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Abstract

We describe parity labellings of signed graphs: equivalently, cuts of the
underlying graph that have nearly equal sides. We characterize the bal-
anced signed graphs which are parity signed graphs. We give structural
characterizations of all parity signed stars, bistars, cycles, paths and com-
plete bipartite graphs. The rna number of a graph is the smallest cut size
that has nearly equal sides; we find this for a few classes of graphs.

1 Introduction

The concept of a signed graph has gained immense popularity in graph theory in
recent decades. Here we discuss a type of signed graph called a parity signed graph,
introduced recently in [1]. A parity signed graph is based on the assignment of
consecutive positive integers to the vertices of a graph; it is equivalent to a partition
of the vertex set of a graph into two subsets, A and B, that are as nearly the same
size as can be, i.e., such that |A| − |B| = 0,±1. From the standpoint of signed
graphs, we wish to know whether a given signed graph is parity signed; we answer
that question for signed stars, bistars, cycles, paths and complete bipartite graphs.
We further examine the rna number of a graph, which is the size of a smallest cut
whose sides are nearly equal, for some types of graph such as stars, wheels, paths,
and cycles. (The term rna is the Sanskrit word for debt.)

For terminology for graphs we refer to [2, 4] and for signed graphs we refer to [6].
For a detailed conceptual framework of signed graphs, we refer the reader to [5]. All
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graphs and signed graphs considered here are simple and connected, unless otherwise
mentioned.

By an (n,m)-graph, G = (V,E), we mean a graph G such that n = |V (G)| and
m = |E(G)|. A signed graph S = (G, σ) is a pair consisting of a graphG = (V,E) and
a function σ : E(G) → {+,−}; edges which receive + and − signs are called positive
and negative edges of S, respectively. The graph G is called the underlying graph
of S. We denote by E+(S) (respectively, E−(S)) the set of positive (respectively,
negative) edges of S, so the edge set E(S) is given by E(S) = E+(S) ∪ E−(S).
A signed graph is said to be all-positive if E−(S) = ∅ and all-negative if E+(S) = ∅.
While drawing a signed graph, positive edges are drawn as solid line segments and
negative edges as dashed line segments, as depicted in Figure 1. A signed graph is
said to be homogeneous if it is either all positive or all negative, and heterogeneous
otherwise. By a positive (respectively, negative) homogeneous signed graph we mean
a signed graph which is all positive (respectively, all negative).

Now we give definitions and results which are needed for our work.

Definition 1.1. Given a graph G and a bijection f : V (G) → {1, 2, . . . , n}, we
define σf : E(G) → {+,−} such that for an edge uv in G, σ(uv) = + if f(u) and
f(v) are of the same parity and σ(uv) = − if f(u) and f(v) are of opposite parity.
We define Sf to be the signed graph (G, σf ).

Definition 1.2. [1] A signed graph S = (G, σ) is a parity signed graph if there exists
a bijection f : V (G) → {1, 2, . . . , n} such that σ = σf .

Definition 1.3. [1] For a graph G, the rna (respectively, adhika) number of G,
denoted by σ−(G) (respectively, σ+(G)), is the cardinality of the smallest E−(Sf )
(respectively, the largest E+(Sf)) under all the possible bijective label assignments
f : V (G) → {1, 2, . . . , n}. (The word adhika in Sanskrit means excess.)

The motivation behind the study of parity signed graphs is primarily sociological,
as was originally the case of the study of signed graphs itself. Assume that there
exist two types of people in an office, divided by their distinct languages. Assume
also that only people of the same language get along well. To allot workspace to each
employee in that office, the personnel manager makes sure that minimum discomfort
is surfaced due to their proximities. Here, we can model cabins as the vertices of a
graph and languages as odd and even positive integers. The rna number gives the
least level of discomfort in integer terms; i.e., the smaller the rna number, the less
the discomfort.

Further, in any system where there are objects basically binary in nature such as
male and female, native and foreigner, positive and negative, good and evil, etc., we
can bring in the ideas of parity signed graphs.

Definition 1.4. In a signed graph S = (G, σ), a positive (respectively, negative)
section is a maximal connected sub-signed graph of S with all positive (respectively,
negative) edges. In Figure 1 we have a signed graph with two positive sections and
two negative sections.
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Figure 1: A parity signed graph with two negative sections and two positive sections.

If one is interested in the labels themselves, the following observations give ways
of generating a new parity labelling from an existing parity labelling in a given parity
signed graph.

Observation 1.1. Let f(vi) = i be the labels of a parity signed graph S with n
vertices. Then f(vi) = n+ 1− i is another parity labelling of S.

Observation 1.2. Let O (respectively, E) be the set of odd (respectively, even)
labelled vertices of a parity signed graph. Then every permutation of labels on O
(respectively, E) gives a parity labelling for the parity signed graph.

2 Characterization of Parity Signed Graphs

One important exploration in the study of signed graphs is about their balanced
nature. Harary introduced this idea in [3]. A signed graph is balanced if every cycle
in it has an even number of negative edges.

Theorem 2.1. Every parity signed graph is balanced.

Proof. It has been shown in [1] that every parity signed cycle has an even number
of negative edges. Hence every parity signed graph is balanced.

In this perspective, the next result is very important.

Theorem 2.2. A signed graph S is a parity signed graph if and only if its vertex set
V (S) can be partitioned into two subsets V1(S) and V2(S) such that negative edges
lie across V1(S) and V2(S) and ||V1(S)| − |V2(S)|| ≤ 1.

Since we assume graphs are connected, the partition is uniquely determined.

Proof. For necessity, assume that S is a parity signed graph. Now, partition the
vertex set V (S) into two subsets V1(S) and V2(S) such that vertices of V1(S) and
V2(S) are labelled with even and odd labels, respectively. Clearly, negative edges lie
across V1(S) and V2(S).

Now, if n = |V (S)| is a an even number, then |V1(S)| = |V2(S)|. If n = |V (S)| is
a an odd number, then |V1(S)|+ 1 = |V2(S)|. Hence ||V1(S)| − |V2(S)|| ≤ 1.

The sufficiency is easy to see.
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We provide an elementary algorithm to determine whether a (connected) signed
graph is a parity signed graph.

Step 1. Decide whether S is balanced. If not, “No”.

Step 2. Contract each positive section to a vertex and label the new vertex with
the order of that section.

Step 3. Any unlabeled vertex gets the label 1.

Step 4. The resulting graph is negative homogeneous and balanced, so it is
bipartite. Find the two vertex classes and sum up the vertex labels in each class. If
the sums differ by more than 1, then “No”. Otherwise, “Yes”.

Given a balanced signed graph, we wish to determine whether it is parity signed.
We can answer this question in some cases. We begin with cycles.

A section in a cycle is a path, unless it is the whole cycle. It is called odd or even
if its length is odd or even, respectively. We write l(P ) for the length of a path P .

Theorem 2.3 (Cycle Theorem). Let C be a signed cycle. Let C have odd negative
sections N1, N2, . . . , Nk (k ≥ 0), in cyclic order around C. Let mi be the number of
positive edges between Ni and Ni+1 for i = 1, 2, . . . , k − 1 and let mk be the number
of positive edges between Nk and N1. Let mo be the sum of all mi for odd i and me

the sum of all mi for even i. Then C is a parity signed graph if and only if k is even
and either

1. k = 0 and either C has even length and is all negative, or C has odd length
and has exactly one positive edge, or else

2. k > 0 and |mo −me| ≤ 1.

Proof. For C to be parity signed, it must be balanced, and then k must be even.
Thus we assume C is balanced and k is even. Let V (C) = H0 ∪ H1 be the Harary
bipartition of C, i.e., H0 ∩H1 = ∅ and an edge is positive if and only if its endpoints
are both in the same set, H0 or H1.

Consider a negative section of length l, N = v0v1 · · · vl. If v0 ∈ Hh, then all v2j
in N belong to Hh and all v2j+1 in N belong to H1−h. Thus, among the vertices
v1, . . . , vl, the same number belong to Hh and H1−h if l is even, and one more vertex
belongs to H1−h than to Hh if l is odd. We use these facts repeatedly in the proof.

Case 1. k = 0. If C is all negative, it has even length (because it is balanced)
and it is parity signed.

Assume C is not all negative. Then it has positive sections P1, P2, . . . , Pr and
negative sections M1, . . . ,Mr, so C = M1P1M2P2 · · ·MrPr. Let ci be the initial
vertex of Mi and let c′i be its final vertex, and let di be the initial vertex of Pi. By
choice of notation, assume c1 ∈ H1. Each Mi \ ci contributes equally many vertices
to H0 and H1, since l(Mi) is even. For the same reason, for each Mi, ci and c′i are in
the same part of the Harary bipartition. Also, for each i, all of V (Pi) is contained
in the same part of the Harary bipartition. It follows that V (Pi) ⊆ H1 for all i.
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Now let us count the vertices in H0 and H1, or more precisely, let us count
|H1|−|H0|. Each Mi\ci contributes equally many vertices to H0 and H1. Each Pi\di
contributes l(Pi) vertices to H1. Therefore, |H1| − |H0| = l(P1) + · · ·+ l(Pr). Since
this number is non-negative and C is parity signed if and only if |H1|− |H0| = 0,±1,
we conclude that C is parity signed if and only if it has at most one positive edge.

Note that if C has no positive edges, since it is balanced it has even length. If C
has one positive edge, since it is balanced it has odd length. In both cases it has one
negative section, which is even, so it does fall under part (1) of the theorem.

Case 2. k > 0. We focus attention on the odd negative sections Ni. Let ai be
the initial vertex and a′i the final vertex of Ni. Let Qi be the path in C from a′i to
ai+1 if i < k and let Qk be the path from a′k to a1. By choice of notation, assume
a′1 ∈ H1.

Because we assumed a′1 ∈ H1, each Ni \ ai contributes one more vertex to H1

than to H0 if i is odd and one more to H0 than to H1 if i is even. In total, all Ni \ ai
contribute an equal number of vertices to H0 and H1.

Consider a particular Qi. It consists of positive sections P1, . . . , Pri and even
negative sections M1, . . . ,Mri−1, so that Qi = P1M1P2 · · ·Mri−1Pri . (Possibly ri = 1;
then Qi is the positive section P1.) The initial and final vertices of each even negative
section Mj belong to the same part of the Harary bipartition, so if a′i, which is the
final vertex of Ni and the initial vertex of Qi, belongs to Hh, then V (Pj) ⊆ Hh. It
follows that Pj \ bj , where bj is the initial vertex of Pj , contributes l(Pj) vertices to
Hh. Let b

′
j be the initial vertex of Mj ; then Mj \ b′j contributes the same number of

vertices to Hh as to H1−h. Thus, the total contribution of Qi to |Hh| − |H1−h| is the
total length of the positive sections in Qi, which is the number of positive edges in
Qi. This is mi.

Summarizing, Q1 contributes m1 to |H1|−|H0|, Q2 contributes m2 to |H0|−|H1|,
Q3 contributes m3 to |H1| − |H0|, and so on. The total contribution to |H1| − |H0|
is mo −me. The cycle C is parity signed if and only if this number equals 0, 1, or
−1. This completes the proof.

Theorem 2.4 (Path Theorem). Let P be a signed path with odd negative sections
N1, N2, . . . , Nk (k ≥ 0), in order along P . Let Q0 be the path preceding N1 (possibly
of length 0), Q1 the path between N1 and N2, etc., and Qk the path following Nk

(possibly of length 0). Let mi be the number of positive edges in Qi, and let mo be
the sum of all mi for odd i and me the sum of all mi for even i. Then P is parity
signed if and only if

me −mo =

{
1, 0,−1, if k is odd,

0,−1,−2, if k is even.

In particular, when P has no odd negative sections, it is parity signed if and only if
it has no positive edges. When P has exactly one odd negative section, it is parity
signed if and only if the numbers of positive edges on the two sides of the odd negative
section differ by at most 1.
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Proof. The proof is similar to that of Theorem 2.3. Any path is balanced, so P has
a Harary bipartition V = H0 ∪ H1, where we take H0 to contain the initial vertex
of P . Let ai denote the initial vertex of Ni and a′i the initial vertex of Qi. As in
Theorem 2.3, Ni\ai contributes 1 to |H1|−|H0| if i is odd and −1 to it if i is even. Let
mi be the number of positive edges in Qi; then Qi \ a′i contributes mi to |H1| − |H0|
if i is odd and −mi to it if i is even. Therefore |H1| − |H0| = mo − me − 1 + δ,
where δ = 0 if k is even and δ = 1 if k is odd. Since P is parity signed if and only if
|H1| − |H0| = −1, 0, 1, the theorem follows.

Corollary 2.1. A signed path Pn, with exactly two sections of opposite parity, is a
parity signed graph if and only if n = 3.

Theorem 2.5. If a parity signed graph is negative homogeneous then it is bipartite.

Proof. This follows from Theorem 2.1, since a cycle in a negative homogeneous signed
graph is positive if and only if it is even.

Theorem 2.6. A (connected) negative homogeneous signed graph S is a parity signed
graph if and only if it is a spanning subgraph of Km,n (all negative) with |m−n| ≤ 1.

Proof. Let V1(S), V2(S) be the complementary independent subsets of the vertex set
of S. If |V1(S)| = |V2(S)|, then to each vertex of one of the partition sets we assign
the odd integers, and to each vertex of the other partition set we assign even integers.
If |V1(S)| = |V2(S)|+ 1, then to the vertices in V1(S) we assign odd integers, and to
V2(S) we assign even integers. In both cases we see that the negative homogeneous
bipartite signed graph has a parity signed labelling.

Conversely, assume that |V1(S)| > |V2(S)|+ 1; then we cannot label the vertices
of each of the partition sets exclusively with either odd or even integers. This forces
us to have at least one positive edge in the bipartite signed graph. Hence the theorem
follows.

Even cycles give an infinite family of negative homogeneous parity signed graphs.
It is to be noted that this is not the only family of negative homogeneous parity
signed graphs; all such signed graphs have been found in Theorem 2.6. We mention
some other simple families. Distributing the odd and even integers is the crucial
aspect in constructing a family of negative homogeneous parity signed graphs. Some
families of negative homogeneous parity signed graphs are given below.

• The ladder graph, Pn ×K2.

• The corona of a negative homogeneous parity signed graph S with Kn, i.e.,
S 
Kn, is negative homogeneous.

Theorem 2.7. Let S = K1,m+n be a signed star having m positive edges and n
negative edges. Then K1,m+n has a parity labelling if and only if S satisfies any one
of the following: (i) n = m, (ii) n = m+ 2, (iii) n = m+ 1.
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Proof. We begin by proving necessity. Assume that S is a parity signed graph. We
show that one of the conditions (i), (ii), or (iii) holds. In S, we have |E(S)| = m+n
and |V (S)| = m+ n+1. To label the vertices of S we have m+ n+1 integers. Now
we have two cases.

Case 1: m+ n+ 1 is odd.
It is clear that m+ n is even. Let u be a vertex in S such that d(u) = m+ n. Label
u with the integer m+ n + 1, which is an odd integer. Now we are left with m+ n
integers which have to be assigned to m+ n vertices where m positive (n negative)
edges are incident to u. Per the definition of a parity signed graph, m (n) vertices
must be labelled with odd (even) integers. As m + n is even, the numbers of odd
and even integers are equal. Thus we conclude that m = n. Hence (i) holds.

Now we label u with the integer m+n, which is an even integer. We are left with
m+ n integers, having m+n+2

2
odd integers and m+n−2

2
even integers.

Since u has been labelled with an even integer, m vertices must be labelled with
even integers and n vertices must be labelled with odd integers. In other words,
m+n+2

2
= n, i.e., n = m+ 2. Similarly, m+n−2

2
= m, i.e., again n = m+ 2. Thus (ii)

holds.

Case 2: m+ n+ 1 is even.
It is clear that m+ n is odd. We label u with the integer m+ n + 1, which is even.
Now we are left with m+n integers, which is an odd number. Per the definition of a
parity signed graph, we have to assign even integers to m vertices and odd integers
to n vertices which are adjacent to u. Note that we have m+n integers, and m+n is
odd. Thus we conclude that m = �m+n

2
� and n = m+n

2
�. In other words, the number

of odd integers is one more than the number of even integers. That is, n = m + 1.
Thus (iii) holds.

Now we assign the (m + n)th integer to u; it is an odd number. Again we are
left with m + n integers which have to be assigned to m + n vertices. As u has
been assigned an odd integer, m vertices have to be labelled with odd integers and
n vertices have to be labelled with even integers. As discussed above, we conclude
that n = m+ 1. Hence (iii) holds.

Thus necessity is proved.

Sufficiency is obvious.

Theorem 2.7 can also be stated as follows.

Theorem 2.8. Let K(1,m+n) be a signed star having m positive and n negative edges.
Then K(1,m+n) is a parity signed graph if and only if (i) n = m or n = m + 2 when
m+ n is even, or (ii) n = m or n = m+ 1 when m+ n is odd.

Do there exist signed bistars which have parity labellings? We answer this ques-
tion affirmatively and give the structure of signed bistars with parity signed la-
bellings.

Theorem 2.9. Let S := B+(m,n) be a bistar obtained from a positive edge uv by
adding m positive edges to the vertex u and n negative edges to the vertex v. Then
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B+(m,n) is a parity signed graph if and only if n = m+ 1 or m+ 3 when m+ n is
odd, or n = m+ 2 when m+ n is even.

Proof. For the proof of necessity suppose that S is a parity signed graph. Now,
|E(S)| = m+ n+ 1 and |V (S)| = m+ n+ 2. We thus have m+ n+ 2 integers to be
assigned to the vertices of S. To show that the result holds, we consider two cases.

Case 1. m+ n is even.

Clearly, m+n+2 is even. Since uv is a positive edge, per the definition of parity
signed graph u and v must receive integers of the same parity.

Subcase 1. Suppose u and v receive odd integers. Since m + n + 2 is even, the
number of odd integers is equal to the number of even integers, which is m+n+2

2
. As

two odd integers have already been assigned to u and v, we are left with m+n+2
2

− 2
odd integers and they must be assigned to m vertices. In other words, we conclude
that m+n+2

2
− 2 = m. That is, n = m+ 2. Hence, the result holds.

On the other hand, we have m+n+2
2

even integers and they must be assigned to n
vertices. Hence, m+n+2

2
= n. Thus we get n = m+ 2 and again the result holds.

Subcase 2. Suppose u and v receive even integers. As discussed above, we have
m+n+2

2
−2 even integers and they must be assigned to m vertices. Thus m+n+2

2
−2 =

m, so n = m+ 2 and the result holds.

Further, m+n+2
2

odd integers are to be assigned to n vertices. As discussed above,
we conclude that n = m+ 2 and the result holds.

Case 2. m+ n is odd.

Then m+ n+ 2 is odd. Now we have two subcases.

Subcase 1. Suppose u and v receive odd integers. From m + n + 2 (which is an
odd integer) we are left m+ n integers to be assigned to m+ n vertices. Among the
m+n+2 integers we have m+n+3

2
odd integers and m+n+1

2
even integers. Among the

m+n+3
2

odd integers, we have m+n−1
2

odd integers to be assigned to m vertices. Thus,
m+n−1

2
= m. That is, n = m+ 1 and the result holds.

On the other hand, we have m+n+1
2

even integers to be assigned to n vertices.
Hence, m+n+1

2
= n, and n = m+ 1. Again the result holds.

Subcase 2. Let us assume that u and v have been assigned even integers. Observe
that from m+n+2 integers, which is an odd number, we are left with m+n integers
to be assigned to m + n vertices. Among m + n + 2 integers, we have m+n+3

2
odd

integers and m+n+1
2

even integers. Among the m+n+1
2

even integers, we have m+n−3
2

even integers to be assigned to m vertices. Then m+n−3
2

= m. Thus n = m+ 3 and
the result holds.

On the other hand, m+n+3
2

odd integers have to be assigned to n vertices. Thus,
m+n+3

2
= n and we get n = m+ 3. Thus the result holds.

Sufficiency is easy to see.

Is there another way to view stars or bistars with a parity signed labelling? The
answer is yes, as shown in the following results:
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Corollary 2.2. Let K1,n and K1,m be parity signed stars having u and v as their
central vertices. A signed bistar obtained from K1,n and K1,m by joining u and v by
a positive (negative) edge is a parity signed bistar if and only if the labels of u and v
are of the same parity (different parity).

Corollary 2.3. Let B∗(m,n) be a negative homogeneous bistar having m and n edges
incident to vertices u and v of an edge uv, respectively. Then B∗(m,n) is a parity
signed graph if and only if n = m or n = m+ 1.

Corollary 2.4. A signed K1,n is a parity signed graph if and only if it satisfies the
following conditions:

(a) |E−(K1,n)| = |E+(K1,n)|, if n is even.

(b) |E−(K1,n)| = |E+(K1,n)|+ 1, if n is odd.

We have seen in Theorem 2.1 that every parity signed graph is balanced. But
the converse is not true. For example, positive homogeneous signed graphs do not
admit parity labellings. Another example is given in Figure 2.

a c

db

e

Figure 2: A balanced signed graph but not a parity signed graph.

Thus, it is worth characterizing the balanced signed graphs that are parity signed
graphs. This characterization is in Theorem 2.2.

3 More on the rna Number

For a graph G of order n, there are n! bijective functions f : V (G) → {1, 2, . . . , n}.
Each of the bijective functions generates a parity signed graph from G. This is where
we find the relevance of the rna number given in Definition 1.3. Previously the rna
number was treated in [1]. We now assess the rna numbers of some graphs.

Theorem 3.1. For a star K1,n, σ
−(K1,n) = n

2
�.

Proof. The number of negative edges differs depending on the label of the central
vertex in a star. Hence, we analyse two cases.

Case 1: n is odd.

Suppose the central vertex is labelled with n + 1. There are n pendant vertices
which are labelled with 1,2,. . . ,n. Hence, there are exactly n−1

2
pendant vertices
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labelled with even integers and n+1
2

pendant vertices labelled with odd integers. As
n + 1 is even, there are n+1

2
negative edges.

If we swap the labels n and n + 1, then the central vertex gets the label n. Now
there are n+1

2
pendant vertices labelled with even integers and n−1

2
pendant vertices

labelled with odd integers. Hence, there will be n+1
2

negative edges.

Case 2: n is even.

If the pendant vertices are labelled with 1, 2, . . . , n and the central vertex is
labelled with n+ 1, there are exactly n

2
pendant vertices labelled with even integers

and n
2
pendant vertices labelled with odd integers. As n + 1 is odd, there are n

2

negative edges.

If we swap the labels n and n+ 1, then the central vertex gets the label n. Now,
there are n−2

2
pendant vertices labelled with even integers and n+2

2
pendant vertices

labelled with odd integers. Hence, there will be n+2
2

negative edges.

In both cases σ−(K1,n) = n
2
�.

Theorem 3.2. Let G be a path or cycle. The rna number of a path of order at least
2 is 1. The rna number of a cycle is 2. Further, σ−(G) = σ+(G) if and only if G is
either P3 or C4.

Proof. It is clear that the rna numbers are as stated. The adhika numbers are
σ+(Pn) = σ+(Cn) = n− 2 for a path and cycle of order n ≥ 2 (path) and 3 (cycle).
This implies the second half of the theorem.

Theorem 3.3. For a wheel Wn, σ
−(Wn) = �n+4

2
�.

Proof. A wheel Wn is the edge-disjoint union ofK1,n−1 and Cn−1. Assume the central
vertex has parity p = 0 or 1 (even or odd, respectively) and the opposite parity is
1 − p. Let there be α vertices with parity 1− p and n− α with parity p. There are
α negative edges in K1,n−1 and a minimum of two negative edges in Cn−1, which is
achieved by letting all its vertices with parity p induce a path. Thus, there are α+2
negative edges.

If n is even, α = n
2
for a parity labelling. Thus, there are n+4

2
negative edges and

that is the minimum possible. Hence σ−(Wn) = �n+4
2
�.

If n is odd, α = n−1
2

or n+1
2
. The minimum is n−1

2
, attained by choosing p = 1

(the centre vertex has an odd label). In this choice there are n+3
2

negative edges, and
hence σ−(Wn) = �n+4

2
�.

This concludes the proof.

Are there parity signed graphs with a desired rna number? We answer this ques-
tion in the next theorem.

Theorem 3.4. For any natural number k, there exists a parity signed graph S with
σ−(S) = k.

Proof. The star K1,2k of size 2k has σ−(K1,2k) = k.
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Theorem 3.5. Let G be a (connected) graph. We have σ−(G) = 1 if and only if G
has a cut-edge joining two graphs whose orders differ by at most one.

Proof. Assume that a graph G has σ−(G) = 1 and let S = (G, σ) be a parity signed
graph in which all edges, except one, are positive. This is possible only if the end
vertices of positive edges have labels of the same parity. Let the only negative edge
have its end vertices u and v labelled a and b, respectively. Without loss of generality,
assume that a is an odd integer and b is an even integer. All the vertices connected
to u without passing through v must have labels with the same parity as a and all
the vertices connected to v without passing through u must have labels with the
same parity as b. Hence the edge uv must be a cut-edge.

For the converse, assume that the two components are of equal order. For any
even integer n, there exist equal numbers of odd and even integers between 1 and n.
Hence the odd integers can be used to label the vertices of one component exclusively,
and the vertices of the other component can be labelled exclusively with even integers.
When n is odd, a similar arrangement will give two components whose orders differ
exactly by 1. Clearly, |E−(G)| = 1 and this is the smallest possible. Hence σ−(G) =
1.

4 Conclusion

We have explored the balanced nature of parity signed graphs. We have also given
some characterizations of parity signed graphs and the rna number σ−(G) of some
graphs. We have studied paths, cycles, stars and bistars admitting parity labellings.
We have also investigated the effect of the rna number on the structure of a signed
graph.

For further studies on parity signed graphs, we propose some ideas. Let S be
a parity signed graph having a parity labelling μ : V (S) → {1, 2, . . . , |V (S)|}. We
define the parity complement, denoted Sp, of S under the parity labelling μ as
the complement of its underlying graph with the parity signs given by the same
labelling μ. Observe that Sp will also be a parity signed graph.

1 3

42

1 3

42

Figure 3: A parity signed graph and its parity complement.

Some problems are:

1. Characterize signed graphs whose line signed graphs are parity signed graphs.

2. Characterize signed graphs S such that σ−(Sp) = |E−(Sp)|.
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3. What is the relation between σ−(S) + σ−(Sp) and σ−(S ∪ Sp)?

We now define cordiality in parity signed graphs. A parity signed graph S is
cordial if ||E−(S)| − |E+(S)|| ≤ 1. A parity signed graph S is absolutely cordial if
|σ−(S)− σ+(S)| ≤ 1. The following problem is worth exploring.

Characterize parity signed graphs that are absolutely cordial.
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