszowski and X. Xu, Use of MAX-CUT for Ramsey arrowing of triangles, J. Combin. Math. Combin. Comput. 88 (2014), 61–71.
- [16] N. Nenov, Up to isomorphism there exist only one minimal t-graph with nine vertices (in Russian), God. Sofij. Univ. Fak. Mat. Mekh. 73 (1979), 169–184.
- [17] N. Nenov, An example of a 15-vertex (3,3)-Ramsey graph with clique number 4 (in Russian), C. R. Acad. Bulgare Sci. 34 (1981), 1487–1489.
- [18] J. Nešetřil and V. Rödl, The Ramsey property for graphs with forbidden complete subgraphs, J. Combin. Theory Ser. B 20 (1976), 243–249.
- [19] K. Piwakowski, S. Radziszowski and S. Urbański, Computation of the Folkman number $F_e(3,3;5)$, J. Graph Theory **32** (1999), 41–49.
- [20] M. D. Plummer, On a family of line-critical graphs, *Monatsh. Math.* **71** (1967), 40–48.
- [21] M. D. Plummer, Some covering concepts in graphs, J. Combin. Theory Ser. B 8 (1970), 91–98.
- [22] F. P. Ramsey, On a Problem of Formal Logic, Proc. London Math. Soc. s2-30 (1930), 264–286.
- [23] J. Spencer, Three hundred million points suffice, J. Combin. Theory Ser. A 49 (1988), 210–217.

(Received 21 Oct 2020; revised 24 May 2021)