A theorem about vectors in \mathbb{R}^2 and an algebraic proof of a conjecture of Erdős and Purdy

Rom Pinchasi*

Mathematics Department Technion—Israel Institute of Technology Haifa 32000, Israel room@math.technion.ac.il

Abstract

Let V be a set of n vectors in \mathbb{R}^2 . Assume that for every distinct v, v'and v'' in V, the vectors v + v' and v + v'' are linearly independent. We show that in such a case the set of vectors $\{v + v' \mid v, v' \in V, v \neq v'\}$ contains at least n vectors every two of which are linearly independent, unless n = 2, n = 4, n = 6, or $n \ge 8$ is even and O, the origin is in V. In the latter case the other n - 1 vectors are (up to a linear transformation) the set of vertices of a regular (n - 1)-gon centered at O. We use this result to provide a short algebraic proof of an old conjecture of Erdős and Purdy: Let P be a set of n points in general position in the plane. Suppose that R is a set of red points disjoint from P such that every line determined by P passes through a point in R. Then $|R| \ge n$, unless n = 2 or n = 4.

1 Introduction

A classical theorem of De-Bruijn and Erdős [3] implies that any non-collinear set of n points in the Euclidean plane determines at least n distinct lines.

In 1970 Scott [13] asked the same question about the minimum possible number of distinct directions of these lines. Scott conjectured that n non-collinear points in the plane determine at least n lines with pairwise distinct directions if n is even and n-1 distinct directions if n is odd. This conjecture of Scott was proved by Ungar in 1982.

If we assume in addition that P is in general position in the sense that no three points of P are collinear, then things are slightly different and much simpler. In such

^{*} Research partially supported by Grant 1091/21 from the Israel Science Foundation. The author acknowledges the financial support from the Ministry of Educational and Science of the Russian Federation in the framework of MegaGrant no 075-15-2019-1926.

a case P determines at least n lines with pairwise distinct directions regardless of whether n is even or odd. To see this, consider the leftmost point in P and denote it by p_0 . Then denote the other points in P by p_1, \ldots, p_{n-1} according to the increasing slope of the lines $p_0p_1, \ldots, p_0p_{n-1}$. Then these lines have pairwise distinct directions and these n-1 directions are all different from the direction of the line p_1p_{n-1} .

The bound n is best possible in this problem as can be seen by taking P to be the set of vertices of a regular n-gon. It is shown in [7] that up to a linear transformation this is the only example in which n points in general position determine precisely n distinct directions.

An equivalent way of formulating the problem of Scott is to consider a set V of n vectors in \mathbb{R}^2 with affine dimension equal to 2 (corresponding to the points of P being not collinear). Let $D = \{v - v' \mid v, v' \in V, v \neq v'\}$ be the set of the pairwise differences of vectors in V. We are interested in the minimum number of distinct lines (through O) spanned by vectors in D. If we add the condition that no three of the vectors in V are affinely dependent this will correspond to the points of P being in general position. Adding this condition makes the problem simpler because for every $v \in V$ the n-1 vectors $\{v - v' \mid v' \in V, v' \neq v\}$ span distinct lines.

What if we change in the definition of D the differences into sums? That is, let $S(V) = \{v + v' \mid v, v' \in V, v \neq v'\}$ and once again we would like to know what is the minimum possible number of distinct lines spanned by vectors in S. Equivalently, we would like to show that S(V) contains many vectors, every two of which are linearly independent. As far as we know this problem has not received attention. Here it is not true anymore that for every $v \in V$ every pair of the n-1vectors $\{v + v' \mid v' \in V, v' \neq v\}$ are linearly independent even if we assume that every three vectors in V are affinely independent. This new problem seems to be very interesting and non-trivial even in the case where every three vectors in V are affinely independent. In this paper we will address (and solve) this problem under the assumption that for every $v \in V$ every two of the n-1 vectors $\{v+v' \mid v' \in V, v' \neq v\}$ are linearly independent. We will show that under this assumption one can always find at least n vectors in S(V), every two of which are linearly independent, unless $n = 2, 4, \text{ or } 6, \text{ or } n \ge 8$ is even and one of v_1, \ldots, v_n is equal to 0. In the latter case the other n-1 vectors must be the set of vertices of a regular (n-1)-gon, up to a linear transformation of \mathbb{R}^2 .

Clearly, a lower bound of n-1 is trivial in this problem, as we assume that for every $v \in V$ every two of the n-1 vectors $\{v + v' \mid v' \in V, v' \neq v\}$ are linearly independent. If n is odd, then it is very easy to improve this lower bound by one unit to be n (in which case this bound is tight). Indeed, observe that if v_1, v_2 and v_3, v_4 are two different pairs of vectors such that $v_1 + v_2$ and $v_3 + v_4$ are linearly dependent, then the vectors v_1, v_2, v_3 , and v_4 must be distinct. Therefore, at most $\lfloor \frac{n}{2} \rfloor = \frac{n-1}{2}$ of different pairs of vectors may be pairwise dependent. As there are $\binom{n}{2} = \frac{n(n-1)}{2}$ different pairs of vectors, it follows that there must be at least n sums of pairs of vectors no two of which are linearly dependent. When n is odd the bound $S(V) \ge n$ is also best possible. This can easily be seen by taking V to be the set of vertices of a regular *n*-gon.

The case where n is even turns to be much more challenging. This is our main result:

Theorem 1.1. Let $n \ge 8$ be even. Let V be a set of n vectors in the \mathbb{R}^2 . Assume that for every distinct $v, v', v'' \in V$ the vectors v + v' and v + v'' are linearly independent. Then the set of vectors $S(V) = \{v+v' \mid v, v' \in V, v \neq v'\}$ contains at least n vectors every two of which are linearly independent, unless $0 \in V$ and the nonzero vectors in V are (up to a linear transformation) the set of vertices of a regular (n-1)-gon centered at the origin.

Clearly, Theorem 1.1 is false when n = 2 because then |S(V)| = 1. Theorem 1.1 is false also for n = 4. To see this just take any four vectors, satisfying the conditions of Theorem 1.1, whose sum is equal to 0. Very surprisingly, the result in Theorem 1.1 fails to be true also for n = 6. Here it is much more challenging to find counterexamples. Although the case n = 6 just by itself may have only limited importance, there is a very nice elementary mathematics behind it and we will address this case in detail in a separate section at the end of this paper.

We remark that the bound $S(V) \ge n$ in Theorem 1.1 is best possible up to at most one unit. To see this consider the set of vertices of a regular (n+1)-gon minus one point. The bound $S(V) \ge n$ in Theorem 1.1 is enough for our main application and we leave it open whether it can be improved by one unit, or not.

We will now introduce our main application in which, as we will see, the assumption in Theorem 1.1 that for every distinct $v, v', v'' \in V$ the vectors v + v' and v + v'' are linearly independent comes naturally. Our main application is a short algebraic proof of a conjecture of Erdős and Purdy about line blockers for sets of points in general position in the plane.

Let P be a set of n points in the projective plane. A set of points R disjoint from P is called a *line blocker* for P if every line through two (or more) points of P passes also through a point in R. Erdős and Purdy asked the following question in [5]. How small can be the cardinality of a line blocker for a set P of n points in the plane? Clearly, if P is contained in a line, then R may consist of just one point. Therefore, the question of Erdős and Purdy is about sets P that are not collinear. The best known lower bound for this question is given in [10], where it is shown that $|R| \ge n/3$.

In [5] Erdős and Purdy considered also the case in which P is in general position in the sense that no three points of P are collinear. In this case there is a simple construction showing that |R| can be as small as n. To observe this let P be the set of vertices of a regular n-gon and let R be the set of n points on the line at infinity that correspond to the n possible directions of the edges and diagonals of P.

To get a lower bound for |R|, notice that every point in R may be incident to at most $\lfloor \frac{n}{2} \rfloor$ lines determined by P. Because there are $\binom{n}{2}$ lines determined by P, then if n is odd we get $|R| \ge n$ (which is tight) and if n is even we get $|R| \ge n - 1$. This easy lower bound for |R| is in fact sharp in the cases n = 2 and n = 4, as can be

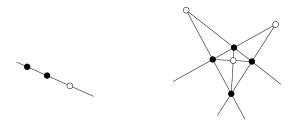


Figure 1: Counterexamples for n = 2, 4 in the primal version (Theorem 1.2). The points in P are colored black while the points in R are colored white.

seen in Figure 1. Is the bound $|R| \ge n - 1$ sharp also for larger values of n? The answer is 'NO' as follows from the next theorem, proving a conjecture of Erdős and Purdy in [5].

Theorem 1.2. Let P be a set of $n \ge 5$ points in general position in the projective plane. Suppose that R is a line blocker for P. Then $|R| \ge n$.

Theorem 1.2 was first proved in [1] (see Theorem 8 there), as a special case of the solution of the Magic Configurations conjecture of Murty [9]. The proof in [1] contains a topological argument based on Euler's formula for planar maps and the discharging method. An elementary (and long) proof of Theorem 1.2 was given by Milićević in [8]. Probably the "book proof" of the Theorem 1.2 can be found in [11]. Theorem 1.2 was proved also over \mathbb{F}_p by Blokhuis, Marino, and Mazzocca [2]. In this paper we provide an algebraic proof for Theorem 1.2 as an application of Theorem 1.1 for $n \neq 6$. Although Theorem 1.2 is valid in the case n = 6, we will not be able to conclude this case from Theorem 1.1 because of the surprising fact that Theorem 1.1 is not true for n = 6.

The approach in [2] to proving Theorem 1.2, although uses a slightly different language and deals with geometries over finite fields, has things in common to the approach we present in this paper. In particular equation (2) in [2] is essentially identical to the observation that $v_i + v_j$ is in the direction of some u_k at the end of the proof of Theorem 1.2 in this paper. However, the two proofs are different. While our proof works over the reals, the proof in [2] is over the finite fields \mathbb{Z}_p .

2 Proof of Theorem 1.1

Denote by v_1, \ldots, v_n the vectors in V. As we already observed, the set S(V) of all sums of pairs of vectors in V contains at least n-1 vectors, every two of which are linearly independent. Let u_1, \ldots, u_{n-1} be n-1 such vectors in S(V). We need to show that if every vector in S(V) is proportional to one of u_1, \ldots, u_{n-1} , then $0 \in V$ and the other n-1 vectors in V are (up to a linear transformation) the set of vertices of a regular (n-1)-gon.

Assume that every vector in S(V) is proportional to one of u_1, \ldots, u_{n-1} . For every fixed *i*, every vector in $\{v_i + v_j \mid j \neq i\}$ is proportional to a different vector in $\{u_1, \ldots, u_{n-1}\}$. Therefore, if we couple vectors in v_1, \ldots, v_n whose sum is parallel to say u_j , we will get a perfect matching. This implies that $\sum_{i=1}^n v_i$ is a vector parallel to u_j . Since this is true for every j, we conclude that $\sum_{i=1}^n v_i = 0$.

Let Q denote the convex hull of $V \cup -V$ (where $-V = \{-v \mid v \in V\}$). Observe that Q is centrally symmetric. Fix $1 \leq i \leq n-1$. A line ℓ parallel to u_i passes through a point in V if and only if it passes through a point of -V. Indeed, assume ℓ passes through v_k (similarly if it passes through $-v_k$), then it passes through the unique point $-v_j$ such that $v_k + v_j$ is proportional to u_i . It follows from here that Qhas two edges parallel to u_i . As this is true for every $i = 1, \ldots, n-1$, we conclude that Q has at least 2(n-1) edges, and therefore, at least 2(n-1) vertices.

We claim that Q has exactly 2(n-1) edges. This is to say that it is not possible that all the points in $V \cup (-V)$ are vertices of Q. Indeed, assume to the contrary that Q has 2n vertices (notice that this is the contrary assumption, as Q is centrally symmetric). We claim that it must be that there are two vertices of Q in Vconsecutive along the boundary of Q. Indeed, otherwise the vertices in V and -Vappear alternately on the boundary of Q and this is impossible because n is even (easy exercise!). The contradiction now follows from the following claim:

Claim 2.1. It is not possible that two vertices of V appear consecutively on the boundary of Q.

Proof. Assume that v and v' are both in V and they are two consecutive vertices of Q. Consider the point $-v_k$ such that the angle $\measuredangle(-v_k)vv'$ is minimum. There must be a point $-v_t$ such that the line connecting $-v_t$ to v' is parallel to the line connecting v and $(-v_k)$. This is impossible because then the angle $\measuredangle(-v_t)vv'$ is smaller than $\measuredangle(-v_k)vv'$, contradicting the minimality of $\measuredangle(-v_k)vv'$.

Having established the fact that Q has precisely 2(n-1) vertices, we rename these vertices and denote them by a_0, \ldots, a_{m-1} , where m = 2(n-1), indexed in correspondence to their clockwise order on the boundary of Q. Without loss of generality we have that $\{a_0, a_2, a_4, \ldots, a_{m-2}\}$ are all in V and $\{a_1, a_3, a_5, \ldots, a_{m-1}\}$ are all in -V. We may assume this because, by Claim 2.1, it is not possible that two consecutive vertices along the boundary of Q belong to V.

Claim 2.2. For every *i* and $1 \le k < n/2 - 1$ the line through a_{i-k} and a_{i+1+k} is parallel to the line through a_i and a_{i+1} (here all the indices are taken modulo *m*).

We remark that once we prove Claim 2.2 it will follow from the symmetry of Q that for every fixed *i* the lines $\{a_{i-k}a_{i+1+k} \mid 0 \leq k < n-1, k \neq n/2-1\}$ are pairwise parallel.

Proof of Claim 2.2. We prove the claim by induction on k. Observe that for every i and $1 \le k < n/2 - 1$, the line through a_{i-k} and a_{i+1+k} is parallel to one of the edges of Q. This is because one of a_{i-k} and a_{i+1+k} belongs to V and the other belongs to -V, and we cannot not have $a_{i-k} = -a_{i+1+k}$ (if k = n/2 - 1, then $a_{i-k} = -a_{i+1+k}$, which is the reason we assume k < n/2 - 1).

For k = 1 the line through a_{i-1} and a_{i+2} must be parallel to the edge $a_i a_{i+1}$ (or to the opposite and parallel edge $a_{i-n/2}a_{i+1+n/2}$) of Q, as it cannot be parallel to any other edge of Q.

As for the induction step, assume the claim is true for k-1 and we prove it for k. Consider the line through a_{i-k} and a_{i+1+k} . By the induction hypothesis the line through a_{i-k} and a_{i+k-1} is parallel to the edge $a_{i-1}a_i$. The line through a_{i-k+2} and a_{i+1+k} is parallel to the edge $a_{i+1}a_{i+2}$. Therefore, the only possible edge of Q that may be parallel to the line through a_{i-k} and a_{i+1+k} is the edge a_ia_{i+1} (or its reflection through the origin O, namely the edge $a_{i+n-1}a_{i+n}$). This completes the induction step.

The next step is to show that the vertices of Q lie on a quadric. Here we will use the assumption that 2(n-1) > 10, that is, n > 6 (as we shall see, this is false for n = 6). Let C be a quadric passing through a_0, a_1, a_2, a_3 , and a_4 . We will show that C must pass through a_5 . Then repeating this argument we conclude that all the vertices of Q lie on C.

For every $0 \leq i < j \leq 5$ denote by ℓ_{ij} the line, considered also as polynomial of degree 1 in x and y, through a_i and a_j . The lines ℓ_{03} and ℓ_{12} are parallel and meet at a point A on the line at infinity. The lines ℓ_{14} and ℓ_{05} are parallel and meet at a point B on the line at infinity (here we use the fact that n > 6). The lines ℓ_{34} and ℓ_{25} are parallel and meet at a point C on the line at infinity.

Consider the two triples of lines ℓ_{03} , ℓ_{14} , ℓ_{25} and ℓ_{05} , ℓ_{12} , ℓ_{34} . These two triples of lines meet at nine points: a_0, \ldots, a_5 and A, B, C.

We will use a generalization of Pappus theorem called Chasles theorem [4]. This classical result states that if three lines intersect three other lines in nine points, then any cubic curve passing through 8 of the intersection points must pass also through the ninth. See Theorem 4.1 in [6] for more details about the history of this result and more references. Let C(x, y) denote the quadric C as a polynomial in x and y. Let ℓ^* denote the line at infinity. Therefore, the polynomial $C(x, y)\ell^*$ passes through all eight points a_0, \ldots, a_4 and A, B, C. Therefore, by Chasles theorem, $C(x, y)\ell^*$ passes also through a_5 . Because a_5 does not lie on ℓ^* we conclude that C passes through a_0, \ldots, a_5 , as desired.

Having shown that the points in $V \cup (-V)$ lie on a quadric C we claim that C is an ellipse. Indeed, notice that C and -C intersect in m = 2(n-1) points. For n > 3 this is possible only if C = -C. This shows that C is not a parabola. If it is a hyperbola, then O must be the center of it but then the points of $V \cup (-V)$ cannot lie in convex position for n > 3. For a similar reason C cannot be a union of two lines.

Therefore, C must be an ellipse. By applying a linear transformation, we may assume that C is a circle. Because for every i the edge $a_i a_{i+1}$ is parallel to the line through a_{i-1} and a_{i+2} we conclude that the distance between a_i and a_{i-1} is equal to the distance between a_{i+1} and a_{i+2} . This, together with the fact that Qis centrally symmetric, imply that all the distances $a_i a_{i+1}$ are equal. Hence Q is a regular polygon centered at the origin and consequently V is the set of vertices of a regular (n-1)-gon, centered at the origin. Therefore, we have $\sum_{i=1}^{n-1} v_i = 0$. Recall that $\sum_{i=1}^{n} v_i = 0$. From here we conclude $v_n = 0$, as desired.

This concludes the proof of Theorem 1.1.

3 Proof of Theorem 1.2

In this section we provide a short algebraic proof to the following theorem conjectured by Erdős and Purdy:

Theorem 3.1. Let P be a set of n > 6 points in general position in the projective plane. Suppose that R is a line blocker for P. Then $|R| \ge n$.

Notice that here we excluded the case n = 6 compared to Theorem 1.2, as we remarked in the introduction.

It will be more convenient for us to consider the dual theorem using standard duality of points and lines in the plane.

Theorem 3.2. Let L be a set of n > 6 lines in general position in the projective plane. Suppose that R is a set of red lines, different from the lines in L such that every intersection point of two lines in L is incident to a line in R. Then $|R| \ge n$.

As we observed already in the introduction, Theorem 1.2 (and consequently also Theorem 3.2) is easily seen to be true if n is odd. Therefore, the challenge in the proof of Theorem 3.2 is the case when n is even. We shall therefore assume in the proof that $n \ge 8$ is even.

Proof of Theorem 3.2. Denote the lines in L by ℓ_1, \ldots, ℓ_n . We may assume that no two of the lines in $L \cup R$ are parallel (for example by applying a generic projective transformation). We think of each ℓ_i as a linear polynomial $\ell_i(x, y) = a_i x + b_i y + c_i$, in the variables x and y, whose set of zeroes is the line represented by ℓ_i . We remark that we use affine coordinates although we sometimes refer to the projective plane.

Assume to the contrary that |R| = n - 1 and denote by r_1, \ldots, r_{n-1} the lines in R, again considered as linear polynomials in the two variables x and y. Specifically, we write $r_i = r_i(x, y) = e_i x + f_i y + g_i$.

With a slight abuse of notation, we denote by R the polynomial

$$R = R(x, y) = r_1(x, y)r_2(x, y)\cdots r_{n-1}(x, y)$$

and observe that the degree of R is n-1. Similarly, let P denote the polynomial

$$P = P(x, y) = \ell_1(x, y)\ell_2(x, y)\cdots\ell_n(x, y).$$

For every i = 1, ..., n, we denote by $P_i(x, y)$ the polynomial P/ℓ_i , that is, the product of all the polynomials $\ell_1, ..., \ell_n$ except for ℓ_i . We note that the degree of every P_i is equal to n - 1.

Fix $1 \leq i \leq n$. Consider the polynomial P_i restricted to the line ℓ_i and notice that it vanishes at all intersection points of ℓ_i with the other lines in L. Notice that also the polynomial R restricted to ℓ_i vanishes on the same n-1 intersection points. Because both polynomials P_i and R are of degree n-1 we conclude that there is a nonzero α_i such that $\alpha_i P_i$ and R are identical if restricted to the line ℓ_i . It follows that ℓ_i is a factor of $\alpha_i P_i - R$. We now observe that ℓ_i must also be a factor of $(\sum_{i=1}^n \alpha_i P_i) - R$ (simply because ℓ_i is a factor of every P_j for $j \neq i$). Because this is true for $i = 1, \ldots, n$ and because the degree of $(\sum_{i=1}^n \alpha_i P_i) - R$ is smaller than or equal to n-1, we conclude that $(\sum_{i=1}^n \alpha_i P_i) - R = 0$.

Consider any two distinct lines from L, say ℓ_i and ℓ_j . Let $A = A_{ij}$ denote the intersection point of the two lines ℓ_i and ℓ_j . Let k be the index such that r_k is the line in R passing through A. Consider the polynomial equation

$$\alpha_1 P_1 + \dots + \alpha_n P_n - R = 0. \tag{1}$$

The partial derivatives (with respect to x and with respect to y) of the left hand side of (1), must be equal to 0, at any point. This is true in particular for the point A. Notice that $\frac{\partial}{\partial y}P_t(A) = 0$ and $\frac{\partial}{\partial x}P_t(A) = 0$ for every t different than i and j. Denote by P_{ij} the polynomial that is the product of all polynomials ℓ_1, \ldots, ℓ_n except for ℓ_i and ℓ_j . Denote by R_k the polynomial R/r_k .

Recall that $\ell_i(x,y) = a_i x + b_i y + c_i$, $\ell_j(x,y) = a_j x + b_j y + c_j$, and $r_i(x,y) = e_i x + f_i y + g_i$. We have

$$\frac{\partial}{\partial x} P_i(A) = a_j P_{ij}(A),$$

$$\frac{\partial}{\partial x} P_j(A) = a_i P_{ij}(A),$$

$$\frac{\partial}{\partial x} R(A) = e_k R_k(A).$$

Therefore, taking the partial derivative in the direction of the x-axis of the left hand side of (1) and equating it to 0 we get

$$\alpha_i a_j P_{ij}(A) + \alpha_j a_i P_{ij}(A) - R_k(A)e_k = 0.$$
⁽²⁾

Similarly, by considering the partial derivative in the direction of the y-axis of the left hand side of (1) and equating it to 0 we get

$$\alpha_i b_j P_{ij}(A) + \alpha_j b_i P_{ij}(A) - R_k(A) f_k = 0.$$
(3)

Observe that $P_{ij}(A) \neq 0$ and $R_k(A) \neq 0$. We recall that both α_i and α_j are nonzero.

Dividing both equations (2) and (3) by $\alpha_i \alpha_j P_{ij}(A)$ we get

$$\frac{1}{\alpha_j}a_j + \frac{1}{\alpha_i}a_i = \frac{R_k(A)}{\alpha_i\alpha_j P_{ij}(A)}e_k,$$

$$\frac{1}{\alpha_j}b_j + \frac{1}{\alpha_i}b_i = \frac{R_k(A)}{\alpha_i\alpha_j P_{ij}(A)}f_k.$$

This analysis is valid for every $i \neq j$. For i = 1, ..., n denote by v_i the vector $\frac{1}{\alpha_i}(a_i, b_i)$. For i = 1, ..., n - 1 denote by u_i the vector (e_i, f_i) . Observe that because we assume that no two lines among $\ell_1, ..., \ell_n$ and $r_1, ..., r_{n-1}$ are parallel, then every pair of vectors from $v_1, ..., v_n$ and $u_1, ..., u_{n-1}$ are linearly independent.

For every i, j, k such that $i \neq j$ and ℓ_i and ℓ_j meet at a point that is incident to r_k , we have that $v_i + v_j$ is a nonzero vector in the linear span of u_k . Moreover, if $j' \neq j$, then $v_i + v_{j'}$ is in the direction of some $u_{k'}$ different from u_k . The contradiction now follows from Theorem 1.1.

4 The case n = 6 in Theorem 1.1.

In this section we will show that Theorem 1.1 cannot be extended to n = 6. Surprisingly, it is quite challenging to find a counterexample for the case n = 6 in Theorem 1.1.

The only place in the proof of Theorem 1.1 that fails to be true for n = 6 is where we need to show that the vertices of Q (the convex hull of $V \cup (-V)$) lie on a quadric. In fact, a positive answer to the following statement could be enough to conclude also the case n = 6:

Suppose a_0, a_1, \ldots, a_9 are 10 vertices of a centrally symmetric convex polygon Q, indexed according to their clockwise order on the boundary of Q. Assume that for every $0 \le i \le 9$ that the diagonal $a_{i-1}a_{i+2}$ is parallel to a_ia_{i+1} (and therefore also to $a_{i+5}a_{i-4}$ and to $a_{i+4}a_{i-3}$ because Q is centrally symmetric). Does this imply that a_0, \ldots, a_9 lie on a quadric (in fact an ellipse)?

A little surprisingly (at least to the author) it turns out that the answer to this question is NO. This was communicated to me by Francisco L. Santos [12] who was able to construct a counterexample using Geogebra.

As we will show in this section, even more surprisingly, not only does the proof of Theorem 1.1 fail for the case n = 6, but also the statement is not true for n = 6. We will construct a counterexample for the case n = 6. Our construction is explicit and in this sense it could be enough to introduce a counterexample of six vectors v_0, \ldots, v_5 that satisfy the conditions of Theorem 1.1 but at the same time S(V) does not have more than five vectors each two of which are linearly independent. We will do this at the end of this section. Nevertheless, we choose to present here the way in which we found these counterexamples, together with some very nice observations and claims of independent interest. We will be able to generate infinitely many (essentially different) such counterexamples.

When coming to analyze the case n = 6, and in particular if we wish to find a counterexample, we do have some information from the proof of Theorem 1.1, where we assumed (to the contrary) that a counterexample exists. Recall that if $V = \{v_0, \ldots, v_5\}$ is a set of six vectors that can serve as a counterexample, then for every distinct i, j_1, j_2 , the vectors $v_i + v_{j_1}$ and $v_i + v_{j_2}$ are linearly independent. We defined the polygon Q, which is the convex hull of $V \cup -V$. Under the contrary assumption,

Q is a 10-gon whose vertices are without loss of generality $\pm v_0, \ldots, \pm v_4$. Again without loss of generality we may assume that v_0, \ldots, v_4 appear in this clockwise cyclic order on the boundary of Q. As we have seen in the proof of Theorem 1.1, if V is indeed a counterexample for the case n = 6, then we must have that for $i = 0, \ldots, 4$ the pair of vectors $v_i + v_{i+1}$ and $v_{i+2} + v_{i+4}$ are linearly dependent. The sum of indices here is modulo 5.

One key observation in the way to find a counterexample for the case n = 6 is the following.

Claim 4.1. Assume $v_0, \ldots, v_4 \in \mathbb{R}^2$ satisfy the following conditions:

- For i = 0, ..., 4 the pair of vectors $v_i + v_{i+1}$ and $v_{i+2} + v_{i+4}$ are linearly dependent.
- No two of $v_0, v_1, v_2, v_3, v_4, -(v_0 + v_1 + v_2 + v_3 + v_4)$ are linearly dependent (in particular, $-(v_0 + v_1 + v_2 + v_3 + v_4) \neq 0$).

Then $V = \{v_0, v_1, v_2, v_3, v_4, -(v_0 + v_1 + v_2 + v_3 + v_4)\}$ forms a counterexample for the case n = 6 in Theorem 1.1.

Proof. Set $v^* = -(v_0 + v_1 + v_2 + v_3 + v_4)$. Consider the following five perfect matchings of the vectors in V. For i = 0, 1, 2, 3, 4 we let M_i be the perfect matching $M_i = \{\{v_i, v_{i+1}\}, \{v_{i-1}, v_{i+2}\}, \{v^*, v_{i+3}\}\}$, where the summation of indices is taken modulo 5. It is easy to observe that these are five disjoint perfect matchings that together contain all pairs of vectors in V. For every i = 0, 1, 2, 4 we have that the three sums $v_i + v_{i+1}, v_{i+2} + v_{i+4}$, and $v^* + v_{i+3}$ are pairwise proportional. This is because by our assumption $v_i + v_{i+1}$ and $v_{i+2} + v_{i+4}$ are linearly dependent, while $v^* + v_{i+3} = -(v_0 + v_1 + v_2 + v_3 + v_4) + v_{i+3} = -(v_i + v_{i+1}) - (v_{i+2} + v_{i+4})$. For $i = 0, \ldots, 4$ we denote by m_i the line through the origin that contains all three sums $v_i + v_{i+1}, v_{i+2} + v_{i+3}$.

We conclude that in S(V) there are at most five vectors, each two of which are linearly independent. This is because, by the pigeonhole principle, out of every six pairs of vectors, two pairs must belong to the same matching M_i and then their sums are proportional.

It is left to show that for distinct i, j_1, j_2 the sums $v_i + v_{j_1}$ and $v_i + v_{j_2}$ are not proportional. Clearly, $\{v_i, v_{j_1}\}$ and $\{v_i, v_{j_2}\}$ belong to two different matchings M_x and M_y , respectively. We observe that the union of every two matchings and in particular $M_x \cup M_y$ must be a cycle of length 6. If we assume to the contrary that $v_i + v_{j_1}$ and $v_i + v_{j_2}$ are linearly dependent, then the six sums of pairs of matched vectors in $M_x \cup M_y$ are all proportional to one another and to a fixed vector u. This implies that v_0, \ldots, v_4 , and v^* must lie on two (parallel) lines ℓ_1 and ℓ_2 , equidistant from the origin and parallel to the line spanned by u. This is because the line parallel to u must pass through the midpoints of the segments connecting the two vectors in every pair in $M_x \cup M_y$.

From here it is not difficult to verify that the only possibility is that the vectors v_0, \ldots, v_4 and v^* are arranged centrally symmetrically on the two parallel lines

yielding a contradiction as we assume that no two of the vectors v_0, \ldots, v_4, v^* are proportional. We present the details of this argument now.

Denote arbitrarily by a_1, a_2, a_3 the three points (vectors) among v_0, \ldots, v_4 , and v^* that lie on ℓ_1 . For $1 \leq i < j \leq 3$ let $c_{ij} = \frac{a_i + a_j}{2}$. Notice that c_{12}, c_{13}, c_{23} are pairwise distinct.

Denote arbitrarily by b_1, b_2 , and b_3 the three points (vectors) among v_0, \ldots, v_4 , and v^* that lie on ℓ_2 . For $1 \le i < j \le 3$ let $d_{ij} = \frac{b_i + b_j}{2}$. Notice that d_{12}, d_{13}, d_{23} are pairwise distinct.

The points $\{c_{12}, c_{13}, c_{23}\} \cup \{d_{12}, d_{13}, d_{23}\}$ must lie on the union of the three lines m_i different from m_x and m_y . Because ℓ_1 and ℓ_2 are parallel and equidistant from O, we conclude that $\{d_{12}, d_{13}, d_{23}\} = -\{c_{12}, c_{13}, c_{23}\}$. Because b_1, b_2, b_3 are uniquely determined by the equalities $d_{ij} = \frac{b_i + b_j}{2}$ for $1 \leq i < j \leq 3$ we conclude that $\{b_1, b_2, b_3\} = -\{a_1, a_2, a_3\}$. This is a contradiction, as we assume that every two of $v_0, v_1, v_2, v_3, v_4, -(v_0 + v_1 + v_2 + v_3 + v_4)$ are linearly dependent.

Lemma 4.2. Let v_0, \ldots, v_4 be 5 vectors in \mathbb{R}^2 no two of which are linearly dependent. Assume that for i = 0, 1, 2 the following is true: There exists α_i such that $v_i + v_{i+1} = -\alpha_i(v_{i+2} + v_{i+4})$ (in particular the two vectors $v_i + v_{i+1}$ and $v_{i+2} + v_{i+4}$ are linearly dependent). Assume moreover that $\alpha_1 = (1 - \alpha_0)(1 - \alpha_2)$. Then there exists α_3 and α_4 such that $v_i + v_{i+1} = -\alpha_i(v_{i+2} + v_{i+4})$ for i = 3 and i = 4. Moreover, for every i = 0, 1, 2, 3, 4 we have $\alpha_i = (1 - \alpha_{i-1})(1 - \alpha_{i+1})$. The summation of indices is done modulo 5.

Proof. Let W be the vector space $W = \{(a_0, \ldots, a_4) \mid \sum_{i=0}^4 a_i v_i = 0\}$. Because v_0, \ldots, v_4 span \mathbb{R}^2 , the dimension of W is equal to 3.

By our assumption, the vectors $w_0 = (1, 1, \alpha_0, 0, \alpha_0), w_1 = (\alpha_1, 1, 1, \alpha_1, 0)$, and $w_2 = (0, \alpha_2, 1, 1, \alpha_2)$ are in W.

We claim that w_0, w_1 , and w_2 are linearly independent. This is regardless of the assumption that $\alpha_1 = (1 - \alpha_0)(1 - \alpha_2)$. To see this, observe that w_0 and w_2 are clearly linearly independent. Assume to the contrary that w_1 is equal to a linear combination of w_0 and w_2 , that is,

$$w_1 = aw_0 + bw_2. (4)$$

By considering the first coordinate of equality (4), we get $a = \alpha_1$. By considering the fourth coordinate of equality (4), we get $b = \alpha_1$. By considering the fifth coordinate of equality (4), we get $\alpha_1(\alpha_0 + \alpha_2) = 0$. Clearly, $\alpha_1 \neq 0$ (or else $w_1 = 0$, which is not the case) and therefore $\alpha_0 = -\alpha_2$. By considering the second coordinate of equality (4), we get $\alpha_1(1 + \alpha_2) = 1$. By considering the third coordinate of equality (4), we get $\alpha_1(1 + \alpha_2) = 1$. This is possible only if $\alpha_0 = \alpha_2 = 0$. However, this is impossible as we assume $v_0 + v_1 = \alpha_0(v_2 + v_4)$. If $\alpha_0 = 0$, then $v_0 + v_1 = 0$, contrary to our assumption that every two vectors in V are linearly independent.

Having shown that w_0, w_1, w_2 are linearly independent, we conclude that they form a basis for the space W.

We will now show that that there is a unique α_3 such that the vector $(\alpha_3, 0, \alpha_3, 1, 1)$ is a linear combination of w_0, w_1, w_2 . We will also show that α_3 is given by $\alpha_2 = (1 - \alpha_1)(1 - \alpha_3)$.

We would like to find a_0, a_1 , and a_2 , and α_3 such that $a_0w_0 + a_1w_1 + a_2w_2 = (\alpha_3, 0, \alpha_3, 1, 1)$. It is easy to uniquely find a_0, a_1 , and a_2 that will satisfy the equality in the second, fourth, and fifth coordinates of this equality (that are independent of α_3). A direct calculation shows that

$$a_0 = \frac{1 - \alpha_2 - \alpha_1 \alpha_2}{\alpha_0 + \alpha_1 \alpha_2 (1 - \alpha_0)}$$
$$a_1 = \frac{\alpha_2 (1 - \alpha_0) - 1}{\alpha_0 + \alpha_1 \alpha_2 (1 - \alpha_0)}$$
$$a_2 = \frac{\alpha_0 + \alpha_1}{\alpha_0 + \alpha_1 \alpha_2 (1 - \alpha_0)}$$

Then indeed, $a_0w_0 + a_1w_1 + a_2w_2 = (\alpha_3, 0, \alpha_3, 1, 1)$ for $\alpha_3 = \frac{1-\alpha_1-\alpha_2-\alpha_0\alpha_1\alpha_2}{\alpha_0+\alpha_1\alpha_2(1-\alpha_0)}$. Under our assumption that $\alpha_1 = (1 - \alpha_0)(1 - \alpha_2)$, we get $\alpha_3 = \frac{\alpha_0-\alpha_0\alpha_2}{\alpha_0+\alpha_2-\alpha_0\alpha_2}$. Because the vector $(\alpha_3, 0, \alpha_3, 1, 1)$ is in W we conclude that $v_3 + v_4 = -\alpha_3(v_0 + v_2)$. It is easy to verify that $\alpha_2 = (1 - \alpha_1)(1 - \alpha_3)$. We can now apply the same argument for the vectors $v'_0 = v_1, v'_1 = v_2, v'_2 = v_3, v'_3 = v_4$, and $v'_4 = v_0$ with $\alpha'_0 = \alpha_1, \alpha'_1 = \alpha_2$, and $\alpha'_2 = \alpha_3$ and conclude that there is α'_3 such that $v'_3 + v'_4 = -\alpha'_3(v'_0 + v'_2)$. If we define $\alpha_4 = \alpha'_3$ we get $v_4 + v_0 = -\alpha_4(v_1 + v_3)$. Moreover, $\alpha_3 = \alpha'_2 = (1 - \alpha'_1)(1 - \alpha'_3) =$ $(1 - \alpha_2)(1 - \alpha_4)$. A direct calculation shows that we also have $\alpha_4 = (1 - \alpha_0)(1 - \alpha_3)$ and $\alpha_0 = (1 - \alpha_4)(1 - \alpha_1)$. (The last two equalities follow also by two repeated application of the same argument for the vectors v_2, v_3, v_4, v_0, v_1 and for v_3, v_4, v_0, v_1, v_2 .)

Although we will not use this fact, it is not difficult to check that also the following converse of Lemma 4.2 is true.

Lemma 4.3. Let v_0, \ldots, v_4 be 5 vectors in \mathbb{R}^2 no two of which are linearly dependent. Assume that for i = 0, 1, 2, 3, 4 the following is true: There exists α_i such that $v_i + v_{i+1} = -\alpha_i(v_{i+2} + v_{i+4})$ (this is equivalent to saying that the two vectors $v_i + v_{i+1}$ and $v_{i+2} + v_{i+4}$ are linearly dependent). Then necessarily $\alpha_1 = (1 - \alpha_0)(1 - \alpha_2)$.

Proof. We start exactly as in the proof of Lemma 4.2. Let W be the vector space $W = \{(a_0, \ldots, a_4) \mid \sum_{i=0}^4 a_i v_i = 0\}$. Because v_0, \ldots, v_4 span \mathbb{R}^2 , the dimension of W is equal to 3.

By our assumption, the vectors $w_0 = (1, 1, \alpha_0, 0, \alpha_0), w_1 = (\alpha_1, 1, 1, \alpha_1, 0)$, and $w_2 = (0, \alpha_2, 1, 1, \alpha_2)$ are in W.

Recall that the fact that w_0, w_1 , and w_2 are linearly independent was part of the proof of Lemma 4.2 and this part did not rely on any relation between α_0, α_1 , and α_2 .

Because w_0, w_1 , and w_2 form a basis for W, then w_3 is equal to a linear combination of w_0, w_1 , and w_2 . As in the proof of Lemma 4.2, we find $w_3 = a_0 w_0 + a_1 w_1 + a_2 w_2$, where

$$a_{0} = \frac{1 - \alpha_{2} - \alpha_{1}\alpha_{2}}{\alpha_{0} + \alpha_{1}\alpha_{2}(1 - \alpha_{0})}$$

$$a_{1} = \frac{\alpha_{2}(1 - \alpha_{0}) - 1}{\alpha_{0} + \alpha_{1}\alpha_{2}(1 - \alpha_{0})}$$

$$a_{2} = \frac{\alpha_{0} + \alpha_{1}}{\alpha_{0} + \alpha_{1}\alpha_{2}(1 - \alpha_{0})}.$$

We now consider the first and third coordinate of w_3 and observe that they must be equal (in fact they are both equal to α_3). From the equality $w_3 = a_0w_0 + a_1w_1 + a_2w_2$ it now follows that $a_0 + \alpha_1a_1 = a_0\alpha_0 + a_1 + a_2$. Plugging in the expressions for a_0, a_1 , and a_2 in terms of α_0, α_1 , and α_2 , we get the relation $\alpha_1 = (1 - \alpha_0)(1 - \alpha_2)$, as desired.

The following result, which we discovered in the course of proving Lemma 4.2, is stated here, although it is not used in this paper:

Lemma 4.4. Assume a_0, \ldots, a_{n-1} are *n* real numbers different from 0 that satisfy $a_i = (1 - a_{i-1})(1 - a_{i+1})$ for every *i* (summation of indices is modulo *n*). Then *n* must be divisible by 5, unless $a_0 = a_1 = a_2 = \ldots = a_{n-1} = \frac{3\pm\sqrt{5}}{2}$.

We remark that as we will see in the proof, there are infinitely many (two degrees of freedom) distinct sequences a_0, \ldots, a_{n-1} that satisfy the conditions of Lemma 4.4. Lemma 4.4 was used in one of the problems in the Grossman Math Olympiad in Israel 2020.

Proof. Let $x = a_0$ and $y = a_2$. Then $a_1 = (1 - a_0)(1 - a_2) = (1 - x)(1 - y)$. We may assume that both x and y are different from 1 and from 0 because we assume that $a_i \neq 0$ for every i.

We know that for every *i* we have $a_i = (1 - a_{i-1})(1 - a_{i+1})$. From here we conclude that for every *i* we have

$$a_{i+1} = \frac{1 - a_i - a_{i-1}}{1 - a_{i-1}}.$$
(5)

We can now find a_3 in terms of x and y using (5): $a_3 = \frac{1-a_2-a_1}{1-a_1} = \frac{x-xy}{x+y-xy}$. In the same way $a_4 = \frac{1-a_3-a_2}{1-a_2}$. After substituting the expressions of a_3 and a_2 in terms of x and y and simplifying, we get $a_4 = \frac{y-xy}{x+y-xy}$. Now moving on to a_5 we get $a_5 = \frac{1-a_4-a_3}{1-a_3}$. After substituting a_3 and a_4 and simplifying, we get $a_5 = x$.

We can continue and check that $a_6 = (1 - x)(1 - y)$ and $a_7 = y$ but this follows already from our calculations above using the symmetry between x and y. We conclude that the sequence $a_0, a_1, \ldots, a_{n-1}$ must be periodic with period equal to 5, that is, $a_{i+5} = a_i$ for every *i*.

If n is not divisible by 5, then we must have $a_0 = a_1 = \ldots = a_{n-1}$, because we know that $a_i = a_{i+5}$ for every *i*. If we denote this common value by x, we see that we must have $x = (1 - x)^2$. This equation has only two solutions $\frac{3\pm\sqrt{5}}{2}$.

We shall now continue with the analysis of the case n = 6 in Theorem 1.1. Combining Lemma 4.2 and Claim 4.1, we can get a method for generating a counterexample to the case n = 6 in Theorem 1.1. Indeed, assume we can find $\alpha_0, \alpha_1, \alpha_2 \in \mathbb{R}$ with $\alpha_1 = (1 - \alpha_0)(1 - \alpha_2)$ and vectors $v_0, v_1, v_2, v_3, v_4 \in \mathbb{R}^2$, such that every two of $v_0, v_1, v_2, v_3, v_4, \sum_{i=0}^4 v_i$ are linearly independent and such that for i = 0, 1, 2 we have $v_i + v_{i+1} = -\alpha_i(v_{i+2} + v_{i+4})$. Then by Lemma 4.2, v_0, \ldots, v_4 satisfy the conditions of Claim 4.1 and therefore v_0, v_1, v_2, v_3, v_4 together with $-\sum_{i=0}^4 v_i$ form a counterexample of size six to Theorem 1.1.

We will now follow this recipe and prove that such a construction does exist. Let $\epsilon > 0$ be a very small positive number to be described later. One can take $\epsilon = \frac{1}{1000}$. We take $v_1 = (1, 1)$ and $v_2 = (1, -1)$. We take $v_4 = (-1 - \epsilon, \epsilon)$. It remains to choose v_0 and v_3 . Denote by A_1 the midpoint of the segment connecting v_4 to v_1 , that is $A_1 = \frac{1}{2}(v_4 + v_1) = (-\frac{\epsilon}{2}, \frac{1+\epsilon}{2})$. Let m_1 be the line through O and A_1 and let ℓ_1 be the line parallel to m_1 below m_1 whose distance from m_1 is equal to the distance of v_2 from m_1 . In order that $v_2 + v_3$ and $v_1 + v_4$ will be linearly dependent, v_3 must lie on ℓ_1 . The line ℓ_1 has slope equal to $-\frac{1+\epsilon}{\epsilon}$ and it intersects that x-axis at $(-1 + \frac{\epsilon}{1+\epsilon}, 0)$. It is equal to the line $y = -\frac{1+\epsilon}{\epsilon}(x+1-\frac{\epsilon}{1+\epsilon})$.

Similarly, let $A_2 = \frac{1}{2}(v_4 + v_2) = (-\frac{\epsilon}{2}, -\frac{1+\epsilon}{2})$. Let m_2 be the line through O and A_2 . Let ℓ_2 be the line parallel to m_2 above m_2 , whose distance from m_2 is equal to the distance of v_1 from m_2 . We observe that v_0 must lie on ℓ_2 . The line ℓ_2 has a slope equal to $\frac{1-\epsilon}{\epsilon}$ and it intersects the x-axis at $-1 + \frac{\epsilon}{1-\epsilon}$. It is the line $y = \frac{1-\epsilon}{\epsilon}(x+1-\frac{\epsilon}{1-\epsilon})$.

We will choose v_0 and v_3 in the following way. We will choose a number h > 0 in a way that will be specified shortly and take v_0 to the the point on ℓ_2 with y coordinate that is equal to h. That is, $v_0 = \left(\left(h - \frac{1-2\epsilon}{\epsilon}\right)\frac{\epsilon}{1-\epsilon}, h\right)$. Then we take v_3 to the the point on ℓ_1 with y coordinate that is equal to -h. That is, $v_3 = \left(\left(h - \frac{1}{\epsilon}\right)\frac{\epsilon}{1+\epsilon}, -h\right)$. By choosing v_0 and v_3 in this way we guarantee that $v_1 + v_2 = -\alpha_1(v_0 + v_3)$ for some $\alpha_1 \in \mathbb{R}$. Let α_0 be such that $v_0 + v_1 = -\alpha_0(v_4 + v_2)$. Let α_2 be such that $v_2 + v_3 = -\alpha_2(v_4 + v_1)$. It remains to show that we can choose h such that $\alpha_1 = (1 - \alpha_0)(1 - \alpha_2)$.

Notice that $v_1 + v_2 = (2,0)$ and $v_0 + v_3 = (h \frac{2\epsilon}{1-\epsilon^2} - \frac{2-2\epsilon-2\epsilon^2}{1-\epsilon^2}, 0)$. Therefore, $\alpha_1 = \frac{1-\epsilon^2}{-h\epsilon+1-\epsilon-\epsilon^2}$.

What about $(1 - \alpha_0)(1 - \alpha_2)$? We have $v_0 + v_1 = ((h - \frac{1-2\epsilon}{\epsilon})\frac{\epsilon}{1-\epsilon} + 1, h+1)$ and $v_4 + v_2 = (-\epsilon, -1 + \epsilon)$. We know already that $v_0 + v_1 = -\alpha_0(v_4 + v_2)$. Therefore, $\alpha_0 = \frac{h+1}{1-\epsilon}$.

Similarly, $v_2 + v_3 = ((h - \frac{1}{\epsilon})\frac{\epsilon}{1+\epsilon} + 1, -h - 1)$ and $v_1 + v_4 = (-\epsilon, 1+\epsilon)$. Therefore, because $v_2 + v_3 = -\alpha_2(v_1 + v_4)$, we have $\alpha_2 = \frac{h+1}{1+\epsilon}$. We get $(1 - \alpha_0)(1 - \alpha_2) = \frac{h^2 - \epsilon^2}{1 - \epsilon^2}$.

We want to find h such that $\alpha_1 = (1 - \alpha_0)(1 - \alpha_2)$. Substituting the expressions for α_0, α_1 , and α_2 , we would like the following equality to hold:

$$\frac{1-\epsilon^2}{-h\epsilon+1-\epsilon-\epsilon^2} = \frac{h^2-\epsilon^2}{1-\epsilon^2}.$$

It is not difficult to solve this, after observing that h = -1 gives equality. We

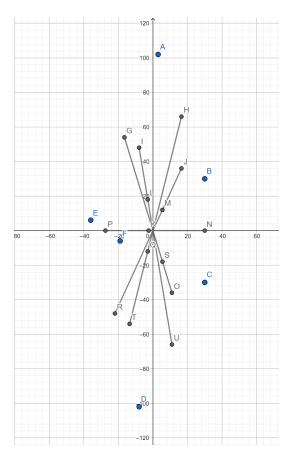


Figure 2: A counterexample to the case n = 6 in Theorem 1.1.

obtain the equation

$$h^{2}\epsilon - h(1 - \epsilon^{2}) - (\epsilon^{3} + \epsilon^{2} - 1) = 0.$$

We get $h = \frac{1}{2\epsilon}(1-\epsilon^2 + \sqrt{5\epsilon^4 + 4\epsilon^3 - 2\epsilon^2 - 4\epsilon + 1})$. Keeping in mind that the function $\sqrt{1+x} = 1 + \frac{1}{2}x + o(x)$, we observe that $h = \frac{1}{\epsilon} - 1 + o(1)$. This yields $v_0 = ((h - \frac{1-2\epsilon}{\epsilon})\frac{\epsilon}{1-\epsilon}, h) = (\epsilon + o(\epsilon), \frac{1}{\epsilon} - 1 + o(1))$. Similarly, $v_3 = ((h - \frac{1}{\epsilon})\frac{\epsilon}{1+\epsilon}, -h) = (-\epsilon + o(\epsilon), -\frac{1}{\epsilon} + 1 + o(1))$.

In particular, we see that when ϵ is very small every two of the vectors v_0, v_1, v_2, v_3 ,

 v_4 are linearly independent. What about $\sum_{i=0}^4 v_i$? We have $\sum_{i=0}^4 v_i = (h \frac{2\epsilon}{1-\epsilon^2} + 1 - \epsilon - \frac{2-3\epsilon}{1-\epsilon^2}, \epsilon)$. Hence, $\sum_{i=0}^4 v_i = (1 + o(1), \epsilon)$. Therefore, the only vector among v_0, v_1, v_2, v_3, v_4 that may be a scalar multiple of $\sum_{i=0}^{4} v_i$ is the vector v_4 . However, in such a case, by comparing the *y*-coordinate, we must have $v_4 = \sum_{i=0}^{4} v_i$, or in other words, $v_0 + v_1 + v_2 + v_3 = 0$. But this is not the case because $\alpha_0 \neq 1$.

This completes the proof. We can take a specific value of ϵ to get a concrete counterexample for the case n = 6 in Theorem 1.1. Taking $\epsilon = \frac{1}{5}$ yields a particularly nice example (in the sense that all the vectors are rational): $h = \frac{17}{5}$ and $v_0 = (\frac{1}{10}, \frac{17}{5})$, $v_1 = (1, 1), v_2 = (1, -1), v_3 = (-\frac{4}{15}, -\frac{17}{5})$, and $v_4 = (-\frac{6}{5}, \frac{1}{5})$. Finally, $v_5 = -(v_0 + \dots + v_4) = (-\frac{19}{30}, -\frac{1}{5})$. One can directly check that for $V = \{v_0, v_1, \dots, v_5\}$ the set S(V) contains at most five vectors no two of which are proportional. Moreover, for every distinct i, j, k the vectors $v_i + v_j$ and $v_i + v_k$ are linearly independent. Figure 2 contains the points v_0, v_1, v_2, v_3, v_4 , and v_5 , multiplied by a factor of 30, drawn (using the platform of Geogebra) as A, B, C, D, E, and F, respectively. The gray points correspond to all the possible midpoints of segments connecting a pair of the points A, B, C, D, E, and F. These precisely correspond to $\frac{1}{2}(v_i + v_j)$. One can see that all the gray points lie on a union of 5 gray lines through the origin. This shows that S(V) contains at most five vectors no two of which are proportional.

Acknowledgments

We thank Seva Lev for valuable discussion and remarks about the result in this paper. We thank Alexandr Polyanskii for suggestions and comments about the polynomial approach in this paper. We thank Francisco L. Santos for his comments about the case n = 6 in the main theorem.

References

- E. Ackerman, K. Buchin, C. Knauer, R. Pinchasi and G. Rote, There are not too many Magic Configurations, *Disc. Comp. Geom.* **39** (1-3) (2008), 3–16.
- [2] A. Blokhuis, G. Marino and F. Mazzocca, Generalized hyperfocused arcs in PG(2, p), J. Combin. Des. 22 (12) (2014), 506–513.
- [3] N.G de-Bruijn and P. Erdős, On a combinatorial problem, Nederl. Akad. Wetensch., Proc. 51 (1948), 1277–1279.
- [4] M. Chasles, Traité des sections coniques, Gauthier-Villars, Paris 1885.
- [5] P. Erdős and G. Purdy, Some combinatorial problems in the plane, J. Combin. Theory Ser. A 25 (1978), 205–210.
- [6] B. Green and T. Tao, On sets defining few ordinary lines, Discrete Comput. Geom. 50 (2) (2013), 409–468.
- [7] R. E. Jamison, Few slopes without collinearityr, Discrete Math. 60 (1986), 199– 206.
- [8] L. Milićević, Classification theorem for strong triangle blocking arrangements, Publ. Inst. Math. (Beograd) (N.S.) 107 (121) (2020), 1–36.
- U. S. R. Murty, How many magic configurations are there? Amer. Math. Monthly 78 (9) (1971), 1000–1002.
- [10] R. Pinchasi, A solution to a problem of Grünbaum and Motzkin and of Erdős and Purdy about bichromatic configurations of points in the plane, *Israel J. Math.* **198** (1) (2013), 205–214.

- [11] R. Pinchasi and A. Polyanskii, A one-page solution of a problem of Erdős and Purdy, Discrete Comput. Geom. 64 (2) (2020), 382–385.
- [12] F. L. Santos, personal communication, 2020.
- [13] P. R. Scott, On the sets of directions determined by n points, Amer. Math. Monthly 77 (1970), 502–505.
- [14] P. Ungar, 2n noncollinear points determine at least 2n directions, J. Combin. Theory Ser. A 33 (1982), 343–347.

(Received 5 Oct 2020; revised 12 July 2021)