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Abstract

Let V be a set of n vectors in R2. Assume that for every distinct v, v′

and v′′ in V , the vectors v + v′ and v + v′′ are linearly independent. We
show that in such a case the set of vectors {v + v′ | v, v′ ∈ V, v 6= v′}
contains at least n vectors every two of which are linearly independent,
unless n = 2, n = 4, n = 6, or n ≥ 8 is even and O, the origin is in V . In
the latter case the other n− 1 vectors are (up to a linear transformation)
the set of vertices of a regular (n − 1)-gon centered at O. We use this
result to provide a short algebraic proof of an old conjecture of Erdős
and Purdy: Let P be a set of n points in general position in the plane.
Suppose that R is a set of red points disjoint from P such that every
line determined by P passes through a point in R. Then |R| ≥ n, unless
n = 2 or n = 4.

1 Introduction

A classical theorem of De-Bruijn and Erdős [3] implies that any non-collinear set of
n points in the Euclidean plane determines at least n distinct lines.

In 1970 Scott [13] asked the same question about the minimum possible number
of distinct directions of these lines. Scott conjectured that n non-collinear points in
the plane determine at least n lines with pairwise distinct directions if n is even and
n − 1 distinct directions if n is odd. This conjecture of Scott was proved by Ungar
in 1982.

If we assume in addition that P is in general position in the sense that no three
points of P are collinear, then things are slightly different and much simpler. In such
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a case P determines at least n lines with pairwise distinct directions regardless of
whether n is even or odd. To see this, consider the leftmost point in P and denote it
by p0. Then denote the other points in P by p1, . . . , pn−1 according to the increasing
slope of the lines p0p1, . . . , p0pn−1. Then these lines have pairwise distinct directions
and these n− 1 directions are all different from the direction of the line p1pn−1.

The bound n is best possible in this problem as can be seen by taking P to be the
set of vertices of a regular n-gon. It is shown in [7] that up to a linear transformation
this is the only example in which n points in general position determine precisely n
distinct directions.

An equivalent way of formulating the problem of Scott is to consider a set V of
n vectors in R2 with affine dimension equal to 2 (corresponding to the points of P
being not collinear). Let D = {v − v′ | v, v′ ∈ V, v 6= v′} be the set of the pairwise
differences of vectors in V . We are interested in the minimum number of distinct
lines (through O) spanned by vectors in D. If we add the condition that no three of
the vectors in V are affinely dependent this will correspond to the points of P being
in general position. Adding this condition makes the problem simpler because for
every v ∈ V the n− 1 vectors {v − v′ | v′ ∈ V, v′ 6= v} span distinct lines.

What if we change in the definition of D the differences into sums? That is,
let S(V ) = {v + v′ | v, v′ ∈ V, v 6= v′} and once again we would like to know
what is the minimum possible number of distinct lines spanned by vectors in S.
Equivalently, we would like to show that S(V ) contains many vectors, every two of
which are linearly independent. As far as we know this problem has not received
attention. Here it is not true anymore that for every v ∈ V every pair of the n − 1
vectors {v + v′ | v′ ∈ V, v′ 6= v} are linearly independent even if we assume that
every three vectors in V are affinely independent. This new problem seems to be
very interesting and non-trivial even in the case where every three vectors in V are
affinely independent. In this paper we will address (and solve) this problem under the
assumption that for every v ∈ V every two of the n−1 vectors {v+v′ | v′ ∈ V, v′ 6= v}
are linearly independent. We will show that under this assumption one can always
find at least n vectors in S(V ), every two of which are linearly independent, unless
n = 2, 4, or 6, or n ≥ 8 is even and one of v1, . . . , vn is equal to 0. In the latter case
the other n− 1 vectors must be the set of vertices of a regular (n− 1)-gon, up to a
linear transformation of R2.

Clearly, a lower bound of n − 1 is trivial in this problem, as we assume that for
every v ∈ V every two of the n − 1 vectors {v + v′ | v′ ∈ V, v′ 6= v} are linearly
independent. If n is odd, then it is very easy to improve this lower bound by one unit
to be n (in which case this bound is tight). Indeed, observe that if v1, v2 and v3, v4
are two different pairs of vectors such that v1 +v2 and v3 +v4 are linearly dependent,
then the vectors v1, v2, v3, and v4 must be distinct. Therefore, at most bn

2
c = n−1

2

of different pairs of vectors may be pairwise dependent. As there are
(
n
2

)
= n(n−1)

2

different pairs of vectors, it follows that there must be at least n sums of pairs of
vectors no two of which are linearly dependent. When n is odd the bound S(V ) ≥ n
is also best possible. This can easily be seen by taking V to be the set of vertices of
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a regular n-gon.

The case where n is even turns to be much more challenging. This is our main
result:

Theorem 1.1. Let n ≥ 8 be even. Let V be a set of n vectors in the R2. Assume that
for every distinct v, v′, v′′ ∈ V the vectors v+ v′ and v+ v′′ are linearly independent.
Then the set of vectors S(V ) = {v+v′ | v, v′ ∈ V, v 6= v′} contains at least n vectors
every two of which are linearly independent, unless 0 ∈ V and the nonzero vectors
in V are (up to a linear transformation) the set of vertices of a regular (n− 1)-gon
centered at the origin.

Clearly, Theorem 1.1 is false when n = 2 because then |S(V )| = 1. Theorem
1.1 is false also for n = 4. To see this just take any four vectors, satisfying the
conditions of Theorem 1.1, whose sum is equal to 0. Very surprisingly, the result
in Theorem 1.1 fails to be true also for n = 6. Here it is much more challenging
to find counterexamples. Although the case n = 6 just by itself may have only
limited importance, there is a very nice elementary mathematics behind it and we
will address this case in detail in a separate section at the end of this paper.

We remark that the bound S(V ) ≥ n in Theorem 1.1 is best possible up to at
most one unit. To see this consider the set of vertices of a regular (n+ 1)-gon minus
one point. The bound S(V ) ≥ n in Theorem 1.1 is enough for our main application
and we leave it open whether it can be improved by one unit, or not.

We will now introduce our main application in which, as we will see, the assump-
tion in Theorem 1.1 that for every distinct v, v′, v′′ ∈ V the vectors v+ v′ and v+ v′′

are linearly independent comes naturally. Our main application is a short algebraic
proof of a conjecture of Erdős and Purdy about line blockers for sets of points in
general position in the plane.

Let P be a set of n points in the projective plane. A set of points R disjoint
from P is called a line blocker for P if every line through two (or more) points of
P passes also through a point in R. Erdős and Purdy asked the following question
in [5]. How small can be the cardinality of a line blocker for a set P of n points in
the plane? Clearly, if P is contained in a line, then R may consist of just one point.
Therefore, the question of Erdős and Purdy is about sets P that are not collinear.
The best known lower bound for this question is given in [10], where it is shown that
|R| ≥ n/3.

In [5] Erdős and Purdy considered also the case in which P is in general position
in the sense that no three points of P are collinear. In this case there is a simple
construction showing that |R| can be as small as n. To observe this let P be the set
of vertices of a regular n-gon and let R be the set of n points on the line at infinity
that correspond to the n possible directions of the edges and diagonals of P .

To get a lower bound for |R|, notice that every point in R may be incident to at
most bn

2
c lines determined by P . Because there are

(
n
2

)
lines determined by P , then

if n is odd we get |R| ≥ n (which is tight) and if n is even we get |R| ≥ n− 1. This
easy lower bound for |R| is in fact sharp in the cases n = 2 and n = 4, as can be
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Figure 1: Counterexamples for n = 2, 4 in the primal version (Theorem 1.2). The
points in P are colored black while the points in R are colored white.

seen in Figure 1. Is the bound |R| ≥ n − 1 sharp also for larger values of n? The
answer is ‘NO’ as follows from the next theorem, proving a conjecture of Erdős and
Purdy in [5].

Theorem 1.2. Let P be a set of n ≥ 5 points in general position in the projective
plane. Suppose that R is a line blocker for P . Then |R| ≥ n.

Theorem 1.2 was first proved in [1] (see Theorem 8 there), as a special case of
the solution of the Magic Configurations conjecture of Murty [9]. The proof in [1]
contains a topological argument based on Euler’s formula for planar maps and the
discharging method. An elementary (and long) proof of Theorem 1.2 was given by
Milićević in [8]. Probably the “book proof” of the Theorem 1.2 can be found in
[11]. Theorem 1.2 was proved also over Fp by Blokhuis, Marino, and Mazzocca [2].
In this paper we provide an algebraic proof for Theorem 1.2 as an application of
Theorem 1.1 for n 6= 6. Although Theorem 1.2 is valid in the case n = 6, we will not
be able to conclude this case from Theorem 1.1 because of the surprising fact that
Theorem 1.1 is not true for n = 6.

The approach in [2] to proving Theorem 1.2, although uses a slightly different
language and deals with geometries over finite fields, has things in common to the
approach we present in this paper. In particular equation (2) in [2] is essentially
identical to the observation that vi + vj is in the direction of some uk at the end of
the proof of Theorem 1.2 in this paper. However, the two proofs are different. While
our proof works over the reals, the proof in [2] is over the finite fields Zp.

2 Proof of Theorem 1.1

Denote by v1, . . . , vn the vectors in V . As we already observed, the set S(V ) of all
sums of pairs of vectors in V contains at least n− 1 vectors, every two of which are
linearly independent. Let u1, . . . , un−1 be n − 1 such vectors in S(V ). We need to
show that if every vector in S(V ) is proportional to one of u1, . . . , un−1, then 0 ∈ V
and the other n−1 vectors in V are (up to a linear transformation) the set of vertices
of a regular (n− 1)-gon.

Assume that every vector in S(V ) is proportional to one of u1, . . . , un−1. For
every fixed i, every vector in {vi + vj | j 6= i} is proportional to a different vector in
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{u1, . . . , un−1}. Therefore, if we couple vectors in v1, . . . , vn whose sum is parallel to
say uj, we will get a perfect matching. This implies that

∑n
i=1 vi is a vector parallel

to uj. Since this is true for every j, we conclude that
∑n

i=1 vi = 0.

Let Q denote the convex hull of V ∪ −V (where −V = {−v | v ∈ V }). Observe
that Q is centrally symmetric. Fix 1 ≤ i ≤ n − 1. A line ` parallel to ui passes
through a point in V if and only if it passes through a point of −V . Indeed, assume
` passes through vk (similarly if it passes through −vk), then it passes through the
unique point −vj such that vk + vj is proportional to ui. It follows from here that Q
has two edges parallel to ui. As this is true for every i = 1, . . . , n − 1, we conclude
that Q has at least 2(n− 1) edges, and therefore, at least 2(n− 1) vertices.

We claim that Q has exactly 2(n− 1) edges. This is to say that it is not possible
that all the points in V ∪ (−V ) are vertices of Q. Indeed, assume to the contrary
that Q has 2n vertices (notice that this is the contrary assumption, as Q is cen-
trally symmetric). We claim that it must be that there are two vertices of Q in V
consecutive along the boundary of Q. Indeed, otherwise the vertices in V and −V
appear alternately on the boundary of Q and this is impossible because n is even
(easy exercise!). The contradiction now follows from the following claim:

Claim 2.1. It is not possible that two vertices of V appear consecutively on the
boundary of Q.

Proof. Assume that v and v′ are both in V and they are two consecutive vertices
of Q. Consider the point −vk such that the angle ](−vk)vv′ is minimum. There
must be a point −vt such that the line connecting −vt to v′ is parallel to the line
connecting v and (−vk). This is impossible because then the angle ](−vt)vv′ is
smaller than ](−vk)vv′, contradicting the minimality of ](−vk)vv′. �

Having established the fact that Q has precisely 2(n − 1) vertices, we rename
these vertices and denote them by a0, . . . , am−1, where m = 2(n − 1), indexed in
correspondence to their clockwise order on the boundary of Q. Without loss of
generality we have that {a0, a2, a4, . . . , am−2} are all in V and {a1, a3, a5, . . . , am−1}
are all in −V . We may assume this because, by Claim 2.1, it is not possible that two
consecutive vertices along the boundary of Q belong to V .

Claim 2.2. For every i and 1 ≤ k < n/2 − 1 the line through ai−k and ai+1+k is
parallel to the line through ai and ai+1 (here all the indices are taken modulo m).

We remark that once we prove Claim 2.2 it will follow from the symmetry of Q
that for every fixed i the lines {ai−kai+1+k | 0 ≤ k < n−1, k 6= n/2−1} are pairwise
parallel.

Proof of Claim 2.2. We prove the claim by induction on k. Observe that for every
i and 1 ≤ k < n/2−1, the line through ai−k and ai+1+k is parallel to one of the edges
of Q. This is because one of ai−k and ai+1+k belongs to V and the other belongs to
−V , and we cannot not have ai−k = −ai+1+k (if k = n/2− 1, then ai−k = −ai+1+k,
which is the reason we assume k < n/2− 1).
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For k = 1 the line through ai−1 and ai+2 must be parallel to the edge aiai+1 (or
to the opposite and parallel edge ai−n/2ai+1+n/2) of Q, as it cannot be parallel to any
other edge of Q.

As for the induction step, assume the claim is true for k − 1 and we prove it for
k. Consider the line through ai−k and ai+1+k. By the induction hypothesis the line
through ai−k and ai+k−1 is parallel to the edge ai−1ai. The line through ai−k+2 and
ai+1+k is parallel to the edge ai+1ai+2. Therefore, the only possible edge of Q that
may be parallel to the line through ai−k and ai+1+k is the edge aiai+1 (or its reflection
through the origin O, namely the edge ai+n−1ai+n). This completes the induction
step. �

The next step is to show that the vertices of Q lie on a quadric. Here we will
use the assumption that 2(n − 1) > 10, that is, n > 6 (as we shall see, this is false
for n = 6). Let C be a quadric passing through a0, a1, a2, a3, and a4. We will show
that C must pass through a5. Then repeating this argument we conclude that all
the vertices of Q lie on C.

For every 0 ≤ i < j ≤ 5 denote by `ij the line, considered also as polynomial of
degree 1 in x and y, through ai and aj. The lines `03 and `12 are parallel and meet
at a point A on the line at infinity. The lines `14 and `05 are parallel and meet at a
point B on the line at infinity (here we use the fact that n > 6). The lines `34 and
`25 are parallel and meet at a point C on the line at infinity.

Consider the two triples of lines `03, `14, `25 and `05, `12, `34. These two triples of
lines meet at nine points: a0, . . . , a5 and A,B,C.

We will use a generalization of Pappus theorem called Chasles theorem [4]. This
classical result states that if three lines intersect three other lines in nine points, then
any cubic curve passing through 8 of the intersection points must pass also through
the ninth. See Theorem 4.1 in [6] for more details about the history of this result and
more references. Let C(x, y) denote the quadric C as a polynomial in x and y. Let
`∗ denote the line at infinity. Therefore, the polynomial C(x, y)`∗ passes through all
eight points a0, . . . , a4 and A,B,C. Therefore, by Chasles theorem, C(x, y)`∗ passes
also through a5. Because a5 does not lie on `∗ we conclude that C passes through
a0, . . . , a5, as desired.

Having shown that the points in V ∪ (−V ) lie on a quadric C we claim that C
is an ellipse. Indeed, notice that C and −C intersect in m = 2(n − 1) points. For
n > 3 this is possible only if C = −C. This shows that C is not a parabola. If it is a
hyperbola, then O must be the center of it but then the points of V ∪ (−V ) cannot
lie in convex position for n > 3. For a similar reason C cannot be a union of two
lines.

Therefore, C must be an ellipse. By applying a linear transformation, we may
assume that C is a circle. Because for every i the edge aiai+1 is parallel to the
line through ai−1 and ai+2 we conclude that the distance between ai and ai−1 is
equal to the distance between ai+1 and ai+2. This, together with the fact that Q
is centrally symmetric, imply that all the distances aiai+1 are equal. Hence Q is a
regular polygon centered at the origin and consequently V is the set of vertices of a
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regular (n− 1)-gon, centered at the origin. Therefore, we have
∑n−1

i=1 vi = 0. Recall
that

∑n
i=1 vi = 0. From here we conclude vn = 0, as desired.

This concludes the proof of Theorem 1.1. �

3 Proof of Theorem 1.2

In this section we provide a short algebraic proof to the following theorem conjectured
by Erdős and Purdy:

Theorem 3.1. Let P be a set of n > 6 points in general position in the projective
plane. Suppose that R is a line blocker for P . Then |R| ≥ n.

Notice that here we excluded the case n = 6 compared to Theorem 1.2, as we
remarked in the introduction.

It will be more convenient for us to consider the dual theorem using standard
duality of points and lines in the plane.

Theorem 3.2. Let L be a set of n > 6 lines in general position in the projective
plane. Suppose that R is a set of red lines, different from the lines in L such that
every intersection point of two lines in L is incident to a line in R. Then |R| ≥ n.

As we observed already in the introduction, Theorem 1.2 (and consequently also
Theorem 3.2) is easily seen to be true if n is odd. Therefore, the challenge in the
proof of Theorem 3.2 is the case when n is even. We shall therefore assume in the
proof that n ≥ 8 is even.

Proof of Theorem 3.2. Denote the lines in L by `1, . . . , `n. We may assume that
no two of the lines in L∪R are parallel (for example by applying a generic projective
transformation). We think of each `i as a linear polynomial `i(x, y) = aix+ biy + ci,
in the variables x and y, whose set of zeroes is the line represented by `i. We remark
that we use affine coordinates although we sometimes refer to the projective plane.

Assume to the contrary that |R| = n− 1 and denote by r1, . . . , rn−1 the lines in
R, again considered as linear polynomials in the two variables x and y. Specifically,
we write ri = ri(x, y) = eix+ fiy + gi.

With a slight abuse of notation, we denote by R the polynomial

R = R(x, y) = r1(x, y)r2(x, y) · · · rn−1(x, y)

and observe that the degree of R is n− 1. Similarly, let P denote the polynomial

P = P (x, y) = `1(x, y)`2(x, y) · · · `n(x, y).

For every i = 1, . . . , n, we denote by Pi(x, y) the polynomial P/`i, that is, the
product of all the polynomials `1, . . . , `n except for `i. We note that the degree of
every Pi is equal to n− 1.



R. PINCHASI /AUSTRALAS. J. COMBIN. 81 (1) (2021), 170–186 177

Fix 1 ≤ i ≤ n. Consider the polynomial Pi restricted to the line `i and notice
that it vanishes at all intersection points of `i with the other lines in L. Notice that
also the polynomial R restricted to `i vanishes on the same n−1 intersection points.
Because both polynomials Pi and R are of degree n− 1 we conclude that there is a
nonzero αi such that αiPi and R are identical if restricted to the line `i. It follows
that `i is a factor of αiPi − R. We now observe that `i must also be a factor of
(
∑n

i=1 αiPi) − R (simply because `i is a factor of every Pj for j 6= i). Because this
is true for i = 1, . . . , n and because the degree of (

∑n
i=1 αiPi)−R is smaller than or

equal to n− 1, we conclude that (
∑n

i=1 αiPi)−R = 0.

Consider any two distinct lines from L, say `i and `j. Let A = Aij denote the
intersection point of the two lines `i and `j. Let k be the index such that rk is the
line in R passing through A. Consider the polynomial equation

α1P1 + · · ·+ αnPn −R = 0. (1)

The partial derivatives (with respect to x and with respect to y) of the left hand side
of (1), must be equal to 0, at any point. This is true in particular for the point A.
Notice that ∂

∂y
Pt(A) = 0 and ∂

∂x
Pt(A) = 0 for every t different than i and j. Denote

by Pij the polynomial that is the product of all polynomials `1, . . . , `n except for `i
and `j. Denote by Rk the polynomial R/rk.

Recall that `i(x, y) = aix + biy + ci, `j(x, y) = ajx + bjy + cj, and ri(x, y) =
eix+ fiy + gi. We have

∂

∂x
Pi(A) = ajPij(A),

∂

∂x
Pj(A) = aiPij(A),

∂

∂x
R(A) = ekRk(A).

Therefore, taking the partial derivative in the direction of the x-axis of the left hand
side of (1) and equating it to 0 we get

αiajPij(A) + αjaiPij(A)−Rk(A)ek = 0. (2)

Similarly, by considering the partial derivative in the direction of the y-axis of
the left hand side of (1) and equating it to 0 we get

αibjPij(A) + αjbiPij(A)−Rk(A)fk = 0. (3)

Observe that Pij(A) 6= 0 and Rk(A) 6= 0. We recall that both αi and αj are
nonzero.

Dividing both equations (2) and (3) by αiαjPij(A) we get

1

αj
aj +

1

αi
ai =

Rk(A)

αiαjPij(A)
ek,

1

αj
bj +

1

αi
bi =

Rk(A)

αiαjPij(A)
fk.



R. PINCHASI /AUSTRALAS. J. COMBIN. 81 (1) (2021), 170–186 178

This analysis is valid for every i 6= j. For i = 1, . . . , n denote by vi the vector
1
αi

(ai, bi). For i = 1, . . . , n− 1 denote by ui the vector (ei, fi). Observe that because
we assume that no two lines among `1, . . . , `n and r1, . . . , rn−1 are parallel, then every
pair of vectors from v1, . . . , vn and u1, . . . , un−1 are linearly independent.

For every i, j, k such that i 6= j and `i and `j meet at a point that is incident to rk,
we have that vi + vj is a nonzero vector in the linear span of uk. Moreover, if j′ 6= j,
then vi + vj′ is in the direction of some uk′ different from uk. The contradiction now
follows from Theorem 1.1. �

4 The case n = 6 in Theorem 1.1.

In this section we will show that Theorem 1.1 cannot be extended to n = 6. Sur-
prisingly, it is quite challenging to find a counterexample for the case n = 6 in
Theorem 1.1.

The only place in the proof of Theorem 1.1 that fails to be true for n = 6 is
where we need to show that the vertices of Q (the convex hull of V ∪ (−V )) lie on
a quadric. In fact, a positive answer to the following statement could be enough to
conclude also the case n = 6:

Suppose a0, a1, . . . , a9 are 10 vertices of a centrally symmetric convex polygon Q,
indexed according to their clockwise order on the boundary of Q. Assume that for
every 0 ≤ i ≤ 9 that the diagonal ai−1ai+2 is parallel to aiai+1 (and therefore also
to ai+5ai−4 and to ai+4ai−3 because Q is centrally symmetric). Does this imply that
a0, . . . , a9 lie on a quadric (in fact an ellipse)?

A little surprisingly (at least to the author) it turns out that the answer to this
question is NO. This was communicated to me by Francisco L. Santos [12] who was
able to construct a counterexample using Geogebra.

As we will show in this section, even more surprisingly, not only does the proof
of Theorem 1.1 fail for the case n = 6, but also the statement is not true for n = 6.
We will construct a counterexample for the case n = 6. Our construction is explicit
and in this sense it could be enough to introduce a counterexample of six vectors
v0, . . . , v5 that satisfy the conditions of Theorem 1.1 but at the same time S(V ) does
not have more than five vectors each two of which are linearly independent. We will
do this at the end of this section. Nevertheless, we choose to present here the way
in which we found these counterexamples, together with some very nice observations
and claims of independent interest. We will be able to generate infinitely many
(essentially different) such counterexamples.

When coming to analyze the case n = 6, and in particular if we wish to find a
counterexample, we do have some information from the proof of Theorem 1.1, where
we assumed (to the contrary) that a counterexample exists. Recall that if V =
{v0, . . . , v5} is a set of six vectors that can serve as a counterexample, then for every
distinct i, j1, j2, the vectors vi + vj1 and vi + vj2 are linearly independent. We defined
the polygon Q, which is the convex hull of V ∪−V . Under the contrary assumption,
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Q is a 10-gon whose vertices are without loss of generality ±v0, . . . ,±v4. Again
without loss of generality we may assume that v0, . . . , v4 appear in this clockwise
cyclic order on the boundary of Q. As we have seen in the proof of Theorem 1.1,
if V is indeed a counterexample for the case n = 6, then we must have that for
i = 0, . . . , 4 the pair of vectors vi + vi+1 and vi+2 + vi+4 are linearly dependent. The
sum of indices here is modulo 5.

One key observation in the way to find a counterexample for the case n = 6 is
the following.

Claim 4.1. Assume v0, . . . , v4 ∈ R2 satisfy the following conditions:

• For i = 0, . . . , 4 the pair of vectors vi + vi+1 and vi+2 + vi+4 are linearly depen-
dent.

• No two of v0, v1, v2, v3, v4,−(v0 + v1 + v2 + v3 + v4) are linearly dependent (in
particular, −(v0 + v1 + v2 + v3 + v4) 6= 0) .

Then V = {v0, v1, v2, v3, v4,−(v0 + v1 + v2 + v3 + v4)} forms a counterexample for the
case n = 6 in Theorem 1.1.

Proof. Set v∗ = −(v0 + v1 + v2 + v3 + v4). Consider the following five perfect
matchings of the vectors in V . For i = 0, 1, 2, 3, 4 we let Mi be the perfect matching
Mi = {{vi, vi+1}, {vi−1, vi+2}, {v∗, vi+3}}, where the summation of indices is taken
modulo 5. It is easy to observe that these are five disjoint perfect matchings that
together contain all pairs of vectors in V . For every i = 0, 1, 2, 4 we have that the
three sums vi + vi+1, vi+2 + vi+4, and v∗ + vi+3 are pairwise proportional. This is
because by our assumption vi + vi+1 and vi+2 + vi+4 are linearly dependent, while
v∗ + vi+3 = −(v0 + v1 + v2 + v3 + v4) + vi+3 = −(vi + vi+1) − (vi+2 + vi+4). For
i = 0, . . . , 4 we denote by mi the line through the origin that contains all three sums
vi + vi+1, vi+2 + vi+4, and v∗ + vi+3.

We conclude that in S(V ) there are at most five vectors, each two of which are
linearly independent. This is because, by the pigeonhole principle, out of every six
pairs of vectors, two pairs must belong to the same matching Mi and then their sums
are proportional.

It is left to show that for distinct i, j1, j2 the sums vi + vj1 and vi + vj2 are not
proportional. Clearly, {vi, vj1} and {vi, vj2} belong to two different matchings Mx

and My, respectively. We observe that the union of every two matchings and in
particular Mx ∪My must be a cycle of length 6. If we assume to the contrary that
vi + vj1 and vi + vj2 are linearly dependent, then the six sums of pairs of matched
vectors in Mx ∪My are all proportional to one another and to a fixed vector u. This
implies that v0, . . . , v4, and v∗ must lie on two (parallel) lines `1 and `2, equidistant
from the origin and parallel to the line spanned by u. This is because the line parallel
to u must pass through the midpoints of the segments connecting the two vectors in
every pair in Mx ∪My.

From here it is not difficult to verify that the only possibility is that the vec-
tors v0, . . . , v4 and v∗ are arranged centrally symmetrically on the two parallel lines



R. PINCHASI /AUSTRALAS. J. COMBIN. 81 (1) (2021), 170–186 180

yielding a contradiction as we assume that no two of the vectors v0, . . . , v4, v
∗ are

proportional. We present the details of this argument now.

Denote arbitrarily by a1, a2, a3 the three points (vectors) among v0, . . . , v4, and
v∗ that lie on `1. For 1 ≤ i < j ≤ 3 let cij =

ai+aj
2

. Notice that c12, c13, c23 are
pairwise distinct.

Denote arbitrarily by b1, b2, and b3 the three points (vectors) among v0, . . . , v4,

and v∗ that lie on `2. For 1 ≤ i < j ≤ 3 let dij =
bi+bj

2
. Notice that d12, d13, d23 are

pairwise distinct.

The points {c12, c13, c23} ∪ {d12, d13, d23} must lie on the union of the three lines
mi different from mx and my. Because `1 and `2 are parallel and equidistant from O,
we conclude that {d12, d13, d23} = −{c12, c13, c23}. Because b1, b2, b3 are uniquely

determined by the equalities dij =
bi+bj

2
for 1 ≤ i < j ≤ 3 we conclude that

{b1, b2, b3} = −{a1, a2, a3}. This is a contradiction, as we assume that every two
of v0, v1, v2, v3, v4,−(v0 + v1 + v2 + v3 + v4) are linearly dependent. �

Lemma 4.2. Let v0, . . . , v4 be 5 vectors in R2 no two of which are linearly dependent.
Assume that for i = 0, 1, 2 the following is true: There exists αi such that vi+vi+1 =
−αi(vi+2 + vi+4) (in particular the two vectors vi + vi+1 and vi+2 + vi+4 are linearly
dependent). Assume moreover that α1 = (1− α0)(1− α2). Then there exists α3 and
α4 such that vi + vi+1 = −αi(vi+2 + vi+4) for i = 3 and i = 4. Moreover, for every
i = 0, 1, 2, 3, 4 we have αi = (1− αi−1)(1− αi+1). The summation of indices is done
modulo 5.

Proof. Let W be the vector space W = {(a0, . . . , a4) |
∑4

i=0 aivi = 0}. Because
v0, . . . , v4 span R2, the dimension of W is equal to 3.

By our assumption, the vectors w0 = (1, 1, α0, 0, α0), w1 = (α1, 1, 1, α1, 0), and
w2 = (0, α2, 1, 1, α2) are in W .

We claim that w0, w1, and w2 are linearly independent. This is regardless of the
assumption that α1 = (1 − α0)(1 − α2). To see this, observe that w0 and w2 are
clearly linearly independent. Assume to the contrary that w1 is equal to a linear
combination of w0 and w2, that is,

w1 = aw0 + bw2. (4)

By considering the first coordinate of equality (4), we get a = α1. By considering
the fourth coordinate of equality (4), we get b = α1. By considering the fifth coordi-
nate of equality (4), we get α1(α0 + α2) = 0. Clearly, α1 6= 0 (or else w1 = 0, which
is not the case) and therefore α0 = −α2. By considering the second coordinate of
equality (4), we get α1(1 + α2) = 1. By considering the third coordinate of equality
(4), we get α1(1 + α0) = 1. This is possible only if α0 = α2 = 0. However, this is
impossible as we assume v0 + v1 = α0(v2 + v4). If α0 = 0, then v0 + v1 = 0, contrary
to our assumption that every two vectors in V are linearly independent.

Having shown that w0, w1, w2 are linearly independent, we conclude that they
form a basis for the space W .
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We will now show that that there is a unique α3 such that the vector(α3, 0, α3, 1, 1)
is a linear combination of w0, w1, w2. We will also show that α3 is given by α2 =
(1− α1)(1− α3).

We would like to find a0, a1, and a2, and α3 such that a0w0 + a1w1 + a2w2 =
(α3, 0, α3, 1, 1). It is easy to uniquely find a0, a1, and a2 that will satisfy the equality
in the second, fourth, and fifth coordinates of this equality (that are independent of
α3). A direct calculation shows that

a0 =
1− α2 − α1α2

α0 + α1α2(1− α0)

a1 =
α2(1− α0)− 1

α0 + α1α2(1− α0)

a2 =
α0 + α1

α0 + α1α2(1− α0)
.

Then indeed, a0w0+a1w1+a2w2 = (α3, 0, α3, 1, 1) for α3 = 1−α1−α2−α0α1α2

α0+α1α2(1−α0)
. Under

our assumption that α1 = (1 − α0)(1 − α2), we get α3 = α0−α0α2

α0+α2−α0α2
. Because the

vector (α3, 0, α3, 1, 1) is in W we conclude that v3 + v4 = −α3(v0 + v2). It is easy
to verify that α2 = (1− α1)(1− α3). We can now apply the same argument for the
vectors v′0 = v1, v

′
1 = v2, v

′
2 = v3, v

′
3 = v4, and v′4 = v0 with α′0 = α1, α

′
1 = α2, and

α′2 = α3 and conclude that there is α′3 such that v′3 + v′4 = −α′3(v′0 + v′2). If we define
α4 = α′3 we get v4 + v0 = −α4(v1 + v3). Moreover, α3 = α′2 = (1 − α′1)(1 − α′3) =
(1−α2)(1−α4). A direct calculation shows that we also have α4 = (1−α0)(1−α3) and
α0 = (1−α4)(1−α1). (The last two equalities follow also by two repeated application
of the same argument for the vectors v2, v3, v4, v0, v1 and for v3, v4, v0, v1, v2.) �

Although we will not use this fact, it is not difficult to check that also the following
converse of Lemma 4.2 is true.

Lemma 4.3. Let v0, . . . , v4 be 5 vectors in R2 no two of which are linearly dependent.
Assume that for i = 0, 1, 2, 3, 4 the following is true: There exists αi such that
vi+vi+1 = −αi(vi+2 +vi+4) (this is equivalent to saying that the two vectors vi+vi+1

and vi+2 + vi+4 are linearly dependent). Then necessarily α1 = (1− α0)(1− α2).

Proof. We start exactly as in the proof of Lemma 4.2. Let W be the vector space
W = {(a0, . . . , a4) |

∑4
i=0 aivi = 0}. Because v0, . . . , v4 span R2, the dimension of W

is equal to 3.

By our assumption, the vectors w0 = (1, 1, α0, 0, α0), w1 = (α1, 1, 1, α1, 0), and
w2 = (0, α2, 1, 1, α2) are in W .

Recall that the fact that w0, w1, and w2 are linearly independent was part of the
proof of Lemma 4.2 and this part did not rely on any relation between α0, α1, and
α2.

Because w0, w1, and w2 form a basis for W , then w3 is equal to a linear combina-
tion of w0, w1, and w2. As in the proof of Lemma 4.2, we find w3 = a0w0+a1w1+a2w2,
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where

a0 =
1− α2 − α1α2

α0 + α1α2(1− α0)

a1 =
α2(1− α0)− 1

α0 + α1α2(1− α0)

a2 =
α0 + α1

α0 + α1α2(1− α0)
.

We now consider the first and third coordinate of w3 and observe that they must
be equal (in fact they are both equal to α3). From the equality w3 = a0w0 + a1w1 +
a2w2 it now follows that a0 + α1a1 = a0α0 + a1 + a2. Plugging in the expressions for
a0, a1, and a2 in terms of α0, α1, and α2, we get the relation α1 = (1− α0)(1− α2),
as desired. �

The following result, which we discovered in the course of proving Lemma 4.2, is
stated here, although it is not used in this paper:

Lemma 4.4. Assume a0, . . . , an−1 are n real numbers different from 0 that satisfy
ai = (1 − ai−1)(1 − ai+1) for every i (summation of indices is modulo n). Then n

must be divisible by 5, unless a0 = a1 = a2 = . . . = an−1 = 3±
√
5

2
.

We remark that as we will see in the proof, there are infinitely many (two degrees
of freedom) distinct sequences a0, . . . , an−1 that satisfy the conditions of Lemma 4.4.
Lemma 4.4 was used in one of the problems in the Grossman Math Olympiad in
Israel 2020.

Proof. Let x = a0 and y = a2. Then a1 = (1 − a0)(1 − a2) = (1 − x)(1 − y). We
may assume that both x and y are different from 1 and from 0 because we assume
that ai 6= 0 for every i.

We know that for every i we have ai = (1−ai−1)(1−ai+1). From here we conclude
that for every i we have

ai+1 =
1− ai − ai−1

1− ai−1
. (5)

We can now find a3 in terms of x and y using (5): a3 = 1−a2−a1
1−a1 = x−xy

x+y−xy . In the

same way a4 = 1−a3−a2
1−a2 . After substituting the expressions of a3 and a2 in terms of x

and y and simplifying, we get a4 = y−xy
x+y−xy . Now moving on to a5 we get a5 = 1−a4−a3

1−a3 .
After substituting a3 and a4 and simplifying, we get a5 = x.

We can continue and check that a6 = (1− x)(1− y) and a7 = y but this follows
already from our calculations above using the symmetry between x and y. We
conclude that the sequence a0, a1, . . . , an−1 must be periodic with period equal to 5,
that is, ai+5 = ai for every i.

If n is not divisible by 5, then we must have a0 = a1 = . . . = an−1, because we
know that ai = ai+5 for every i. If we denote this common value by x, we see that

we must have x = (1− x)2. This equation has only two solutions 3±
√
5

2
. �
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We shall now continue with the analysis of the case n = 6 in Theorem 1.1. Com-
bining Lemma 4.2 and Claim 4.1, we can get a method for generating a counterex-
ample to the case n = 6 in Theorem 1.1. Indeed, assume we can find α0, α1, α2 ∈ R
with α1 = (1 − α0)(1 − α2) and vectors v0, v1, v2, v3, v4 ∈ R2, such that every two
of v0, v1, v2, v3, v4,

∑4
i=0 vi are linearly independent and such that for i = 0, 1, 2 we

have vi + vi+1 = −αi(vi+2 + vi+4). Then by Lemma 4.2, v0, . . . , v4 satisfy the con-
ditions of Claim 4.1 and therefore v0, v1, v2, v3, v4 together with −

∑4
i=0 vi form a

counterexample of size six to Theorem 1.1.

We will now follow this recipe and prove that such a construction does exist. Let
ε > 0 be a very small positive number to be described later. One can take ε = 1

1000
.

We take v1 = (1, 1) and v2 = (1,−1). We take v4 = (−1− ε, ε). It remains to choose
v0 and v3. Denote by A1 the midpoint of the segment connecting v4 to v1, that is
A1 = 1

2
(v4 + v1) = (− ε

2
, 1+ε

2
). Let m1 be the line through O and A1 and let `1 be the

line parallel to m1 below m1 whose distance from m1 is equal to the distance of v2
from m1. In order that v2 + v3 and v1 + v4 will be linearly dependent, v3 must lie on
`1. The line `1 has slope equal to −1+ε

ε
and it intersects that x-axis at (−1 + ε

1+ε
, 0).

It is equal to the line y = −1+ε
ε

(x+ 1− ε
1+ε

).

Similarly, let A2 = 1
2
(v4 + v2) = (− ε

2
, −1+ε

2
). Let m2 be the line through O and

A2. Let `2 be the line parallel to m2 above m2, whose distance from m2 is equal to
the distance of v1 from m2. We observe that v0 must lie on `2. The line `2 has a slope
equal to 1−ε

ε
and it intersects the x-axis at −1+ ε

1−ε . It is the line y = 1−ε
ε

(x+1− ε
1−ε).

We will choose v0 and v3 in the following way. We will choose a number h > 0 in a
way that will be specified shortly and take v0 to the the point on `2 with y coordinate
that is equal to h. That is, v0 = ((h− 1−2ε

ε
) ε
1−ε , h). Then we take v3 to the the point on

`1 with y coordinate that is equal to −h. That is, v3 = ((h− 1
ε
) ε
1+ε

,−h). By choosing
v0 and v3 in this way we guarantee that v1 + v2 = −α1(v0 + v3) for some α1 ∈ R. Let
α0 be such that v0 + v1 = −α0(v4 + v2). Let α2 be such that v2 + v3 = −α2(v4 + v1).
It remains to show that we can choose h such that α1 = (1− α0)(1− α2).

Notice that v1 + v2 = (2, 0) and v0 + v3 = (h 2ε
1−ε2 −

2−2ε−2ε2
1−ε2 , 0). Therefore,

α1 = 1−ε2
−hε+1−ε−ε2 .

What about (1− α0)(1− α2)? We have v0 + v1 = ((h− 1−2ε
ε

) ε
1−ε + 1, h+ 1) and

v4 + v2 = (−ε,−1 + ε). We know already that v0 + v1 = −α0(v4 + v2). Therefore,
α0 = h+1

1−ε .

Similarly, v2 + v3 = ((h− 1
ε
) ε
1+ε

+ 1,−h− 1) and v1 + v4 = (−ε, 1 + ε). Therefore,

because v2 + v3 = −α2(v1 + v4), we have α2 = h+1
1+ε

. We get (1−α0)(1−α2) = h2−ε2
1−ε2 .

We want to find h such that α1 = (1− α0)(1− α2). Substituting the expressions
for α0, α1, and α2, we would like the following equality to hold:

1− ε2

−hε+ 1− ε− ε2
=
h2 − ε2

1− ε2
.

It is not difficult to solve this, after observing that h = −1 gives equality. We
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Figure 2: A counterexample to the case n = 6 in Theorem 1.1.

obtain the equation
h2ε− h(1− ε2)− (ε3 + ε2 − 1) = 0.

We get h = 1
2ε

(1 − ε2 +
√

5ε4 + 4ε3 − 2ε2 − 4ε+ 1). Keeping in mind that the

function
√

1 + x = 1 + 1
2
x + o(x), we observe that h = 1

ε
− 1 + o(1). This yields

v0 = ((h− 1−2ε
ε

) ε
1−ε , h) = (ε+ o(ε), 1

ε
− 1 + o(1)). Similarly, v3 = ((h− 1

ε
) ε
1+ε

,−h) =

(−ε+ o(ε),−1
ε

+ 1 + o(1)).

In particular, we see that when ε is very small every two of the vectors v0, v1, v2, v3,
v4 are linearly independent. What about

∑4
i=0 vi?

We have
∑4

i=0 vi = (h 2ε
1−ε2 + 1 − ε − 2−3ε

1−ε2 , ε). Hence,
∑4

i=0 vi = (1 + o(1), ε).
Therefore, the only vector among v0, v1, v2, v3, v4 that may be a scalar multiple of∑4

i=0 vi is the vector v4. However, in such a case, by comparing the y-coordinate, we
must have v4 =

∑4
i=0 vi, or in other words, v0 + v1 + v2 + v3 = 0. But this is not the

case because α0 6= 1.

This completes the proof. We can take a specific value of ε to get a concrete
counterexample for the case n = 6 in Theorem 1.1. Taking ε = 1

5
yields a particularly

nice example (in the sense that all the vectors are rational): h = 17
5

and v0 = ( 1
10
, 17

5
),

v1 = (1, 1), v2 = (1,−1), v3 = (− 4
15
,−17

5
), and v4 = (−6

5
, 1
5
). Finally, v5 = −(v0 +

. . . + v4) = (−19
30
,−1

5
). One can directly check that for V = {v0, v1, . . . , v5} the set
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S(V ) contains at most five vectors no two of which are proportional. Moreover, for
every distinct i, j, k the vectors vi + vj and vi + vk are linearly independent. Figure 2
contains the points v0, v1, v2, v3, v4, and v5, multiplied by a factor of 30, drawn (using
the platform of Geogebra) as A,B,C,D,E, and F , respectively. The gray points
correspond to all the possible midpoints of segments connecting a pair of the points
A,B,C,D,E, and F . These precisely correspond to 1

2
(vi + vj). One can see that all

the gray points lie on a union of 5 gray lines through the origin. This shows that
S(V ) contains at most five vectors no two of which are proportional.
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Purdy, Discrete Comput. Geom. 64 (2) (2020), 382–385.

[12] F. L. Santos, personal communication, 2020.

[13] P. R. Scott, On the sets of directions determined by n points, Amer. Math.
Monthly 77 (1970), 502–505.

[14] P. Ungar, 2n noncollinear points determine at least 2n directions, J. Combin.
Theory Ser. A 33 (1982), 343–347.

(Received 5 Oct 2020; revised 12 July 2021)


