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Abstract

Equitable list arboricity, introduced by Zhang in 2016, generalizes the
notion of equitable list coloring by requiring the subgraph induced by
each color class to be acyclic (instead of edgeless) in addition to the usual
upper bound on the size of each color class. Graph G is equitably k-list
arborable if an equitable, arborable list coloring of G exists for every list
assignment for G that associates with each vertex in G a list of k available
colors. Zhang conjectured that any graph G is equitably k-list arborable
for each k satisfying k ≥ �(1 + Δ(G))/2�. We verify this conjecture for
powers of cycles by applying a new lemma which is a general tool for
extending partial equitable, arborable list colorings. We also propose
a stronger version of Zhang’s Conjecture for certain connected graphs:
any connected graph G is equitably k-list arborable for each k satisfying
k ≥ �Δ(G)/2� provided G is neither a cycle nor a complete graph of
odd order. We verify this stronger version of Zhang’s Conjecture for
powers of paths, 2-degenerate graphs, and certain other graphs. We also
show that if G is equitably k-list arborable it does not necessarily follow
that G is equitably (k + 1)-list arborable which addresses a question of
Drgas-Burchardt, Furmańczyk, and Sidorowicz (2018).
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1 Introduction

In this paper all graphs are nonempty, finite, simple graphs unless otherwise
noted. Generally speaking we follow West [26] for terminology and notation. The
set of natural numbers is N = {1, 2, 3, . . .}. For m ∈ N, we write [m] for the set
{1, . . . , m}. If G is a graph and S, U ⊆ V (G), we use G[S] for the subgraph of G
induced by S, and we use EG(S, U) for the subset of E(G) with at least one endpoint
in S and at least one endpoint in U . If an edge in E(G) connects the vertices u and
v, the edge can be represented by uv or vu. We use α(G) and ω(G) for the size
of the largest independent set and the size of the largest clique in G respectively.
For v ∈ V (G), we write dG(v) for the degree of vertex v in the graph G, and we use
Δ(G) for the maximum degree of a vertex in G. We say G is k-degenerate when every
subgraph of G has a vertex of degree at most k. We write NG(v) for the neighborhood
of vertex v in the graph G. Also, Gk denotes the kth power of graph G (i.e., Gk has
the same vertex set as G and edges between any two vertices within distance k in G).
When G1 and G2 are vertex disjoint graphs we use G1 + G2 to denote the disjoint
union of G1 and G2. If P is a path, V (P ) = {v1, . . . , vn}, and two vertices are
adjacent in P if and only if they appear consecutively in the ordering: v1, . . . , vn,
then we say the vertices are written in order when we write v1, . . . , vn. If C is a
cycle, V (C) = {v1, . . . , vn}, and E(C) = {{v1, v2}, {v2, v3}, . . . , {vn−1, vn}, {vn, v1}},
then we say the vertices are written in cyclic order when we write v1, . . . , vn.

In classical vertex coloring, a proper k-coloring of graph G is a function f :
V (G) → A where A is a set of colors of size k and f(u) �= f(v) whenever uv ∈ E(G).
For each c ∈ A we say that f−1(c) is the color class of f corresponding to c. Clearly,
f−1(c) is an independent set in G. In this paper we study a variant of classical vertex
coloring called equitable list arboricity which was introduced by Zhang [29]. This
notion combines the notions of equitable coloring, list coloring, and vertex arboricity.
So, we begin by briefly reviewing these notions.

1.1 Equitable Coloring and Equitable Choosability

Equitable coloring is a variation on classical vertex coloring that was formally
introduced by Meyer in the 1973 [20] (though the study of equitable coloring began
in 1964 with a conjecture of Erdős [10]). An equitable k-coloring of a graph G is a
proper k-coloring of G such that the sizes of the color classes differ by at most one
(where a proper k-coloring has exactly k color classes). In an equitable k-coloring,
it is easy to verify that the color classes associated with the coloring are each of size
�|V (G)|/k� or 	|V (G)|/k
. We say that a graph G is equitably k-colorable if there
exists an equitable k-coloring of G.

Unlike classical vertex coloring, increasing the number of colors can make eq-
uitable coloring more difficult. Indeed for any m ∈ N, K2m+1,2m+1 is equitably
2m-colorable, but it is not equitably (2m + 1)-colorable. In 1970, Hajnál and Sze-
merédi [12] proved the 1964 conjecture of Erdős: every graph G has an equitable
k-coloring when k ≥ Δ(G) + 1. In 1994, Chen, Lih, and Wu [5] conjectured that
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the result of Hajnál and Szemerédi can be improved by 1 for most connected graphs
by characterizing the extremal graphs as: Km, C2m+1, and K2m+1,2m+1. Their con-
jecture is still open and is known as the Equitable Δ-Coloring Conjecture. It has
received considerable attention in the literature (see e.g., [5, 8, 9, 18, 19, 28]).

List coloring is yet another variation on classical vertex coloring, and it was
introduced independently by Vizing [25] and Erdős, Rubin, and Taylor [11] in the
1970s. For list coloring, we associate with graph G a list assignment, L, that assigns
to each vertex v ∈ V (G) a list, L(v), of available colors. Graph G is said to be
L-colorable if there exists a proper coloring f of G such that f(v) ∈ L(v) for each
v ∈ V (G) (we refer to f as a proper L-coloring of G). A list assignment L is called
a k-assignment for G if |L(v)| = k for each v ∈ V (G). We say G is k-choosable if
G is L-colorable whenever L is a k-assignment for G. Notice that unlike equitable
k-colorability, when a graph is k-choosable it immediately follows that it is also
(k + 1)-choosable.

In 2003, the third author along with Kostochka and West introduced a notion
combining equitable coloring and list coloring known as equitable choosability [15].
Suppose that L is a k-assignment for graph G. An equitable L-coloring of G is a
proper L-coloring f of G such that f uses no color more than �|V (G)|/k� times.
When an equitable L-coloring of G exists, we say that G is equitably L-colorable.
Graph G is equitably k-choosable if G is equitably L-colorable whenever L is a k-
assignment for G. It is important to note that, similar to equitable coloring, making
the lists larger may make equitable list coloring more difficult. Indeed, K1,9 is equi-
tably 4-choosable, but it is not equitably 5-choosable. Also, equitable k-choosability
does not imply equitable k-colorability unless k = 2 (see [22]).

It is conjectured in [15] that the Hajnál-Szemerédi Theorem and the Equitable
Δ-Coloring Conjecture hold in the context of equitable choosability. Both of these
conjectures have received quite a bit of attention in the literature (see e.g., [13, 14,
16, 21, 34, 36, 37, 38]). We formally state this second conjecture.

Conjecture 1.1 ([15]). A connected graph G is equitably k-choosable for each k ≥
Δ(G) if it is different from Km, C2m+1, and K2m+1,2m+1.

1.2 List Vertex Arboricity and Equitable Vertex Arboricity

The study of vertex arboricity (also called point arboricity) began in the 1960s [1,
4]. Graph G is vertex k-arborable if there is a k-coloring (not necessarily proper) f of
G such that for each color class f−1(c), G[f−1(c)] is acyclic (we call f an arborable,
vertex k-coloring of G). It is worth noting that such a coloring is also referred to
as a tree-k-coloring in the literature. In 2000, Borodin, Kostochka, and Toft [2]
introduced a list version of vertex arboricity. If L is a list assignment for G, we say
that G is L-arborable if there is an L-coloring (not necessarily proper) f of G such
that for each color class f−1(c), G[f−1(c)] is acyclic (we call f an arborable L-coloring
of G). Graph G is k-list arborable if for any k-assignment L for G, G is L-arborable.
The reason we use terms like L-arborable and k-list arborable rather than terms like
vertex L-arborable and vertex k-list arborable is that it is understood in this paper
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that all list assignments associate lists with vertices of a graph. In the study of list
vertex arboricity, the following analogue of Brooks’ Theorem is a well-known result.

Theorem 1.2 ([2, 3]). Suppose G is a connected non-complete graph with Δ(G) ≥ 3.
Then G is k-list arborable whenever k ≥ Δ(G)/2.

In 2013, Wu, Zhang, and Li [27] introduced an equitable version of vertex arboric-
ity. Specifically, a graph G is equitably vertex k-arborable if there exists an arborable,
vertex k-coloring f of G such that each pair of the k color classes associated with
f differ in size by at most one (we call f an equitable, arborable, vertex k-coloring
of G). It is worth noting that such a coloring is also referred to as an equitable
tree-k-coloring in the literature. As in the case of equitable coloring, a graph that
is equitably vertex k-arborable need not be equitably vertex (k + 1)-arborable. In-
deed, K9,9 is equitably vertex 2-arborable, but it is not equitably vertex 3-arborable.
The following conjecture of Wu, Zhang, and Li is well-known and has received some
attention in the literature (see e.g., [6, 24, 27, 30, 31, 32, 33]).

Conjecture 1.3 (Equitable Vertex Arboricity Conjecture [27]). Graph G is equitably
vertex k-arborable whenever k ≥ �(Δ(G) + 1)/2�.

1.3 Equitable List Arboricity

In 2016, Zhang [29] introduced a list analogue of equitable vertex arboricity which
is the focus of this paper. Graph G is equitably k-list arborable if for every k-
assignment L for G there is an arborable L-coloring f of G such that each color
class of f is of size at most �|V (G)|/k� (we call f an equitable, arborable L-coloring
of G). Zhang made the following conjecture which is a list analogue of the Equitable
Vertex Arboricity Conjecture.

Conjecture 1.4 ([29]). Any graph G is equitably k-list arborable for each k satisfying
k ≥ �(Δ(G) + 1)/2�.

Complete graphs demonstrate the tightness of the bound in Conjecture 1.4 since it
is easy to prove that Kn is equitably k-list arborable if and only if k ≥ �n/2� = �(1+
Δ(Kn))/2�. Furthermore, all n-vertex graphs are equitably k-list arborable when
k ≥ �n/2� because if G is equitably k-list arborable, then any spanning subgraph
of G must also be equitably k-list arborable. Conjecture 1.4 has been verified for
2-degenerate graphs, 3-degenerate claw-free graphs with maximum degree at least 4,
and planar graphs with maximum degree at least 8 [29]. It has also been verified for
d-dimensional grids when d ∈ {2, 3, 4} [6].

With the Equitable Δ-Coloring Conjecture, Conjecture 1.1, and Theorem 1.2 in
mind, we conjecture that the bound in Conjecture 1.4 can be improved.

Conjecture 1.5. Any connected graph G is equitably �Δ(G)/2�-list arborable pro-
vided G is neither a cycle nor a complete graph of odd order.
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It is shown in [7] that Conjecture 1.5 holds for 3-dimensional grids, and it is
shown in [17] that Conjecture 1.5 holds for graphs with treewidth 2 and maximum
degree at least 9. In this paper we will show that Conjecture 1.5 holds for several
additional classes of graphs. Note that a recent paper [35] considers a generalization
of equitable list arboricity which generalizes and cites some of our work here (which
had already appeared on arXiv.org).

1.4 Outline of the Paper

In Section 2 we begin by showing that, similar to the relationship between equi-
table choosability and equitable colorability, it is not the case that for each k ∈ N if
graph G is equitably k-list arborable then G is equitably vertex k-arborable. Specif-
ically, we show that K4,15 is not equitably vertex 3-arborable, but it is equitably
3-list arborable. On the other hand, the reader should note that when k ∈ {1, 2},
it is easy to prove that if G is equitably k-list arborable, then G is equitably vertex
k-arborable.

In [6], the authors state that they are not aware of any results in the literature that
address the following question: If graph G is equitably k-list arborable, must it follow
that G is equitably (k + 1)-list arborable? We end Section 2 by demonstrating that
the answer to this question is no. In particular, we use a combination of probabilistic
and algorithmic arguments to show that K11,17 is equitably 3-list arborable, but it is
not equitably 4-list arborable.

In Section 3 we verify Conjectures 1.4 and 1.5 for complete graphs minus an edge,
2�-regular graphs of order 2� + 2, and 2-degenerate graphs G with Δ(G) ≥ 3. The
next result will imply that Conjectures 1.4 and 1.5 hold for all powers of paths.

Theorem 1.6. For n, p ∈ N, suppose that G = P p
n . Then, G is equitably k-list

arborable for each k satisfying k ≥ p.

If G = P p
n and n ≥ 2p, then �Δ(G)/2� = p, so Conjectures 1.4 and 1.5 holds for

such G by Theorem 1.6. If G = P p
n and p + 1 < n < 2p, then Δ(G) = n − 1 and

G = P p
n is a spanning subgraph of a complete graph on n vertices minus an edge, so

G is equitably k-list arborable whenever k ≥ �(n− 1)/2� = �Δ(G)/2�. If n ≤ p+ 1
then P p

n is a complete graph, a known case.

Section 3 ends by studying Conjecture 1.5 for graphs of maximum degree at
most 4.

In Section 4 we prove the following result, a generalization of a lemma proven
by Zhang in 2016 [29] (see Lemma 3.3 in Section 3 below). This tool helps us to
recognize a set S of vertices in a graph G for which an equitable, arborable list
coloring of G− S can be extended to an equitable, arborable list coloring of G.

Lemma 1.7. Suppose m ∈ N and S = {x1, . . . , xmk} where x1, . . . , xmk are distinct
vertices of G. Suppose that L is a k-assignment for G, and L′ is the k-assignment
for G−S obtained by restricting the domain of L to V (G−S). Let f be an equitable,
arborable L′-coloring of G− S.
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Let D be the list assignment of G[S] defined by D(v) = L(v) − {c ∈ L(v) :
|f−1(c) ∩NG(v)| ≥ 2}. Suppose that there is an arborable D-coloring g of G[S] such
that (i) g uses no color more than m times and (ii) for each c ∈ g(S) there is at
most one vertex v ∈ g−1(c) with the property that c is dangerous with respect to v.
Then the function h : V (G) → ⋃

v∈V (G) L(v) given by

h(v) =

{
f(v) if v /∈ S

g(v) if v ∈ S

is an equitable, arborable L-coloring of G.

Above, color c ∈ L(v) is dangerous with respect to v if |f−1(c)∩NG(v)| = 1; that
is, a neighbor of v is already colored with c by f .

We use Lemma 1.7 to first improve Theorem 1.6 when p ≥ 3.

Proposition 1.8. Suppose n, p ∈ N, p ≥ 3, and G = P p
n . Then, G is equitably

(p− 1)-list arborable.

On the other hand, G = P p
n contains a complete graph on p+1 vertices whenever

n ≥ p + 1, in which case G is not k-arborable for 2k < p + 1 (since it is not even
k-list arborable), i.e., for k < �(p+ 1)/2�. This observation along with Theorem 1.6
and Proposition 1.8 lead us to make the following conjecture.

Conjecture 1.9. For any n, p ∈ N with n ≥ p + 1, G = P p
n is equitably k-list

arborable if and only if k ≥ �(p+ 1)/2�.

Notice that Theorem 1.6 and Proposition 1.8 tell us that Conjecture 1.9 is true
for p ∈ [4]. We end Section 4 by using Lemma 1.7 to prove Conjecture 1.4 for powers
of cycles.

Theorem 1.10. Suppose that p ≥ 2 and n ≥ 2p+2. If G = Cp
n, then G is equitably

k-list arborable for each k satisfying k ≥ p+ 1.

We were not able to improve the bound of p + 1 to p in Theorem 1.10 which
means that Conjecture 1.5 is still open for powers of cycles.

2 Some Interesting Examples

We will use the following trivial proposition throughout this section.

Proposition 2.1. Suppose G is a complete bipartite graph with bipartition X, Y ,
and L is a list assignment for G. A mapping f is an arborable L-coloring of G if and
only if f is an L-coloring of G such that for each c in the range of f , |f−1(c)∩X| ≤ 1
or |f−1(c) ∩ Y | ≤ 1.
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Proof. The result immediately follows from the fact that any cycle contained in G
must have at least two vertices in each of the sets X , Y , and the fact that any
subgraph of G induced by a subset of V (G) with at least two vertices in each of the
sets X, Y contains a cycle.

It is well-known that equitable k-choosability does not imply equitable k-color-
ability (see e.g., [21] or [23]). We now show that something similar is true in the
context of vertex arboricity.

Proposition 2.2. Let G = K4,15. Then, G is not equitably vertex 3-arborable, and
G is equitably 3-list arborable.

Proof. Throughout the proof suppose that the bipartition of G is A = {a1, a2, a3, a4},
B = {b1, b2, . . . , b15}.

First, we prove that G is not equitably vertex 3-arborable. For the sake of
contradiction, suppose that f : V (G) → [3] is an arborable 3-coloring of G which
means |f−1(i)| is 6 or 7 for each i ∈ [3]. Without loss of generality, suppose that
|f−1(1) ∩ A| ≥ |f−1(2) ∩ A| ≥ |f−1(3) ∩ A|. The Pigeonhole Principle and the fact
that |A| = 4 implies 2 ≤ |f−1(1)∩A| ≤ 4. Finally, the fact that |f−1(1)| ≥ 6 implies
that 2 ≤ |f−1(1) ∩B|. Thus, G[f−1(1)] contains a cycle which is a contradiction.

Now, we will prove that G is equitably 3-list arborable. We note that �|V (G)|/3�
= 7, and we suppose that L is an arbitrary 3-assignment for G. We will now con-
struct an equitable, arborable L-coloring of G. Notice that if there is no color in⋃

v∈V (G) L(v) that appears in at least 7 of the lists: L(b1), . . . , L(b15), we can begin
by greedily coloring the vertices a1, . . . , a4 with colors from their respective lists so
that no color is used more than twice and at most one color is used twice. Then,
we can greedily color the vertices b1, . . . , b15 with colors from their respective lists so
that the color used twice on the vertices in A (if there is such a color) is not used to
color any vertices in B. The resulting coloring is clearly an arborable L-coloring of
G that uses no color more than 7 times.

So, we may suppose without loss of generality that there is a color c such that
c ∈ L(bi) for each i ∈ [7]. Suppose we color each vertex in {bi : i ∈ [7]} with c. Then,
for each v ∈ V (G)−{bi : i ∈ [7]}, let L′(v) = L(v)−{c}. Notice that if there is a color
d in at least 7 of the lists: L′(b8), . . . , L′(b15) we can complete an equitable, arborable
L-coloring of G as follows. Begin by coloring 7 of the vertices in {b8, . . . , b15} that
have d in their list with d, and then greedily color the 5 remaining uncolored vertices
with a color in their respective lists so that none of these remaining 5 vertices get
colored with c or d.

So, we may suppose that no color in
⋃

v∈V (G)−{bi:i∈[7]} L
′(v) appears in at least 7

of the lists: L′(b8), . . . , L′(b15). Notice that if there is a d ∈ L′(ai) for each i ∈ [4], we
can color each vertex in A with d. Then, we can greedily color each of the vertices
b8, . . . , b15 with a color in their respective lists so that none of these remaining vertices
get colored with c or d. The resulting coloring is clearly an arborable (in fact proper)
L-coloring of G that uses no color more than 7 times. So, we may suppose that⋂4

i=1 L
′(ai) = ∅. Since

⋂4
i=1 L

′(ai) = ∅, it is possible to color each ai ∈ A with a
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color from L′(ai) so that no color is used more than twice and at most one color is
used twice in coloring the vertices in A. Then, we can greedily color the vertices
b8, . . . , b15 with colors from their respective lists so that c and the color used twice
on the vertices in A (if there is such a color) is not used to color any vertex of these
vertices. The resulting coloring is clearly an arborable L-coloring of G that uses no
color more than 7 times.

We will now work towards showing that if graph G is equitably k-list arborable,
G need not be equitably (k+1)-list arborable. In particular, we will show that K11,17

is equitably 3-list arborable, but it is not equitably 4-list arborable. To do this we
begin by proving two general propositions, and a lemma.

Proposition 2.3. Let G = Kn,m and k ∈ N. If n + m ≤ (k + 1)2k − 1, then G is
k-list arborable.

Proof. Suppose that L is an arbitrary k-assignment for G, and suppose G has bi-
partition X, Y with |X| = n and |Y | = m. Suppose we construct the sets CX and
CY via the following random process. For each c ∈ ⋃

v∈V (G) L(v) flip a fair coin. If
the coin lands heads place c in CX ; otherwise, place c in CY . After this process has
concluded, for each v ∈ X if L(v) ∩ CX �= ∅, color v with an element in L(v) ∩ CX .
Similarly, for each v ∈ Y if L(v) ∩ CY �= ∅, color v with an element in L(v) ∩ CY .
Clearly, the resulting (perhaps partial) L-coloring is proper.

Now, for each v ∈ V (G), let Xv be the random variable that is equal to 1 if v is
uncolored and equal to 0 if v is colored. So,

∑
v∈V (G)Xv is the number of vertices in

G that are uncolored. Clearly, P [Xv = 1] = (1/2)k. So, by linearity of expectation,

E

⎡
⎣ ∑

v∈V (G)

Xv

⎤
⎦ =

n+m

2k
.

Since n +m ≤ (k + 1)2k − 1, we see that 	E[∑v∈V (G) Xv]
 ≤ k.

Since
∑

v∈V (G) Xv is always an integer, there is a partial, proper L-coloring of
G, f , that leaves at most k vertices uncolored. We can extend f to an arborable
L-coloring of G by coloring the vertices outside of the domain of f with pairwise
distinct colors from their respective lists (this is possible since there are at most k
uncolored vertices and each list contains k colors). Then, our resulting L-coloring is
an arborable L-coloring of G by Proposition 2.1.

Proposition 2.4. Let G be a complete bipartite graph with bipartition X, Y , and
suppose L is a 2-assignment for G such that there is no arborable L-coloring of G.
Suppose there exists a partial L-coloring f : X → ⋃

v∈X L(v) satisfying the following
two conditions: (1) there are two distinct colors a and b satisfying |f−1(a)| ≥ 2
and |f−1(b)| ≥ 2 and (2) for each c ∈ ⋃

v∈X L(v) − {a, b}, |f−1(c)| ≤ 1. Then,
|L−1({a, b}) ∩ Y | ≥ 3.
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Proof. For the sake of contradiction suppose that |L−1({a, b}) ∩ Y | ≤ 2. Now, we
obtain a contradiction by extending f to an arborable L-coloring of G as follows. For
each v ∈ Y such that v /∈ L−1({a, b}), color v with a color in L(v)−{a, b}. Then, color
the vertices in L−1({a, b}) ∩ Y with distinct colors (if there are any such vertices).
Our resulting L-coloring is an arborable L-coloring of G by Proposition 2.1.

Lemma 2.5. Let G = K7,11 and L be a 2-assignment for G. Then, there is an
arborable L-coloring of G that uses no color more than 10 times.

Proof. Suppose the bipartition of G is X = {x1, . . . , x7}, Y = {y1, . . . , y11}. For
the sake of contradiction, suppose that L is a 2-assignment for G such that there
is no arborable L-coloring of G that uses no color more than 10 times. For each
A ∈ {X, Y }, let ηA :

⋃
v∈A L(v) → N be the function given by ηA(c) = |{v ∈ A : c ∈

L(v)}|. Additionally, for each A ∈ {X, Y }, let
mA = max

c∈⋃v∈A L(v)
ηA(c).

Note that if mY ≥ 10, we can assume without loss of generality that there is a color
c ∈ L(yi) for each i ∈ [10]. We can complete an arobrable L-coloring of G that uses
no color more than 10 times by coloring y1, . . . , y10 with c and then coloring each
v ∈ V (G)−{yi : i ∈ [10]} with a color in L(v)−{c}. So, we know that mY ≤ 9, and
the following observation is clear.

Observation: If it is possible to color the vertices in X with colors from their respec-
tive lists in such a way that at most one color, c, is used more than once, then by
Proposition 2.1 we can obtain an arborable L-coloring of G by coloring each v ∈ Y
with a color in L(v) − {c}. This coloring cannot use a color more than 10 times
since mY ≤ 9. So, it is impossible to color the vertices in X with colors from their
respective lists in such a way that at most one color is used more than once. So, at
least two colors must be used at least two times in coloring the vertices in X .

Now, we know that mX must equal some element in [7]. We will now obtain a
contradiction in each of these 7 cases. We now pursue each of the seven cases in
increasing order of difficulty.

In the case where mX ≥ 6, we can assume without loss of generality that there
is a color c ∈ L(xi) for each i ∈ [6]. We can color each of x1, . . . , x6 with c and then
color x7 with a color in L(x7)− {c}. This contradicts our Observation.

In the case where mX = 5, we can assume without loss of generality that there
is a color c ∈ L(xi) for each i ∈ [5]. We also know that c /∈ L(xi) when i = 6, 7. So,
we can color x1, . . . , x5 with c. Then, we can color x6, x7 with distinct colors from
L(x6) and L(x7). This contradicts our Observation.

In the case where mX ≤ 2, suppose we independently and randomly color each
vertex v ∈ X with a color from L(v) such that each color from L(v) has an equal
chance of being chosen. For each c ∈ ⋃

v∈X L(v), let Xc be the random variable that
is equal to 1 if the color c is used twice in coloring the vertices of X and equal to 0
otherwise. Notice that when ηX(c) = 2, we have that P [Xc = 1] = 1/4, and when
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ηX(c) = 1, we have that P [Xc = 1] = 0. Since
∑

c∈⋃v∈X L(v) ηX(c) = 14, there are at

most seven elements in
⋃

v∈X L(v) that appear in two of the lists: L(x1), . . . , L(x7).

Consequently, E
[∑

c∈⋃v∈X L(v) Xc

]
≤ 7

4
. Thus, there is a way to color the vertices in

X with colors from their respective lists such that at most one color is used more
than once. This contradicts our Observation.

Now, suppose that mX = 4. We can assume without loss of generality that
there is a color c ∈ L(xi) for each i ∈ [4]. Now, we claim it must be the case
that L(x5) = L(x6) = L(x7). To see why, notice that if this was not the case, we
could color each of the vertices: x1, . . . , x4 with c, and we could color x5, x6, x7 with
pairwise distinct colors from L(x5), L(x6), L(x7) respectively which contradicts our
Observation. So, we may assume that L(x5) = L(x6) = L(x7) = {c1, c2} where
c, c1, c2 are pairwise distinct. We will now consider two sub-cases: (1) |⋃4

i=1 L(xi)| ≥
4 and (2) |⋃4

i=1 L(xi)| ≤ 3.

In sub-case (1) we can color x1, . . . , x4 with pairwise distinct colors from L(x1),
L(x2), L(x3), L(x4) respectively. Then, we can color each of x5, x6, x7 with c1 which
contradicts our Observation.

In sub-case (2) we can assume without loss of generality that L(xi) = {c, c3} for
each i ∈ [2]. Clearly, c, c1, c2, c3 are pairwise different (since each of them appears in
at most 4 of the lists: L(x1), . . . , L(x7)). Also, we know that if ηX(c3) ≥ 3, then we
may assume L(x3) = {c, c3}; otherwise, we know L(x3) �= L(x2) and L(x3) = L(x4).
It is not hard to see that it is possible to L-color the vertices in X in the following
four different ways: (1) c is used 4 times and c1 is used 3 times, (2) c is used 4 times
and c2 is used 3 times, (3) c3 is used 2 or 3 times, c1 is used 3 times, and no other
color is used more than once, and (4) c3 is used 2 or 3 times, c2 is used 3 times,
and no other color is used more than once. We know that none of these four partial
L-colorings is extendable to an arborable L-coloring of G. By Proposition 2.4 we
have |L−1({c, c1}) ∩ Y | ≥ 3, |L−1({c, c2}) ∩ Y | ≥ 3, |L−1({c3, c1}) ∩ Y | ≥ 3, and
|L−1({c3, c2}) ∩ Y | ≥ 3. This implies |Y | ≥ 12 which is a contradiction.

Finally, we turn our attention to the case where mX = 3. Let a be the number
of elements c ∈ ⋃

v∈X L(v) that satisfy ηX(c) = 3. First, we claim that a ≥ 2. To
see why this is so, suppose a = 1. Then, independently and randomly color each
vertex v ∈ A with a color from L(v) such that each color from L(v) has an equal
chance of being chosen. For each c ∈ ⋃

v∈X L(v), let Xc be the random variable
that is equal to 1 if the color c is used at least twice in coloring the vertices of X
and equal to 0 otherwise. Notice that: when ηX(c) = 3, we have that P [Xc = 1] =
1/2, when ηX(c) = 2, we have that P [Xc = 1] = 1/4, and when ηX(c) = 1, we
have that P [Xc = 1] = 0. Since

∑
c∈⋃v∈X L(v) ηX(c) = 14 and a = 1, there are at

most five elements in
⋃

v∈X L(v) that appear in two of the lists: L(x1), . . . , L(x7).

Consequently, E
[∑

c∈⋃v∈X L(v) Xc

]
≤ 1

2
+ 5

4
= 7

4
. So, we are able to proceed as we did

in the case where mX ≤ 2. This means we may assume that a ≥ 2. Now, we claim
that there is no c ∈ ⋃

v∈X L(v) satisfying ηX(c) = 1. To see why this is so, suppose
color o is such a color. Suppose without loss of generality that L(x1) = {o, c}. Now,
let L′ be the 2-assignment for G obtained from L by replacing the o in L(x1) with
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a color d �= c satisfying ηX(d) = 3. From the argument used for the case where
mX = 4, we know that we can obtain an arborable L′-coloring f of G that uses
no color more than 10 times. Now, if f(x1) = d modify f by recoloring x1 with o;
otherwise, do not modify f . The resulting coloring is clearly an arborable L-coloring
of G that uses no color more than 10 times which is a contradiction.

Now, let b be the number of elements c ∈ ⋃
v∈X L(v) that satisfy ηX(c) = 2.

By what we have shown thus far, we know that 3a + 2b = 14 and a ≥ 2. So, we
will derive a contradiction in each of the following sub-cases to complete the proof:
(1) a = 2 and b = 4 and (2) a = 4 and b = 1. In each of these sub-cases we will
assume without loss of generality that the color c1 is such that c1 ∈ L(xi) for each
i ∈ [3]. Also, we let X ′ = {x4, x5, x6, x7}, and we let ηX′ :

⋃
v∈X′ L(v) → N be the

function given by ηX′(c) = |{v ∈ X ′ : c ∈ L(v)}|.
In sub-case (1) begin by coloring x1, x2, and x3 with c1. If there is a color o

such that ηX′(o) = 1, we assume without loss of generality that o ∈ L(x4) and we
color x4 with o. Since a = 2 it is not possible that L(x5) = L(x6) = L(x7). So, we
can color x5, x6, x7 with pairwise distinct colors from L(x5), L(x6), and L(x7). This
contradicts our Observation. So, we may assume that minc∈⋃v∈X′ L(v) ηX′(c) ≥ 2.
Since maxc∈⋃v∈X′ L(v) ηX′(c) ≤ 3, a = 2, and

∑
c∈⋃v∈X′ L(v) ηX′(c) = 8, it must be

that the domain of ηX′ is of size 4 and ηX′ outputs 2 for each element in its domain.
It is then easy to see that we can color x4, x5, x6, x7 with pairwise distinct colors
from L(x4), L(x5), L(x6), and L(x7) respectively (simply consider the case where
the lists L(x4), L(x5), L(x6), L(x7) are pairwise distinct and the case where they are
not pairwise distinct). This however contradicts our Observation.

In sub-case (2) we may suppose that c1, c2, c3, c4, d are pairwise distinct colors
such that ηX(ci) = 3 for each i ∈ [4] and ηX(d) = 2. Since

∑
c∈⋃v∈X′ L(v) ηX′(c) = 8,

we can complete sub-case (2) by considering the three following situations: (a) there
is a color z such that ηX′(z) = 1 (note: z ∈ {c1, c2, c3, c4, d}), (b) the domain of ηX′

is of size 4 and ηX′ outputs 2 for each element in its domain, and (c) the domain of
ηX′ is of size 3, |η−1

X′ (3)| = 2, and |η−1
X′ (2)| = 1.

For (a) we assume without loss of generality that z ∈ L(x4). Now, if it is not
the case that L(x5) = L(x6) = L(x7) we can proceed as we did at the beginning
of sub-case (1). So, we may assume that L(x5) = L(x6) = L(x7) = {c2, c3}. This
means that we can assume without loss of generality that L(x4) = {c4, d}, L(x3) =
L(x2) = {c1, c4}, and L(x1) = {c1, d}. It is now clear that it is possible to L-color
the vertices in X in the following four different ways: (1) c1 is used 3 times, c2 is
used 3 times, and d is used once, (2) c1 is used 3 times, c3 is used 3 times, and d is
used once, (3) c4 is used 3 times, c2 is used 3 times, and d is used once, and (4) c4 is
used 3 times, c3 is used 3 times, and d is used once. We know that none of these four
partial L-colorings is extendable to an arborable L-coloring of G. By Proposition 2.4
we have |L−1({c1, c2})∩Y | ≥ 3, |L−1({c1, c3})∩ Y | ≥ 3, |L−1({c2, c4})∩ Y | ≥ 3, and
|L−1({c3, c4}) ∩ Y | ≥ 3. This implies |Y | ≥ 12 which is a contradiction.

For (b) we may proceed as we did at the end of sub-case (1).

For (c) we may assume without loss of generality that ηX′(c2) = ηX′(c3) = 3.
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Then, it must be that ηX′(d) = 2 or ηX′(c4) = 2. If ηX′(d) = 2, we can assume without
loss of generality that L(x1) = L(x2) = L(x3) = {c1, c4}, L(x4) = L(x5) = {c2, c3},
L(x6) = {c2, d}, and L(x7) = {c3, d}. Then, we can get a contradiction by proceeding
in a fashion like situation (a). Finally, if ηX′(c4) = 2, we can assume without loss of
generality that L(x1) = L(x2) = {c1, d}, L(x3) = {c1, c4}, L(x4) = L(x5) = {c2, c3},
L(x6) = {c2, c4}, and L(x7) = {c3, c4}. It is now clear that it is possible to L-color
the vertices in X in the following four different ways: (1) c1 is used 3 times, c2 is
used 3 times, and c4 is used once, (2) c1 is used 3 times, c3 is used 3 times, and
c4 is used once, (3) d is used 2 times, c2 is used 3 times, c1 is used once, and c4
is used once, and (4) d is used 2 times, c3 is used 3 times, c1 is used once, and c4
is used once. We know that none of these four partial L-colorings is extendable to
an arborable L-coloring of G. By Proposition 2.4 we have |L−1({c1, c2}) ∩ Y | ≥ 3,
|L−1({c1, c3}) ∩ Y | ≥ 3, |L−1({d, c2}) ∩ Y | ≥ 3, and |L−1({d, c3}) ∩ Y | ≥ 3. This
implies |Y | ≥ 12 which is a contradiction.

We are finally ready to show that K11,17 is equitably 3-list arborable, but it is
not equitably 4-list arborable.

Theorem 2.6. Let G = K11,17. Then, G is equitably 3-list arborable, but G is not
equitably 4-list arborable.

Proof. Throughout the proof suppose the bipartition of G is X = {x1, . . . , x11},
Y = {y1, . . . , y17}. First, we will show that G is not equitably 4-list arborable by
constructing a 4-assignment L for G for which there is no equitable, arborable L-
coloring of G. Suppose L is the 4-assignment for G that assigns the list {1, 2, 3, 4} to
every vertex. For the sake of contradiction, suppose that f is an equitable, arborable
L-coloring of G. We know that |f−1(i)| ≤ 7 for each i ∈ [4]. This along with
the fact that |V (G)| = 28 implies |f−1(i)| = 7 for each i ∈ [4]. Without loss of
generality, suppose that |f−1(1)∩X| ≥ |f−1(2)∩X| ≥ |f−1(3)∩X| ≥ |f−1(4)∩X|.
By the fact that |X| = 11 and the Pigeonhole Principle, 2 ≤ |f−1(2) ∩ X| ≤ 5.
So, |f−1(2) ∩ Y | ≥ 2, and consequently f is not an arborable L-coloring of G by
Proposition 2.1 which is a contradiction.

Now, we will show that G is equitably 3-list arborable. Suppose that L is an
arbitrary 3-assignment for G. We will show that an arborable L-coloring of G that
uses no color more than �|V (G)|/3� times exists. Since |V (G)| = 28 ≤ 23(4) − 1,
we know that an arborable L-coloring of G exists by Proposition 2.3. So, if each
c ∈ ⋃

v∈V (G) L(v) has the property that it appears in no more than 9 of the lists:

L(x1), . . . , L(x11) and no more than 9 of the lists: L(y1), . . . , L(y17), we are done
since any arborable L-coloring of G will also be equitable if this holds.

So, we just need to construct an equitable, arborable L-coloring of G in each of
the following cases: (1) there is a c ∈ ⋃

v∈V (G) L(v) such that c appears in at least 10

of the lists: L(x1), . . . , L(x11) or (2) there is a c ∈ ⋃
v∈V (G) L(v) such that c appears

in at least 10 of the lists: L(y1), . . . , L(y17). In case (1) we can assume without loss
of generality that c ∈ L(xi) for each i ∈ [10]. Suppose we color each of x1, . . . , x10

with c. Then, for each v ∈ V (G)− {xi : i ∈ [10]}, let L′(v) = L(v)− {c}. Now, we
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can greedily color each vertex x11, y1, . . . , y17 with a color assigned to the vertex by
L′ in such a way that no color is used more than 10 times (the coloring need not be
proper). This completes an equitable, arborable L-coloring of G.

For case (2) assume without loss of generality that c ∈ L(yi) for each i ∈ [10].
Suppose we color each of y1, . . . , y10 with c. Then, for each v ∈ V (G)−{yi : i ∈ [10]},
let L′(v) = L(v)−{c}, and note that |L′(v)| ≥ 2. Lemma 2.5 then implies that there
is an arborable L′-coloring of G − {yi : i ∈ [10]} that uses no color more than 10
times. Such a coloring completes an equitable, arborable L-coloring of G.

3 Verifying Conjecture 1.5 for Certain Graphs

We begin by verifying Conjecture 1.5 for graphs with high maximum degree.

Proposition 3.1. If n ≥ 3 and G = Kn − e where e ∈ E(G), then G is equitably
k-list arborable whenever k ≥ �Δ(G)/2�.

Proof. The result clearly follows when n is even since we know: Conjecture 1.4 holds
for complete graphs, G is a spanning subgraph of a complete graph on n vertices,
and when n is even, �Δ(G)/2� = �(n − 1)/2� = n/2 = �(Δ(Kn) + 1)/2�. So, we
may suppose that n = 2� + 1 where � ∈ N. Similar to when n is even, since G is a
spanning subgraph of a complete graph on n vertices, we know that G is equitably
k-list arborable whenever k ≥ �(Δ(Kn)+1)/2� = �+1. So, to complete the proof we
need only show that G is equitably �-list arborable. Suppose that L is an arbitrary
�-assignment for G. We will now construct an equitable, arborable L-coloring f of
G to complete the proof.

Suppose V (G) = {v1, v2, . . . , v2�+1}, and without loss of generality, assume that
v1v2�+1 /∈ E(G). Begin by greedily coloring v1, . . . , v2� so that for each i ∈ [2�],
f(vi) ∈ L(vi) and no color is used more than twice in coloring v1, . . . , v2�. Then, let

L′(v2�+1) = L(v2�+1)− {c ∈ L(v2�+1) : c is used twice in coloring v1, . . . , v2�}.

Since dG(v2�+1) = 2� − 1 and |L(v2�+1)| = �, we know that |L′(v2�+1)| ≥ 1. So, we
can color v2�+1 so that f(v2�+1) ∈ L′(v2�+1). By construction, f uses no color more
than �|V (G)|/�� = 3 times, and the only color that can be used 3 times by f is
f(v2�+1). However, since v2�+1 can only be adjacent to at most one vertex colored
with f(v2�+1), we know G[f−1(f(v2�+1))] is acyclic. Consequently, f is an equitable,
arborable L-coloring of G, and G is equitably �-list arborable.

Proposition 3.2. Suppose G is a 2�-regular graph with � ≥ 2. If |V (G)| = 2� + 2,
then G is equitably k-list arborable whenever k ≥ �.

Proof. The result is obvious when k > �. So, we need only show that G is equitably
�-list arborable.

For the sake of contradiction, suppose that G is not equitably �-list arborable.
Let L be an �-assignment for G for which there is no equitable, arborable L-coloring



H. KAUL ET AL. /AUSTRALAS. J. COMBIN. 80 (3) (2021), 419–441 432

of G. Since G is not a complete graph, by Theorem 1.2, we know that there is an
arborable L-coloring of G. Suppose f is an arborable L-coloring of G. Since f is not
an equitable, arborable L-coloring ofG, we know that there is a c ∈ ⋃

v∈V (G) L(v) such

that |f−1(c)| > �|V (G)|/l� = 3. Let G′ = G[f−1(c)]. Note that for each v ∈ V (G′), v
is not adjacent to exactly one vertex in G. So, we have that dG′(v) ≥ |V (G′)|−2 ≥ 2
which implies that G′ contains a cycle. This however contradicts the fact that f is
an arborable L-coloring of G.

We now improve upon a result in [29] and verify Conjecture 1.5 for 2-degenerate
graphs. Our proof uses the following Lemma.

Lemma 3.3 ([29]). Suppose S = {x1, . . . , xk} where x1, . . . , xk are distinct vertices
of G. Suppose that L is a k-assignment for G, and L′ is the k-assignment for G−S
obtained by restricting the domain of L to V (G − S). If an equitable, arborable
L′-coloring of G− S exists and

|NG(xi)− S| ≤ 2i− 1

for each i ∈ [k], then an equitable, arborable L-coloring of G exists.

Theorem 3.4. If G is a 2-degenerate graph with Δ(G) ≥ 3, then G is equitably
k-list arborable whenever k ≥ �Δ(G)/2�.
Proof. Our proof is by induction on |V (G)|. Note that the result is clear when
|V (G)| = 4. So, assume that |V (G)| > 4 and the desired result holds for all graphs
having less than |V (G)| vertices. Suppose k satisfies k ≥ �Δ(G)/2� (we may assume
that k < |V (G)| since G is clearly equitably k-list arborable whenever k ≥ |V (G)|).

Let L be an arbitrary k-assignment for G. Suppose that uv ∈ E(G) and dG(u) ≤
2. Let x1 = u and xk = v. We construct a subset S of V (G) via the following
inductive process. Begin by placing x1 and xk in S. Then if k ≥ 3, for each i ∈
{2, . . . , k−1} let xi be a vertex of degree at most 2 in the graph G−{x1, . . . , xi−1, xk}
(such an xi exists since G is 2-degenerate). Now, consider G−S and the k-assignment
L′ for G − S obtained by restricting the domain of L to V (G − S). Note G − S
is 2-degenerate and Δ(G − S) ≤ Δ(G). If Δ(G − S) ≤ 2, then an equitable,
arborable L′-coloring of G − S exists by Theorem 5 in [29] (since �Δ(G)/2� ≥ 2 ≥
�(Δ(G − S) + 1)/2�). If Δ(G − S) ≥ 3, then an equitable, arborable L′-coloring of
G− S exists by the inductive hypotheses.

When k ≥ 3, it is clear that for each i ∈ {2, . . . , k−1}, |NG(xi)−S| ≤ 2 ≤ 2i−1.
Also, for all possible k, |NG(x1)−S| ≤ 1 = 2(1)− 1 and |NG(xk)−S| ≤ Δ(G)− 1 ≤
2k − 1. So, an equitable, arborable L-coloring of G exists by Lemma 3.3, and we
have that G is equitably k-list arborable.

The next theorem along with Proposition 3.1 shows Conjecture 1.5 holds for
powers of paths.

Theorem 1.6. For n, p ∈ N, let G = P p
n . Then, G is equitably k-list arborable for

each k satisfying k ≥ p.
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Proof. Suppose p, k are fixed natural numbers satisfying k ≥ p. We will prove that
G is equitably k-list arborable by induction on n. For the basis step note that when
n ≤ 2k − 1 the result is clear.

So, suppose that n ≥ 2k, and the desired result holds for all natural numbers
less than n. Suppose that the vertices of the underlying copy of Pn used to form
G (in order) are: v1, . . . , vn. Suppose also that L is an arbitrary k-assignment for
G, and S = {v1, . . . , vk}. Then, the inductive hypothesis tells us that an equitable,
arborable L′-coloring of G−S exists where L′ is the k-assignment for G−S obtained
by restricting the domain of L to V (G− S). Note that for each i ∈ [k],

|NG(vi)− S| = max{0, p− (k − i)} ≤ i ≤ 2i− 1.

Thus, an equitable, arborable L-coloring of G exists by Lemma 3.3. It immediately
follows that G is equitably k-list arborable.

We end this section by focusing on Conjecture 1.5 for graphs with maximum
degree at most 4.

Theorem 3.5. Suppose G is a graph with Δ(G) ≤ 4. Then, the following statements
hold.
(i) If G has at most 3 vertices of degree 4, then G is equitably 2-list arborable.
(ii) If G is connected, 4-regular, and |V (G)| ∈ {6, 7, 8, 9, 10, 11, 13, 15}, then G is
equitably 2-list arborable.

Proof. Throughout our proof we let |V (G)| = n. For Statement (i), suppose that G is
a counterexample to the desired statement with fewest number of vertices. Clearly,
n ≥ 5. Suppose that L is a 2-assignment for G for which there is no equitable,
arborable L-coloring of G. There must be a vertex v ∈ V (G) with dG(v) ≤ 3. Let
G′ = G − {v}, and let L′ be the 2-assignment for G′ obtained by restricting the
domain of L to V (G′). By the minimality of G, we know that there is an equitable,
arborable L′-coloring of G′ which we will call f ′.

Now, there must be some a ∈ L(v) such that |f ′−1(a) ∩ NG(v)| ≤ 1. So, we let
f be the L-coloring of G given by f(v) = a and f(u) = f ′(u) when u ∈ V (G′).
Clearly, f is an arborable L-coloring of G. Since f cannot be an equitable, arborable
L-coloring of G it must be that⌈n

2

⌉
< |f−1(a)| = |f ′−1(a)|+ 1.

Since |f ′−1(a)| ≤ �(n − 1)/2�, it must be the case that n = 2l for some l ∈ N and
|f−1(a)| = l + 1.

We let A = f−1(a) and B = V (G)−A. Note that |B| = l− 1 and no color other
than a is used by f more than l − 1 times. We also let G1 be the forest G[A] and
G2 = G[B]. Notice that for each u ∈ A, u is adjacent to two vertices x, y ∈ B (in
G) such that: f(x) ∈ L(u)− {a}, f(x) = f(y), and there is a path in G[f−1(f(x))]
connecting x and y. This is because if this was not the case, we could recolor u with
the element in L(u)− {a} to obtain an equitable, arborable L-coloring of G.
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Now, let B be the set of two element subsets of B. Let F : A → B be a function
that maps each u ∈ A to an {x, y} ∈ B so that x, y ∈ NG(u), f(x) ∈ L(u) − {a},
f(x) = f(y), and there is a path in G[f−1(f(x))] connecting x and y (in the case
multiple elements of B satisfy these conditions one of those elements is arbitrarily
chosen for F (u)). Now, for each z ∈ B, let mz =

∑
P∈B,z∈P |F−1(P )|. Then, note

that ∑
z∈B

mz = 2
∑
P∈B

|F−1(P )| = 2|A| = 2(l + 1).

It is clear that for each z ∈ B with mz ≥ 1, dG2(z) ≥ 1. We claim that for each
z ∈ B, mz ≤ 3. To see why this is so, suppose that there is a t ∈ B with mt ≥ 4.
Note that mt ≥ 4 implies that t is adjacent to at least 4 vertices in A. This along
with the fact that dG2(t) ≥ 1 implies dG(t) ≥ 5 > Δ(G) which is a contradiction.

So, for each z ∈ B, mz ≤ 3. Since |B| = l − 1, there must be four distinct
vertices t1, t2, t3, t4 ∈ B such that mti = 3 for each i ∈ [4]. This however implies
that dG(ti) = 4 for each i ∈ [4] which contradicts the fact that G has at most three
vertices of degree 4.

We now turn our attention to Statement (ii). For the sake of contradiction,
suppose that G is not equitably 2-list arborable. Let L be a 2-assignment for G for
which there is no equitable, arborable L-coloring of G. Since G is not a complete
graph, by Theorem 1.2, we know that there is an arborable L-coloring of G. Since
there is no equitable, arborable L-coloring of G, each arborable L-coloring of G must
have exactly one color class with size larger than �n/2�. Among all arborable L-
colorings of G, choose one, f , so that the largest color class associated with f is as
small as possible.

Suppose a is the color in
⋃

v∈V (G) L(v) for which |f−1(a)| > �n/2�. We let m =

|f−1(a)|, A = f−1(a), and B = V (G)−A. Note that |B| = n−m and no color other
than a is used by f more than �n/2�−1 times. We also let G1 be the forest G[A] and
G2 = G[B]. Notice that for each u ∈ A, u is adjacent to two vertices x, y ∈ B (in
G) such that: f(x) ∈ L(u)− {a}, f(x) = f(y), and there is a path in G[f−1(f(x))]
connecting x and y. This is because if this was not the case, we could recolor u with
the element in L(u) − {a} to obtain an arborable L-coloring of G with every color
class of size less than m.

Now, let B be the set of two element subsets of B. Let F : A → B be a function
that maps each u ∈ A to an {x, y} ∈ B so that x, y ∈ NG(u), f(x) ∈ L(u) − {a},
f(x) = f(y), and there is a path in G[f−1(f(x))] connecting x and y (in the case
multiple elements of B satisfy these conditions one of those elements is arbitrarily
chosen for F (u)). Now, for each z ∈ B, let mz =

∑
P∈B,z∈P |F−1(P )|. Then, note

that ∑
z∈B

mz = 2
∑
P∈B

|F−1(P )| = 2|A| = 2m.

Similar to the proof of Statement (i), it is clear that for each z ∈ B with mz ≥ 1,
dG2(z) ≥ 1, and for each z ∈ B, mz ≤ 3.

Now, let T = {z ∈ B : mz ≥ 1}. Since
∑

z∈B mz = 2m and each term in
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the sum
∑

z∈B mz is at most 3, we have that |T | ≥ �2m/3�. Now, notice that
|E(G)| = |E(G1)|+ |E(G2)|+ |EG(A,B)|. Using this equation as our starting point,
we see that:

|E(G1)| = 2n− |E(G2)| − |EG(A,B)| = 2n−
∑

z∈B dG2(z)

2
−
∑
z∈B

(4− dG2(z))

= 2n− 4|B|+
∑

z∈B dG2(z)

2

= 2n− 4(n−m) +

∑
z∈B dG2(z)

2

≥ 4m− 2n+

∑
z∈T dG2(z)

2

≥ 4m− 2n+
|T |
2

≥ 4m− 2n+
�2m/3�

2
.

Now, we claim thatm ≤ 4m−2n+ �2m/3�
2

. To why this is so, note thatm ≥ �n/2�+1.

Then, when n ∈ {6, 8, 10}, it is easy to see that 2n ≤ 3(n/2 + 1) + �(n+2)/3�
2

≤
3m+ �2m/3�

2
, and when n ∈ {7, 9, 11, 13, 15}, it is easy to see that 2n ≤ 3(n+ 3)/2 +

�(n+3)/3�
2

≤ 3m+ �2m/3�
2

.

So, we have that |E(G1)| ≥ m. Since G1 is a graph on m vertices, we have that
G1 contains a cycle which implies that f is not an arborable L-coloring of G. This
however is a contradiction.

It is worth mentioning that in some sense Statement (i) of Theorem 3.5 is best
possible since K5 is not equitably 2-list arborable, but K5 minus an edge is equitably
2-list arborable. Also, in light of Conjecture 1.5, we suspect that all connected, 4-
regular graphs with the exception of K5 are equitably 2-list arborable. So, we expect
that Statement (ii) can be improved quite a bit.

4 A General Tool and its Applications

We will now prove a generalization of Lemma 3.3 which was used in the previous
section and proven by Zhang in 2016.1

First, we need some terminology. Suppose G is a graph and S ⊆ V (G). Suppose
L is a k-assignment for G, and suppose L′ is the k-assignment for G−S obtained by
restricting the domain of L to V (G− S). Suppose that f is an equitable, arborable
L′-coloring of G− S. Now, for each v ∈ S, let

D(v) = L(v)− {c ∈ L(v) : |f−1(c) ∩NG(v)| ≥ 2}.
1Lemma 3.3 is similar in flavor to Lemma 3.1 in [15] which is a well-known lemma that, along with

its generalizations, has been used by many researchers to prove results about equitable choosability.
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Moreover, for each v ∈ S, let Dd(v) = {c ∈ L(v) : |f−1(c) ∩ NG(v)| = 1} and
Ds(v) = {c ∈ L(v) : |f−1(c) ∩ NG(v)| = 0}. Clearly, {Dd(v), Ds(v)} is a partition
of D(v). If c ∈ Dd(v) we say that color c is dangerous with respect to v, and if
c ∈ Ds(v) we say that color c is safe with respect to v. From this point onward,
we use these names for the lists whenever we are deleting a set S of vertices from a
graph G in hopes of extending an equitable, arborable list coloring of G − S to an
equitable, arborable list coloring of G. Using this notation, the following observation
is immediate.

Observation 4.1. If v ∈ S and |NG(v) − S| = t, then |D(v)| ≥ k − 	t/2
 and
|Ds(v)| ≥ k − t.

We are now ready to prove Lemma 1.7, which we restate.

Lemma 1.7. Suppose m ∈ N and S = {x1, . . . , xmk} where x1, . . . , xmk are distinct
vertices of G. Suppose that L is a k-assignment for G, and L′ is the k-assignment
for G−S obtained by restricting the domain of L to V (G−S). Let f be an equitable,
arborable L′-coloring of G− S.

Suppose that there is an arborable D-coloring g of G[S] such that: g uses no color
more than m times and for each c ∈ g(S) there is at most one vertex v ∈ g−1(c) with
the property that c is dangerous with respect to v. Then, the function h : V (G) →⋃

v∈V (G) L(v) given by

h(v) =

{
f(v) if v /∈ S

g(v) if v ∈ S

is an equitable, arborable L-coloring of G.

Proof. Clearly, h is an L-coloring of G. We will first show that h is an arborable
L-coloring of G; that is, we will show that for each color c in the range of h, G[h−1(c)]
is acyclic. Note that h−1(c) = f−1(c)∪g−1(c). We know that G[f−1(c)] and G[g−1(c)]
are vertex disjoint, and each of these graphs is acyclic. Since there is at most one
vertex v ∈ g−1(c) with the property that c is dangerous with respect to v, we know
that there is at most one vertex in g−1(c) that is adjacent in G to a vertx in f−1(c).
Moreover, such a vertex can only be adjacent to exactly one vertex in f−1(c). Thus,
G[h−1(c)] is either G[f−1(c)] +G[g−1(c)] or G[f−1(c)] +G[g−1(c)] with a single edge
added between one vertex of G[f−1(c)] and one vertex of G[g−1(c)]. Since adding a
single edge between two vertex disjoint forests cannot create a cycle, it follows that
G[h−1(c)] is acyclic.

Finally, to see that h is an equitable, arborable L-coloring of G, notice that since
f uses no color more than �|V (G − S)|/k� = �|V (G)|/k� −m times and g uses no
color more than m times, h uses no color more than �|V (G)|/k� times.

We now use Lemma 1.7 to improve upon Theorem 1.6 when p ≥ 3.

Proposition 1.8. Suppose n, p ∈ N, p ≥ 3, and G = P p
n . Then, G is equitably

(p− 1)-list arborable.
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Proof. Suppose that p is a fixed natural number satisfying p ≥ 3. We will prove the
desired result by induction on n. The result is obvious when n ≤ 2p−2. So, suppose
that n ≥ 2p − 1 and that the desired statement holds true for all natural numbers
less than n.

Suppose that the vertices of the underlying copy of Pn used to form G (in order)
are: v1, . . . , vn. Suppose also that L is an arbitrary (p−1)-assignment for G, and S =
{v1, . . . , v2p−2}. Then, the inductive hypothesis tells us that an equitable, arborable
L′-coloring f of G − S exists where L′ is the k-assignment for G − S obtained by
restricting the domain of L to V (G−S). In order to show that there is an equitable,
arborable L-coloring of G, we will construct an arborable D-coloring of G[S] that
satisfies the hypotheses of Lemma 1.7.

We begin with several observations. First, for each i ∈ [p− 2], Ds(vi) = D(vi) =
L(vi) which implies |Ds(vi)| = p− 1. Second, since vp−1 has one neighbor in G− S,
we know that |D(vp−1)| = p − 1 and |Ds(vp−1)| ≥ p − 2. Also, for each i ∈ {p +
1, . . . , 2p− 2}, since vi has at most i− p+ 2 neighbors in G− S,

|D(vi)| ≥ (p− 1)−
⌊
i− p+ 2

2

⌋
.

From this inequality it is easy to verify that |D(vi)| ≥ 2p − 1 − i for each i ∈
{p + 1, . . . , 2p − 2}. Finally, one of the following statements must be true since vp
has at most two neighbors in G − S: (1) |D(vp)| = p − 1 or (2) |D(vp)| = p − 2.
We will construct an arborable D-coloring of G[S] that satisfies the hypotheses of
Lemma 1.7 in each of these cases.

In case (1) begin by greedily coloring the vertices v2p−2, . . . , vp with p−1 pairwise
distinct colors from D(v2p−2), . . . , D(vp) respectively (this is possible since in case (1)
we have that |D(vi)| ≥ 2p− 1− i for each i ∈ {p, . . . , 2p− 2}). Note that vi may be
colored with a dangerous color with respect to vi for each i ∈ {p, . . . , 2p− 2}. Then,
greedily color vp−1, . . . , v1 with p−1 pairwise distinct colors fromDs(vp−1), . . . , Ds(v1)
respectively. Call the resulting coloring ofG[S], g. It is easy to see that g uses no color
more than two times and is therefore an arborable D-coloring of G[S]. Furthermore,
by construction, for each color class C of g there is at most one vertex v ∈ C that
is colored with a color in Dd(v). Lemma 1.7 immediately implies that there is an
equitable, arborable L-coloring of G.

In case (2) begin by greedily coloring the vertices v2p−2, . . . , vp+1, vp−1 with p −
1 pairwise distinct colors from D(v2p−2), . . . , D(vp+1), D(vp−1) respectively (this is
possible since we have that |D(vp−1)| = p − 1 and |D(vi)| ≥ 2p − 1 − i for each
i ∈ {p + 1, . . . , 2p − 2}). Note that vi may be colored with a dangerous color with
respect to vi for each i ∈ {p−1, p+1, . . . , 2p−2}. Now, notice that in case (2) we must
have that D(vp) = Ds(vp). So, we greedily color vp, vp−2, . . . , v1 with p− 1 pairwise
distinct colors from Ds(vp), Ds(vp−2), . . . , Ds(v1) respectively (this is possible since
|Ds(vp)| ≥ p− 2 ≥ 1). Call the resulting coloring of G[S], g. It is easy to see that g
uses no color more than two times and is therefore an arborable D-coloring of G[S].
Furthermore, by construction, for each color class C of g there is at most one vertex
v ∈ C that is colored with a color in Dd(v). Lemma 1.7 immediately implies that
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there is an equitable, arborable L-coloring of G.

Finally, we use Lemma 1.7 to prove Conjecture 1.4 for powers of cycles.

Theorem 1.10. Suppose that p ≥ 2 and n ≥ 2p+2. If G = Cp
n, then G is equitably

k-list arborable for each k satisfying k ≥ p+ 1.

Proof. Suppose p, k are fixed natural numbers satisfying p ≥ 2 and k ≥ p + 1. We
will prove the result by induction on n. Notice that when n satisfies 2p+2 ≤ n ≤ 2k
the desired result is obvious.

So, we may assume that n > 2k. Suppose that the vertices of the underlying
copy of Cn used to form G in cyclic order are: v1, . . . , vn. Suppose that L is an
arbitrary k-assignment for G, and let S = {v1, . . . , v2k}. Notice that G−S is a copy
of P p

n−2k. So, Theorem 1.6 tells us there is an equitable, arborable L′-coloring f of
G− S where L′ is the k-assignment for G− S obtained by restricting the domain of
L to V (G− S). In order to show that there is an equitable, arborable L-coloring of
G, we will construct an arborable D-coloring of G[S] that satisfies the hypotheses of
Lemma 1.7.

It is easy to see that for each i ∈ [k], |NG(vi) − S| ≤ max{p + 1 − i, 0} and
|NG(vk+i) − S| ≤ max{p + i − k, 0}. This implies that for each i ∈ [k], |Ds(vi)| ≥
k−max{p+1− i, 0} ≥ i. So, we can greedily color v1, . . . , vk with k pairwise distinct
colors from Ds(v1), . . . , Ds(vk) respectively. Similarly, for each i ∈ [k], |Ds(vk+i)| ≥
k−max{p+i−k, 0} ≥ k−i+1. Consequently, we can greedily color v2k, . . . , vk+1 with
k pairwise distinct colors from Ds(v2k), . . . , Ds(vk+1) respectively. Call the resulting
coloring of G[S], g.

It is easy to see that g uses no color more than two times and is therefore an
arborable D-coloring of G[S]. Furthermore, by construction, for each v ∈ S, g(v) is
safe with respect to v. Lemma 1.7 immediately implies that there is an equitable,
arborable L-coloring of G.
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Holland, Amsterdam, 1970, 601–623.

[13] H. Kaul, J. A. Mudrock and M. J. Pelsmajer, Total equitable list coloring,
Graphs Combin. 34 (2018), 1637–1649.

[14] H.A. Kierstead and A.V. Kostochka, Equitable list coloring of graphs with
bounded degree, J. Graph Theory 74 (2013), 309–334.

[15] A.V. Kostochka, M. J. Pelsmajer and D.B. West, A list analogue of equitable
coloring, J. Graph Theory 44 (2003), 166–177.

[16] Q. Li and Y. Bu, Equitable list coloring of planar graphs without 4- and 6-cycles,
Discrete Math. 309 (2009), 280–287.

[17] Y. Li and X. Zhang, Equitable list tree-coloring of bounded treewidth graphs,
Theoret. Comput. Sci. 855 (6) (2021), 61–67.

[18] K.-W. Lih, The equitable coloring of graphs, In: Handbook of Combinatorial
Optimization, Vol. III (D.-Z. Du and P. Pardalos, Eds.), Kluwer, Dordrecht,
1998, 543–566.



H. KAUL ET AL. /AUSTRALAS. J. COMBIN. 80 (3) (2021), 419–441 440

[19] K.-W. Lih and P.-L. Wu, On equitable coloring of bipartite graphs, Discrete
Math. 151 (1996), 155–160.

[20] W. Meyer, Equitable Coloring, Amer. Math. Monthly 80 (1973), 920–922.

[21] J. Mudrock, On the list coloring problem and its equitable variants, Ph.D. The-
sis, Illinois Institute of Technology, 2018.

[22] J. Mudrock, M. Chase, I. Kadera and T. Wagstrom, A note on the equitable
choosability of complete bipartite graphs, Discuss. Math. Graph Theory (to
appear).

[23] J. Mudrock, M. Marsh and T. Wagstrom, On list equitable total colorings of
the generalized theta graph, Discuss. Math. Graph Theory (to appear).

[24] B. Niu, X. Zhang and Y. Gao, Equitable partition of plane graphs with inde-
pendent crossings into induced forests, Discrete Math. 343 (5) (2020), 111792.

[25] V.G. Vizing, Coloring the vertices of a graph in prescribed colors, Diskret.
Analiz. no. 29, Metody Diskret. Anal. v Teorii Kodovi Skhem 101 (1976), 3–10.

[26] D.B. West, Introduction to Graph Theory, Upper Saddle River, NJ: Prentice
Hall, 2001.

[27] J.-L. Wu, X. Zhang and H. Li, Equitable vertex arboricity of graphs, Discrete
Math. 313 (23) (2013), 2696–2701.

[28] H.P. Yap and Y. Zhang, The equitable Δ-coloring conjecture holds for outer-
planar graphs, Bull. Inst. Acad. Sinica 25 (1997), 143–149.

[29] X. Zhang, Equitable list point arboricity of graphs, Filomat 30 (2) (2016), 373–
378.

[30] X. Zhang, Equitable vertex arboricity of graphs, Discrete Math. 339 (6) (2016),
1724–1726.

[31] X. Zhang and B. Niu, Equitable partition of graphs into induced linear forests,
J. Comb. Optim. 39 (2) (2020), 581–588.

[32] X. Zhang, B. Niu, Y. Li and B. Li, Equitable vertex arboricity conjecture holds
for graphs with low degeneracy, arXiv: 1908.05066v3 (preprint, 2019).

[33] X. Zhang and J.-L. Wu, A conjecture on equitable vertex arboricity of graphs,
Filomat 28 (1) (2014), 217–219.

[34] X. Zhang and J.-L. Wu, On equitable and equitable list colorings of series-
parallel graphs, Discrete Math. 311 (2011), 800–803.

[35] H. Zhang and X. Zhang, Theoretical aspects of equitable partition of networks
into sparse modules, Theoret. Comput. Sci. 871 (2021), 51–61.



H. KAUL ET AL. /AUSTRALAS. J. COMBIN. 80 (3) (2021), 419–441 441

[36] J. Zhu and Y. Bu, Equitable list coloring of planar graphs without short cycles,
Theoret. Comput. Sci. 407 (2008), 21–28.

[37] J. Zhu and Y. Bu, Equitable and equitable list colorings of graphs, Theoret.
Comput. Sci. 411 (2010), 3873–3876.

[38] J. Zhu, Y. Bu and X. Min, Equitable list-coloring for C5-free plane graphs
without adjacent triangles, Graphs Combin. 31 (2015), 795–804.

(Received 27 Oct 2020; revised 4 June 2021)


