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Abstract

We consider maximum packings of edge-disjoint 4-cliques in the complete
graph Kn. When n ≡ 1 or 4 (mod 12), these are simply block designs.
In other congruence classes, there are necessarily uncovered edges; we
examine the possible ‘leave’ graphs induced by those edges. We give
particular emphasis to the case n ≡ 0 or 3 (mod 12), when the leave is
2-regular. Colbourn and Ling settled the case of Hamiltonian leaves. We
extend their construction and use several additional direct and recursive
constructions to realize a variety of 2-regular leaves. For various subsets
S ⊆ {3, 4, 5, . . . }, we establish explicit lower bounds on n to guarantee
the existence of maximum packings with any possible leave whose cycle
lengths belong to S. Recast in slightly different language, our main result
gives an edge-decomposition of the complement of any 2-regular graph of
order n into 4-cliques, where n ≡ 0, 3 (mod 12) and n > 107.
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1 Introduction

Let n, k, t, λ be nonnegative integers with n ≥ k ≥ t. A t-(n, k, λ) packing is a pair
(X,B), where X is a set of size n, B is a collection of k-subsets of X , and such
that, for every t-subset T of X, there are at most λ elements of B which contain T .
Elements of B are called blocks and elements of X are called points or vertices. The
survey [18] offers more details on the background results to follow.

Packings are relaxations of designs in the sense that if “at most” is replaced
by “exactly” in the definition of a packing, one recovers the definition of a design.
Alternatively, designs are packings with the maximum number λ

(
v
t

)
/
(
k
t

)
of blocks.

Packings in the case t = 1 are simply partial partitions of a (λ-fold) n-set by
k-subsets. The first interesting case for existence is t = 2, λ = 1. In the language
of graph theory, a packing is equivalent to a set of edge-disjoint k-cliques in the
complete graph Kn on n vertices. There is also some geometric significance here:
blocks may be interpreted as lines which cover any two distinct points at most once.

The (first) Johnson bound [7, VI.40.7] says that the number of blocks in a 2-
(n, k, 1) packing satisfies

|B| ≤
⌊
n

k

⌊
n− 1

k − 1

⌋⌋
. (1.1)

The leave of a packing (X,B) is the graph of ‘uncovered pairs’ L = (X,E), where
{x, y} ∈ E if and only if there is no B ∈ B containing {x, y}. Often, isolated vertices
are discarded in leaves. For instance, the leave of a maximum 2-(5, 3, 1) packing
(consisting of two edge-disjoint triangles on 5 vertices) is isomorphic to the 4-cycle
C4.

The leave L of a 2-(n, k, 1) packing satisfies the congruence conditions

• |E(L)| ≡ (
n
2

)
(mod

(
k
2

)
) and

• degL(x) ≡ n− 1 (mod k − 1) for each x ∈ X .

Based on these, we note that equality in (1.1) is sometimes not possible. An improved
upper bound on the number of blocks is

|B| ≤ 1(
k
2

) [(n
2

)
− |E(L)|

]
, (1.2)

where L is a minimum size simple graph satisfying the above conditions. As an
example, the reader can easily check that for k = 3 and n ≡ 5 (mod 6), the right
side of (1.2) is one smaller than that in (1.1). Here, L = C4 is the (unique) minimum
leave.

Let us denote by MP(n, k) a 2-(n, k, 1) packing whose number of blocks achieves
equality in (1.2). Caro and Yuster, [4], identified candidate leaves and used a graph
decomposition result of Gustavsson, [16] to settle the existence of MP(n, k) for each
k and sufficiently large n. Chee et al., [5], obtained a slightly weaker result inde-
pendent of [16]. More recently, Barber et al. [1] and Keevash [17] have verified (and
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generalized) the needed result for MP(n, k) that all sufficiently large dense graphs
admit a Kk-decomposition provided the necessary divisibility conditions hold. So, if
any candidate leave Ln is chosen, say with bounded degree, its complement in Kn

can be decomposed for n > n0(k). Unfortunately, no upper bounds are known on
n0(k). And the randomized construction methods in [1, 17] give very large worst-case
guarantees.

For block size 3, a complete existence result is known. When n ≡ 1, 3 (mod 6),
an MP(n, 3) is just a Steiner triple system, and the leave is edgeless. When n ≡ 0, 2
(mod 6), an MP(n, 3) results from deleting one point (and all incident blocks) from a
Steiner triple system of order n+1. In this case, the leave is a perfect matching n

2
K2.

For each n ≡ 5 (mod 6), it is known that Kn decomposes into triangles and one 5-
clique; this is also known as a pairwise balanced design PBD(v, {3, 5∗}). Replacing
the block of size 5 by two edge-disjoint triangles produces an MP(n, 3) with leave
C4. Finally, deleting a point from the 4-cycle in such a construction settles the class
n ≡ 4 (mod 6), where the unique leave is K1,3 ∪ n−4

2
K2. A concise summary of the

above appears in [7, Table 40.22].

When k = 4, existence of MP(n, 4) is known except for a few small values of n;
see [7, Table 40.23]. However, in contrast to the case k = 3, there emerge different
possibilities for the leave in some of the congruence classes for n. Indeed, when
n ≡ 0, 3 (mod 12), the minimum leave can be any 2-regular spanning graph. Deleting
a point from a 2-(n+1, 4, 1) design produces MP(n, 4) in which L is n

3
K3. However,

relatively little is known about other possible leaves. A special case of the main result
of [9] realizes the leave n

4
C4 for each n ≡ 0 (mod 12), n ≥ 24. Colbourn and Ling [8]

constructed, for all n ≡ 0, 3 (mod 12), n ≥ 15, an MP(n, 4) with Hamiltonian leave
Cn; such packings are useful in statistics for sampling plans that exclude cyclically
adjacent pairs.

In this paper, we study the possible leaves in a packing MP(n, 4), with particular
emphasis on 2-regular leaves, that is, for the congruence classes n ≡ 0, 3 (mod 12).
The next section sets up some background for our constructions. As a first step, in
Section 3, we obtain explicit bounds on n for the existence of MP(n, 4) whose leaves
contain a mixture of small cycle lengths. Then, in Section 4, we adapt a construction
from [8] to merge cycles in the leave. Concerning other congruence classes, a new
leave for MP(31, 4) is found, leading to an explicit lower bound for existence of each
of two non-isomorphic leaves in the case n ≡ 7, 10 (mod 12). The classes n ≡ 6, 9
(mod 12) are more difficult, but we offer a few preliminary remarks. A (surprisingly
small) number of explicit packings are needed for our results; these are detailed in
an appendix.
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2 Background

2.1 Group divisible designs

Let v be a positive integer, and T be an integer partition of v. A group divisible
design of type T with block sizes in K, abbreviated GDD(T,K) or as a K-GDD of
type T , is a triple (V,Π,B) such that

• V is a set of v points;

• Π = {V1, . . . , Vu} is a partition of V into groups so that T = (|V1|, . . . , |Vu|);
• B ⊆ ∪k∈K

(
V
k

)
is a set of blocks meeting each group in at most one point; and

• any two points from different groups appear together in exactly one block.

Often in this context, exponential notation such as nu is used to abbreviate u
parts or ‘groups’ of size n. It is also convenient to drop the brackets for a single
block size and write k instead of {k}.

Lemma 2.1 (Brouwer, Schriver and Hanani, [2])There exists a 4-GDD of type
gu if and only if 3 | g(u−1) and 12 | g2u(u−1), where u ≥ 4 and (g, u) 	= (2, 4), (6, 4).

A GDD naturally induces a packing in which the group partition is interpreted
as a leave. For small group sizes, these are maximum packings. Taking g = 2 and
g = 3 in Lemma 2.1 gives the following MP(n, 4).

Corollary 2.2 (a) For n ≡ 2, 8 (mod 12), n ≥ 14, there exists an MP(n, 4) with
leave n

2
K2.

(b) For n ≡ 0, 3 (mod 12), there exists an MP(n, 4) whose leave is n
3
C3.

Later, we also require some results on 4-GDDs with all but one group of the same
size.

Lemma 2.3 (Ge and Ling, [14]) For u ≥ 4, there exists a 4-GDD of type 15ux1

if and only if u ≡ 0 (mod 4), x ≡ 0 (mod 3), and x ≤ 1
2
(15u − 18); or u ≡ 1

(mod 4), x ≡ 0 (mod 6), and x ≤ 1
2
(15u − 15); or u ≡ 3 (mod 4), x ≡ 3 (mod 6),

and x ≤ 1
2
(15u− 15).

Lemma 2.4 (Schuster, [20]) There exists a 4-GDD of type 24ux1 if and only if
u ≥ 4, x ≡ 0 (mod 3), and x ≤ 12(u− 1). There exists a 4-GDD of type 120ux1 if
and only if u ≥ 4, x ≡ 0 (mod 3), and x ≤ 60(u− 1).

Some additional results on 4-GDDs can be found in [11, 12, 22] and the handbook
survey [7, IV 4.1].
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2.2 The fundamental construction

We cite an important recursive construction for designs by R.M. Wilson. The main
idea is to produce a new GDD from a given one by replacing points with clusters
of points (or removing them), provided each block is replaced by an appropriate
ingredient.

Lemma 2.5 (Wilson’s Fundamental Construction, [23]) Suppose there exists
a GDD (V,Π,B), where Π = {V1, . . . , Vu}. Let ω : V → Z≥0, assigning nonnegative
weights to each point in such a way that for every B ∈ B there exists a K-GDD of
type [ω(x) : x ∈ B]. Then there exists a K-GDD of type[∑

x∈V1

ω(x), . . . ,
∑
x∈Vu

ω(x)

]
.

In our application of Lemma 2.5 to follow, we take K = {4} and use ingredients
as above.

2.3 Transversal designs

A transversal design TD(k, n) is a {k}-GDD of type nk. A TD(k, n) is equivalent to
k− 2 mutually orthogonal latin squares of order n, where two groups are reserved to
index the rows and columns of the squares. It follows that there exists a TD(k, q)
when q ≥ k − 1 is a prime power. From this and some further constructions, it was
shown in [6] that there exist TD(k, n) for all integers n ≥ n0(k).

A parallel class in a design is a collection of blocks which partition the points.
A transversal design TD(k, n) with a parallel class is equivalent to k − 2 mutually
orthogonal idempotent latin squares of order n. If there exists a TD(k + 1, n), then
there exists a TD(k, n) having a parallel class, and in fact a ‘resolvable’ such TD.
Later, we have occasion to use some specific bounds on existence of transversal
designs; we refer the reader to §III.3.6 in [7] for details.

If we delete points from one group of a transversal design TD(k, n), the result
is a {k − 1, k}-GDD of type nk−1x1. Note that this is a special case of Wilson’s
fundamental construction in which ω = 1 or 0.

2.4 Graph divisible designs

Suppose T is a list of (simple, undirected) graphs G1, G2, . . . , Gu on disjoint vertex
sets whose union is X. A graph divisible design of type T and block size k is an
edge-decomposition of the join G1 + · · ·+Gu into cliques Kk. In the case when each
Gi is edgeless Kgi, the result is a group divisible design of type [gi : i = 1, . . . , u]. For
this reason, similar notation (k-GDD of type T ) was adopted for this more general
case.
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Graph divisible designs were introduced in [10]. As an example of their utility, an
explicit construction for MP(n, 5) was shown in the difficult congruence class n ≡ 13
(mod 20).

Let Mr denote the 1-regular graph on 2r vertices. Graph divisible designs whose
‘groups’ are perfect matchings Mr of equal sizes were considered in [9]. The following
existence result was proved.

Theorem 2.6 (Dukes, Feng and Ling [9]) A 4-GDD of type Mu
r exists if and

only if u ≥ 4, r(u− 1) ≡ 1 (mod 3) and 2 | ru.

Taking r = 2 and observing that the complement of M2 (on four vertices) is C4,
one obtains packings MP(n, 4) whose leave is a disjoint union of 4-cycles.

Corollary 2.7 There exists an MP(n, 4) with leave n
4
C4 for each n ≡ 0 (mod 12),

n ≥ 24.

2.5 Double and holey GDDs

A double group divisible design with block sizes in K, or K-DGDD, is a quadruple
(V,Γ1,Γ2,B) where

• V is a set of v points;

• Γ1 is a partition of V into groups and Γ2 is a partition of V into holes ;

• B ⊆ ∪k∈K
(
V
k

)
is a set of blocks meeting each group and each hole in at most

one point; and

• any two points from different groups and different holes appear together in
exactly one block.

Of particular importance is the situation where any group and any hole intersect in
the same number, say a, of points, each group has the same size, say ag, and each
hole has the same size, say ah. This case is called a (uniform) holey group divisible
design, or K-HGDD; see [15]. To reflect the symmetry between groups and holes, we
use the notation ag×h for the type. In our applications to follow, K = {4} and a = 3.
The following existence theorem is a special case of Ge and Wei’s more general result
for 4-HGDDs, a few cases of which were completed in a later paper.

Lemma 2.8 ([3, 15]) There exists a 4-HGDD of type 3g×h if and only if g, h ≥ 4.

In certain cases a 4-DGDD with different group and hole sizes can be obtained
from Wilson’s fundamental construction. For this, we start with a TD(k, n) having a
parallel class of blocks, and give weight zero or three to points. Blocks of the parallel
class become holes, and other blocks are replaced with 4-GDDs of type 3k or 3k−1.
We apply this method later to produce templates for our constructions of packings.
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3 Short cycle lengths

To begin our analysis of possible 2-regular leaves in MP(n, 4), we consider various
mixtures of short cycle lengths. The 4-GDDs in Section 2 play a crucial role as
templates. We also need some small explicit packings. An important case n = 24
was settled computationally and detailed in a supplementary file at
https://www.math.uvic.ca/~dukes/24-4-1-packings.pdf.

Lemma 3.1 Any possible 2-regular graph on 24 vertices is the leave of some
MP(24, 4).

A few other specific small leaves are helpful; these packings can be found in the
appendix.

Lemma 3.2 There exist MP(n, 4) with the following leaves:

• n = 15: L = 3C5 and C3 ∪ 2C6;

• n = 27: L = 3C4 ∪ 3C5, C3 ∪ 4C6, 3C3 ∪ 3C6, 5C3 ∪ 2C6, and 7C3 ∪ C6;

• n = 36: L = C3 ∪ 2C4 ∪ 5C5, 2C3 ∪ 6C5, and 6C6;

• n = 39: L = C3 ∪ 9C4;

• n = 48: L = C3 ∪ 9C5.

We can now get started realizing more general leaves.

Proposition 3.3 For all n ≡ 0, 3 (mod 12), n ≥ 144, any 2-regular graph of order
n with cycle lengths in {3, 4} is the leave of some MP(n, 4).

Proof: Write n = 24u + x, where x ∈ X := {0, 3, 12, 39} and u ≥ 5. From
Lemma 2.4, there exists a 4-GDD of type 24ux1. Fill groups of size 24 with packings
having leaves 8C3, 4C3 ∪ 3C4, or 6C4 (where Lemma 3.1 is used). This completely
settles the case x = 0. The case x = 3 is similar, where we regard the last group
of the GDD as an additional 3-cycle in the leave. When x = 12, fill the last group
with a packing having leave 4C3; the leave n

4
C4 is obtained separately from Corol-

lary 2.7. When x = 39, fill the last group with a packing having leave 13C3 from
Corollary 2.2(b), or C3 ∪ 9C4 from Lemma 3.2, according to whether more 3-cycles
or 4-cycles are desired. �

Proposition 3.4 For all n ≡ 0, 3 (mod 12), n ≥ 132, any 2-regular graph of order
n with cycle lengths in {3, 5} is the leave of some MP(n, 4).

https://www.math.uvic.ca/~dukes/24-4-1-packings.pdf
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Proof: Write n = 15u + x, where x ∈ X := {0, 12, 24, 36, 48} and u ≡ 0 or
1 (mod 4), u ≥ 8. Under these conditions, Lemma 2.3 gives a 4-GDD of type
15ux1. Fill the groups of size 15 with packings having leaves 5C3 or 3C5, the latter
from Lemma 3.2. We may fill the group of size x with a packing having leave
x
3
C3 if a majority of 3-cycles is desired. To obtain leaves with mostly 5-cycles, it

remains to check the existence of packings for the orders in X having the minimum
possible number of 3-cycles. In this case, the desired leave is jC3 ∪ x−3j

5
C5, where

j ∈ {0, 1, 2, 3, 4}. In the case x = 0 there is nothing more to do. For x = 12,
we simply use a 4-GDD of type 34. When x = 24, we use a packing having leave
3C3∪3C5, using Lemma 3.1. When x = 36, we use a packing having leave 2C3∪6C5,
from Lemma 3.2. When x = 48, we use a packing having leave C3 ∪ 9C5, also from
Lemma 3.2. �

We next consider cycle lengths in {3, 4, 5}. For the following constructions, it is
helpful to abbreviate a leave of the form aC3 ∪ bC4 ∪ cC5 as an (a, b)-leave. Given
n, a, b, note that c is uniquely determined. We begin by realizing various (a, b)-leaves
with small a and b.

Lemma 3.5 There exists an MP(n, 4) with (a, b)-leave in each of the following cases:

a. n = 276 and (a, b) = (4, 1);

b. n = 288 and (a, b) ∈ {(0, 2), (2, 3), (3, 1), (4, 4)};
c. n = 300 and (a, b) ∈ {(1, 3), (2, 1), (3, 4), (4, 2)};
d. n = 312 and (a, b) ∈ {(1, 1), (2, 4), (3, 2)}.

Proof: (a) From a TD(6, 5), delete points from two groups to obtain a {4, 5, 6}-
GDD of type 542111. Give every point weight 12 and replace blocks with 4-GDDs
of types 124, 125, and 126. This produces a 4-GDD of type 604241121. Fill the first
four groups with packings having leave 12C5, which can be obtained from a 4-GDD
of type 154. Fill the group of size 24 with an MP(24, 4) having leave C4 ∪ 4C5, using
Lemma 3.1, and the group of size 12 with an MP(12, 4) having leave 4C3.

(b) Following a similar construction as in (a), we first obtain a 4-GDD of type 604242.
Fill the first four groups with packings having leave 12C5 and the two groups of size
24 with 3C3 ∪ 3C5, 2C3 ∪ 2C4 ∪ 2C5, or C4 ∪ 4C5, where again Lemma 3.1 is used.

(c) Similar to before, we first obtain a 4-GDD of type 604361241. Fill the first four
groups with leave 12C5, the group of size 36 with leave 2C3 ∪ 6C5 or C3 ∪ 2C4 ∪ 5C5,
and the group of size 24 with leave 2C3 ∪ 2C4 ∪ 2C5, C3 ∪ 4C4 ∪C5, or C4 ∪ 4C5. For
the existence of the small packings, refer to Lemmas 3.1 and 3.2.

(d) This time we fill groups of a 4-GDD of type 604481241, using 12C5 for the first
four groups, C3 ∪ 9C5 for the next, and the three cases just as in (c) for the last
group. �
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Lemma 3.6 For all n ≡ 0, 3 (mod 12), n ≥ 936, there exists an MP(n, 4) having
any possible (a, b)-leave in which a, b ≤ 4 and 3a+ 4b ≡ n (mod 5).

Proof: Write n = 15u+ x, where x is chosen as in Table 1, and u ≥ 44 with u ≡ 0
or ±1 (mod 4), the sign being positive or negative according to whether x is even
or odd, respectively. The lower bound on u implies, by Lemma 2.3, existence of a
4-GDD of type 15ux1 for any of the given values of x.

x 0 1 2 3 4 b
0 0 24 288 27 96
1 3 312 36 300 24
2 36 300 24 288 312
3 24 288 312 96 300
4 12 276 300 24 288
a

Table 1: Cases for small (a, b)

We claim that there is an MP(x, 4) with (a, b)-leave. The twelve large entries in the
table correspond with cases in Lemma 3.5. The two occurrences of x = 96 follow
from filling groups of a 4-GDD of type 244 using either C4 ∪ 4C5 or 3C3 ∪ 3C5 as
the leave. The remaining entries are handled by Lemmas 3.1 and 3.2. After filling
groups of size 15 with MP(15, 4) having leave 3C5 and the group of size x using an
MP(x, 4) with (a, b)-leave, we obtain an MP(n, 4) with (a, b)-leave. �

Theorem 3.7 For all n ≡ 0, 3 (mod 12), n ≥ 3216, any 2-regular graph of order n
with cycle lengths in {3, 4, 5} is the leave of some MP(n, 4).

Proof: Suppose we are given nonnegative integers a, b, c with 3a+4b+5c = n, and
we wish to construct an MP(n, 4) with leave aC3 ∪ bC4 ∪ cC5.

We first consider n = 120. Filling groups of a 4-GDD of type 158, via Lemma 2.1,
with packings having leave 3C5 or 5C3 results in an MP(120, 4) with (a, 0)-leave for
each a a multiple of 5. If we also fill groups of a 4-GDD of type 245 in all possible
ways using Lemma 3.1, we obtain (after some routine case checking) any possible
(a, b)-leave for MP(120, 4), with the possible exception of (a, b) equal to

(2, 1), (1, 3), (4, 2), (7, 1).

Call an ordered pair (a, b) of nonnegative integers with 3a + 4b ≡ 0 (mod 5) ‘good’
if not in this list. We remark that any good pair can be written as a sum of good
pairs (ai, bi) with 3ai + 4bi ≤ 120.

Now, write n = 120u+ x, where u ≥ 19 and 936 ≤ x ≤ 1047. By Lemma 2.4, there
exists a 4-GDD of type 120ux1. We proceed according to two cases.
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Case 1: 3a+4b > x+25. Fill the group of size x with an MP(x, 4) whose leave has
cycle lengths in {3, 4}, appealing to Proposition 3.3. This leaves, say, a′ 3-cycles and
b′ 4-cycles to allocate to the remaining groups in MP(120, 4). Since 3a′ + 4b′ > 25,
it follows that (a′, b′) is good, and we can get the rest of the needed leave as a
combination of the possible leaves for MP(120, 4).

Case 2: 3a + 4b ≤ x + 25. We then have 5c = n − 3a − 4b > 3x − (x + 25) > x,
so that there are enough 5-cycles to cover the group of size x. Let a0, b0 be the least
residues of a, b, respectively, (mod 5). Note that 3a0 + 4b0 ≡ n ≡ x (mod 5). It
follows by Lemma 3.6 that there exists an MP(x, 4) having (a0, b0)-leave. The pair
(a − a0, b − b0) is good, since each component is a multiple of 5. Hence we may
fill the groups of size 120 with MP(120, 4) so as to realize exactly a − a0 3-cycles
and b − b0 4-cycles. Taken together, we have constructed an MP(n, 4) with leave
aC3 ∪ bC4 ∪ cC5. �

Remark. If n = 120u, u ≥ 4, one can simply take x = 0 and apply the same
construction. Later, we use the existence of MP(960, 4) having various good (a, b)-
leaves.

We note that it is possible to get good bounds in certain situations with other
specific cycle lengths.

Example 3.8 By Lemma 3.1, an MP(24, 4) exists with leave 3C8. By filling a 4-
GDD of type 24u, we also obtain MP(n, 4) with leave n

8
C8 for all n ≡ 0 (mod 24),

n ≥ 96.

In the next section, we show how to obtain longer cycles from shorter ones in
leaves of MP(n, 4). To this end, we give a result that facilitates a cycle-merging
construction.

Proposition 3.9 For all n ≡ 0, 3 (mod 12), n ≥ 120, any 2-regular graph of order
n with cycle lengths in {3, 6} is the leave of some MP(n, 4).

Proof: Write n = 24u + x, where x ∈ X := {0, 3, 15, 36} and u ≥ 4. From
Lemma 2.4, there exists a 4-GDD of type 24ux1. Fill groups of size 24 with packings
having leaves 8C3, 6C3 ∪ C6, 4C3 ∪ 2C6, 2C3 ∪ 3C6 or 4C6, using Lemma 3.1. This
settles the cases x = 0, 3. For x = 15, we additionally fill the group of size 15 so
that the leave is either 5C3 or C3 ∪ 2C6, the latter from Lemma 3.2; note here that
3C3 ∪ C6, a leave which does not exist on 15 points, is not needed because of the
variety of leaves used on the groups of size 24. For x = 36, we may fill the group
of size 36 so that the leave is either 12C3 or 6C6 (Lemma 3.2), chosen according to
whether the desired leave has more cycles of length 3 or 6, respectively. �

4 Merging cycles

In [8, Lemma 3.2], a construction was given which has the effect of joining leave
cycles. Although its purpose was to produce Hamiltonian leaves Cn, we can easily
adapt the construction to merge shorter cycles in the leave.
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Suppose we have a 4-HGDD of type 3g×h. Consider a group G of size 3g and a
hole H of size 3h, and put G ∩H = {a, b, c}. If we fill G with an MP(3g, 4) in such
a way that C = (a, b, c, d1, . . . , dr, a) is a cycle in its leave, and we similarly fill H
with an MP(3h, 4) so that C ′ = (a, c, b, e1, . . . , es, a) is a cycle in its leave, then in
the resulting packing has the cycle

b, c, d1, . . . , dr, a, es, . . . , e1, b (4.1)

in its leave. The length is the sum of the lengths of C and C ′ minus 3. Note that the
relative ordering of points a, b, c in the input cycles C and C ′ is essential, but that
such orderings can be freely chosen with appropriate embeddings of the packings
into G and H , respectively. We also remark that the above merging can be applied
to several cycles. In a little more detail, if subsequently another group G∗ (or hole
H∗) is filled so as to have a cycle C∗ in its leave, then C∗ merges similarly with the
compound cycle (4.1) above if we ensure that C∗ runs through G∗ ∩H (or G ∩H∗)
but intersects in exactly one edge.

As a special case, if two groups (or two holes) of the HGDD are filled with cycles of
lengths l1 and l2 in their leaves, then, using a connecting 6-cycle in the other direction,
a cycle of length l1+l2 is obtained. An example is shown in Figure 1, where horizontal
‘dotted’ cycles of lengths 6 and 9 are merged using a vertical ‘dashed’ C6. Solid edges
on the right (left) are covered by blocks in the horizontal (vertical) packing.

...

...

· · ·

· · ·

Figure 1: Cycle merging illustration
Figure 2: A wiggly lattice path

The case of MP(n, 4) in which leave cycles are arbitrary multiples of three is a
particularly clean application of cycle merging.

Theorem 4.1 For all n ≡ 0, 3 (mod 12), n ≥ 5112, any 2-regular graph of order n
with cycle lengths in {3, 6, 9, . . .} is the leave of some MP(n, 4).

Proof: Write n = 3(8m+ r), where 8 | m and r ≡ 0, 1 (mod 4), 40 ≤ r ≤ 101. We
have m ≥ 208 > 2r.

We claim that there exists a path P in the integer lattice which
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• visits every vertex of {1, . . . , 8} × {1, . . . , m}, and also r extra vertices in the
ninth column,

• has at most two consecutive horizontal vertices, and

• uses vertical runs of only 2, 4, or 8 vertices.

An example of such a path for m = 16, r = 5 is shown in Figure 2. The example
illustrates how in general P can be built from 8× 8 tiles and ‘detours’ to the ninth
column. It is sufficient in general to have 8 | m and m > 2r, which hold for our
instance of the parameters.

Take a TD(9, m) possessing a parallel class, which exists for the stated values of m as
seen in Tables III.3.83 and III.3.87 of [7]. Delete all but r points from the last group.
Without loss of generality, we may assume the resulting 8m+ r points are naturally
labelled by the lattice points of P . Give every point weight three and replace all
blocks except for those in one parallel class C by 4-GDDs of type 38 or 39. The result
is a 4-DGDD with group sizes in {3m, 3r}, hole sizes in {24, 27}, and such that every
intersection between a group and a hole has size 0 or 3.

Consider a partition of n into summands which are multiples of three that we wish
to realize as cycle lengths in the leave. We begin by cutting up our path P into
a disjoint union Q of paths whose orders are one-third of the required summands.
Groups and holes of the DGDD are filled with MP(3m, 4), MP(3r, 4), MP(24, 4), and
MP(27, 4), where the cycle lengths in the leaves are chosen according to (thrice) the
component orders of the subgraph of Q induced by the corresponding row or column
of the grid. At each meeting of vertical and horizontal edges in Q, we apply a cycle
merge.

Note that the conditions on P ensure that only cycles of lengths in {3, 6} are needed
for the holes of size 24 or 27, and in the group of size 3r. The needed packings
MP(24, 4) and MP(27, 4) exist from Lemmas 3.1 and 3.2. The needed MP(3r, 4)
exists in view of Proposition 3.9 and our lower bound on r. Some groups of size 3m
in our construction may demand cycle lengths in {6, 12, 24}, but such MP(3m, 4) are
easily seen to exist by filling a 4-GDD of type 24m/8 with various MP(24, 4) from
Lemma 3.1. �

Remark. The construction above works for various values of n smaller than the
stated bound 5112. One important special case we use later is n = 960 = 3× 8× 40,
where m = 40 and r = 0. Here, we instead use a TD(8, m) with a parallel class, and
the lattice path takes no detours.

To obtain arbitrary 2-regular graphs as leaves in MP(n, 4), it is helpful to have
two lemmas that mix cycles of length 4, 5, and multiples of three.

Lemma 4.2 Let n ≡ 0, 3 (mod 12), n > 106. Suppose G = A ∪ bC4 ∪ cC5, where A
is a union of cycles of length divisible by 3 and |V (A)| ≤ 3000. Then G is the leave
of some MP(n, 4).
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Proof: Put a = 1
3
|V (A)|, so that 3a+ 4b+ 5c = n and a ≤ 1000.

We claim that n = 120u+ 123m for integers u and m satisfying m ≥ 2000, m ≡ 0, 1
(mod 4), and 123m ≤ 60(u− 1). To see that this is possible, let m ≡ n/3 (mod 40)
with 2000 ≤ m < 2040. Then, with u = 1

120
(n − 123m), we have 60(u − 1) =

1
2
(n− 123m)− 60 > 1

2
(106 − 123× 2040)− 60 > 123m. By Lemma 2.4, there exists

a 4-GDD of type 120u(123m)1.

Next, we claim that there exist nonnegative integers b0 and c0 satisfying 4b0 + 5c0 =
3(m−a), where b ≡ b0 (mod 5) and c ≡ c0 (mod 4). For this, observe that 3(m−a) =
n−120(m+u)−3a ≡ 4b+5c (mod 20) so that some multiple of 5 may be subtracted
from b and some multiple of 4 subtracted from c to get the desired b0, c0.

From Lemmas 2.3 and 3.2, we can take a 4-GDD of type 15831 and fill its groups of
size 15 to produce an MP(123, 4) with leave 24C5 ∪ C3. Similarly, from Lemmas 2.4
and 3.1, we can fill groups of a 4-GDD of type 24531 to obtain an MP(123, 4) with
leave 30C4 ∪ C3. And, as seen in the proof of Theorem 3.7, there exist MP(120, 4)
with any possible leave having cycle lengths in {4, 5}.
We begin our construction with a 4-HGDD of type 3m×41 (Lemma 2.8). Fill holes
of size 123 with MP(123, 4) having leave either 24C5 ∪ C3 or 30C4 ∪ C3, where in
the first a holes, the unique C3 is placed in the first group, and in the last m − a
holes the unique C3 occurs in the last group. Using Theorem 3.7, fill the groups with
MP(3m, 4) having the following leaves:

• in the first group, leave A ∪ (m− a)C3, where A is placed on the first a holes;

• in the last group, leave aC3 ∪ b0C4 ∪ c0C5, where aC3 is placed on the first a
holes;

• in all other groups, leave mC3, from a 4-GDD of type 3m.

The filling strategy is shown in Figure 3. It results in an MP(123m, 4) having leave
A∪b1C4∪c1C5, where b1 ≡ b (mod 5) and c1 ≡ c (mod 5). Either b1 = b0 if the leave
24C5 ∪C3 is used to fill holes, or c1 = c0 if the leave 30C4 ∪C3 is used. By choosing
this ingredient according to which of b or c is larger, it is possible to ensure that
both b1 ≤ b and c1 ≤ c. Finally, if we fill groups of a 4-GDD of type 120u(123m)1

with MP(120, 4) having cycle lengths in {4, 5} and the above MP(123m, 4), we may
obtain the leave A ∪ bC4 ∪ cC5, as desired. �

Lemma 4.3 Let n ≡ 0 (mod 3840), n > 106. Suppose G = A ∪ bC4 ∪ cC5, where
A is a union of cycles of length divisible by 3, |V (A)| ≥ 3000, and 4b + 5c ≡ 0
(mod 60). Then G is the leave of some MP(n, 4).

Proof: Put a = 1
3
|V (A)|, so that 3a+ 4b+ 5c = n and a ≥ 1000. Write n = 960m,

where 4 | m. We have m > 1000 from our assumed lower bound on n.

Suppose 4b + 5c = 960t + u, where 0 ≤ u ≤ 900 with 60 | u. Note that t =
�(n − 3a)/960 ≤ m − 4. Using that 60 | 4b + 5c, we can, using multiples of 60,
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A

b 0
C

4
∪
c 0
C

5

24C5 or 30C4

...

...

24C5 or 30C4

4-HGDD of type 3m×41

Figure 3: |V (A)| small

A

b1C4 ∪ c1C5
...

btC4 ∪ ctC5

At+1 ∪ bt+1C4 ∪ ct+1C5

At+2
...

Am

4-HGDD of type 3m×320

Figure 4: |V (A)| large

decompose b = b1 + · · ·+ bt + bt+1 and c = c1 + · · ·+ ct + ct+1, where 4bk +5ck = 960
for each k = 1, . . . , t, and 4bt+1 + 5ct+1 = u.

We now describe a decomposition of A.

Case 1: u = 0. We simply ‘cut up’ A at multiples of 960. In more detail, suppose
the cycle lengths in A are l1, . . . , lh with l1 + · · · + lh = 960(m − t). Consider the
partial sums s0 := 0, sj := l1 + · · · + lj for j = 1, . . . , h. Take the largest index j
with sj < 960. Put At+1 = Cl1 ∪ · · · ∪ Clj ∪ Cl′j+1

, where l′j+1 = 960− sj, and repeat

on the list lj − l′j, lj+1, . . . , lh to form At+2, continuing until the final list defines Am.

Case 2: u > 0. Put at+1 :=
1
3
(960− u) and let At+1 be the graph at+1C3. Now, set

aside some cycles of length 3 from A or reduce longer cycles in A by a multiple of
three, with no such cycle reduced by more than half of its original length, and with
the total reduction being 3at+1. In some more detail, if A = zC3 ∪ Cl1 ∪ · · · ∪ Clh,
we first reduce it to A′ = (z − at+1)C3 ∪ Cl1 ∪ · · · ∪ Clh if at+1 ≤ z, or otherwise
A′ = Cl′1 ∪ · · · ∪ Cl′h, where 3 | l′j and lj/2 ≤ l′j ≤ lj for each j, and l′1 + · · · + l′h =
960(m− t− 1). Then, follow Case 1 to cut up as needed the resulting cycles so that
the pieces At+2, . . . , Am each have order 960.

Fill the holes of a 4-HGDD of type 3m×320 with MP(960, 4), using the remarks after
each of Theorems 3.7 and 4.1, having the following leaves:

• the kth hole, k = 1, . . . , t, gets leave bkC4 ∪ ckC5;

• the next hole gets leave At+1∪ bt+1C4∪ ct+1C5, noting that (at+1, bt+1) is a good
pair;

• the remaining holes get leaves At+2, . . . , Am.

An illustration is shown in Figure 4.
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From the lower bound on a, there are at least two holes in the latter category. To com-
plete the construction, we call upon Proposition 3.9 and fill groups with MP(3m, 4)
having cycle lengths in {3, 6}. It remains to justify that A can be reconstructed from
At+1, . . . , Am by merging cycles from different holes in pairs. If it was not necessary
to reduce any cycles (Case 1 or the situation at+1 ≤ z in Case 2) then the only
merging needed is where cycles were cut up. That is, A′ can be formed by linking
the last m− t− 1 holes along a Hamilton path in the grid, with merging in (say) the
first and last groups as needed. If some cycles were reduced, say from length lj to
l′j , we arrange the C3s in the (t+ 1)st hole so that 1

3
(lj − l′j) of them fall into groups

which are traversed by Cl′j . The condition that cycles are reduced by no more than
half of their lengths, and the ability to permute points within each group facilitate
this alignment. Since the At+2, . . . , Am occupy at least two holes, it is possible to
align each C3 in At+1 with a reduced cycle in one of these later holes for merging.
(This may be necessary, for instance, when there is demand for a large number of
cycles of length 9.) As before, merging may be needed in the first and last groups,
and we can choose to avoid placing At+1 in those groups since 960− 3at+1 ≥ 60. �

Remark. This statement was given so as to roughly match Lemma 4.2 for later use,
but in fact much better bounds on n and slightly better bounds on A are possible in
Lemma 4.3 with the same methods.

We pause to mention a topic in graph theory loosely connected with our cycle
merging methods. Given a graph G and a spanning sub-forest F of G, let λ(F )
denote the multiset of component orders of F . The set of possible λ(F ) as F varies is
connected with the ‘forest signature table’ of G, [13, Section 2.1] as well as Stanley’s
‘chromatic symmetric function’ of G, [21, Theorem 2.5]. For our construction of
packings with arbitrary cycle lengths divisible by three, we have effectively used
that grids or certain sub-graphs of grids have the property that any possible integer
partition is realized by λ(F ) for some sub-forest F . Hamilton paths (with some
convenient bending conditions) have been enough for our purposes, except that some
caterpillars are used to link C3s with reduced cycles in Case 2 of Lemma 4.3.

Cycle merging is slightly more delicate when lengths are not multiples of three.
In the construction to follow, we make use of alignments of cycles of lengths 4 and 5,
two or three at a time, on a small number of bundles of three vertices. It is possible
to give each cycle two edges internal to some bundle; see Figure 5. If we identify
bundles with group/hole intersections in an HGDD, this means that any such cycle
can be merged with cycles in other groups. This is used in the proof of the following
result: a longer cycle of length 1 (mod 3) arises from merging some such C4 with a
C3t, and similarly for length 2 (mod 3) using C5 and C3t.

Theorem 4.4 For all n ≡ 0, 3 (mod 12), n > 107, the complement of any 2-regular
graph of order n admits an edge-decomposition into K4s. That is, any such graph is
the leave of some MP(n, 4).

Proof: Suppose we are given a list of integers l1, . . . , la ≡ 0 (mod 3), l′1, . . . , l
′
b ≡ 1
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Figure 5: Alignment of small clusters of cycles with lengths in {4, 5}

(mod 3), and l′′1 , . . . , l
′′
c ≡ 2 (mod 3) to be realized as cycle lengths of the leave of an

MP(n, 4).

For each length l′i > 4, put p′i = l′i − 4. Similarly, for each l′′j > 5, put p′′j = l′′j − 5.
We have p′i ≡ p′′j ≡ 0 (mod 3) for each i, j.

The outline of our approach is to fill a DGDD so that its groups contain the leave
bC4 ∪ cC5 together with some residual cycles of length divisible by three; then, we
reconstruct the desired lengths lh, l

′
i, l

′′
j by merging along holes.

Write n = 3(8m+ r), where m > r > 106/3 and 1280 | m. Take a transversal design
TD(9, m) with a parallel class and truncate one group to have size r. As in the proof
of Theorem 4.1, we construct a 4-DGDD on n points by giving weight three to points
of this design. Recall that there are eight groups of size 3m, one group of size 3r, r
holes of size 27, and m− r holes of size 24.

If 4b + 5c = n, then we are done by Theorem 3.7. So, assume in what follows that
4b+ 5c < n. We fill the DGDD according to two main cases.

Case 1: 4b + 5c ≥ 3r − 3000. Choose integers b0, c0 satisfying b ≡ b0 (mod 15),
c ≡ c0 (mod 12), 0 ≤ b0 ≤ b, 0 ≤ c0 ≤ c, 3r − 3000 ≤ 4b0 + 5c0 ≤ 3r, and
4(b− b0) + 5(c− c0) < 24m. Write 4(b− b0) + 5(c− c0) = 3mt+ u, where 0 ≤ t ≤ 7
and 0 ≤ u < 3m. Note that since the left side is divisible by 60, we also have 60 | u.
Now, using multiples of 60 (as 4× 15 or 5× 12), we can write

4(b− b0) + 5(c− c0) =

t+1∑
k=1

4bk + 5ck,

where 4bk + 5ck = 3m for each k = 1, . . . , t, and 4bt+1 + 5ct+1 = u.

Next, we describe a choice of graphs At+1, . . . , A8, A0 which are disjoint unions of
cycles of length divisible by three. The graph At+1 has 3m − u vertices, A0 has
3r− 4b0 − 5c0 vertices, and all others (if any) have 3m vertices. The specific lengths
of cycles are lh, p

′
i, p

′′
j , except that it may be necessary to make 8− t cuts to certain

lengths in this list so that each graph has the correct order.

We fill groups of the DGDD as follows:

• the kth group, k = 1, . . . , t, gets MP(3m, 4) having leave bkC4 ∪ ckC5, using
Theorem 3.7;

• the next group gets MP(3m, 4) with leave At+1 ∪ bt+1C4 ∪ ct+1C5, using
Lemma 4.2 or 4.3;
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• the next groups up to the 8th (if any) get MP(3m, 4) having leaves At+2, . . . A8,
using Theorem 4.1;

• the last group is gets MP(3r, 4) having leave A0∪b0C4∪c0C5, using Lemma 4.2.

Holes of the DGDD are filled with MP(24, 4) or MP(27, 4) whose leaves consist of
cycles of length 3 or 6, spanning either one or two groups, respectively. We note that
the leave in each group can be placed onto the vertices of the DGDD according to
any permutation. Using this, we match each cycle of length p′i with some C4 from
a different group. Choose a hole H traversed by the cycle Cp′i and demand that its
matched C4 uses two edges in the same hole. In this way, a C6 inside H spanning the
two relevant groups facilitates a merge of the cycles and results in a cycle of length
p′i + 4 = l′i. Similarly, we match leave cycles Cp′′j with C5 in a different group, and

set these up for merging to produce a cycle of length p′′j + 5 = l′′j .

Case 2: 4b + 5c < 3r − 3000. Fill the last group with MP(3r, 4) having leave
a0C3 ∪ bC4 ∪ cC5, where a0 := r − 1

3
(4b + 5c), which exists by Theorem 3.7. Now,

similar to the proof of Lemma 4.2, we remove occurrences of 3 from the list l1, . . . , lh
or reduce each length in lh, p

′
i, p

′′
j by a nonnegative multiple of three up to half of

its length so that the total reduction is exactly 3a0. The 2-regular graph A′ with
these reduced cycle lengths has exactly n − 3a0 − 4b − 5c = 24m vertices and all
cycle lengths a multiple of three. We may realize a leave A′ in the first 8 groups of
the DGDD, by cutting into multiples of 3m and merging (if needed) using one or
more C6 in MP(24, 4) in (say) the first and last holes. Similar to Case 1 above, the
required lengths can now be reconstructed by additional merging using C6 which run
through the last group. �

We give an example to illustrate the method further.

Example 4.5 Consider n = 14 × 106 + 7 ≡ 3 (mod 12), and suppose the leave
C7 ∪ 106C14 is desired. We can take m = 519680, r = 509229 for our DGDD. We
also have b = 1, c = 106, leading us to case 1 of the proof. With the choice b0 = 1,
c0 = 305500, we have 4(b − b0) + 5(c − c0) = 3mt + u for t = 2 and u = 354420.
The first two groups are filled so as to have all C5 components in the leave, and the
third group has c3 = u/5 = 70884 C5. The list of residual cycle lengths divisible
by three is 3, 9, . . . , 9. The leave in the rest of the third group is 2C3 ∪ 133846C9,
where one C3 is saved for merging with C4 and the other has resulted from cutting a
C9. This latter C3 can be merged with a leftover C6 in the fourth group, which gets
leave C6 ∪ 173226C9. Groups 5, 6, 7, 8 are filled similarly with the cutting resulting
in one C6 in groups 5, 7, and 8, and two C3 in group 6. The C6 in group 8 is merged
into the ninth group, which gets leave C4∪305500C5∪C3∪20C9. With considerable
choice, it is possible to match each C5 with a C9 for merging.

We remark that our lower bound of 107 in Theorem 4.4 is very crude. Im-
provements should be possible with some additional work, perhaps based on a more
intricate strategy for merging cycles. Here is another example which shows that the
proof method can apply in much smaller cases.
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Example 4.6 Let n = 48048, and suppose the leave C16015∪C16016∪C16017 is desired.
Take m = 1800, r = 1616 for the DGDD. In this case, 4b+5c = 9, and we proceed as
in case 2 of the proof. Fill the ninth group so as to have leave 1613C3∪C4∪C5, using
Theorem 3.7. We reduce the first two desired cycle lengths by 4 and 5, respectively,
and reduce 16017 (a multiple of three) by 3 × 1613 = 4839. We then realize the
residual lengths 16011, 16011, 11178, which total 24m, in the first 8 groups, using
Theorem 4.1, by cutting them up as C5400, C5400,C5211∪C189, C5400, C5400, C5022∪C378,
C5400, C5400 and re-joining them using the first and last holes. The cycles in the ninth
group are merged with the residual lengths so as to produce the desired leave. Note
that the cycle of length 16017 is routed through groups 6, 7, and 8, and additionally
takes 1613 detours of length three into the ninth group.

We also note that a variety of specific leaves can be obtained with significantly
better bounds on n. Here is one such example result which makes use of Lemma 3.1
and a few cycle merges.

Proposition 4.7 For all n ≡ 0, 3 (mod 12), n ≥ 7695 and any integer l with 3 ≤
l ≤ n/2, the graph Cl ∪ Cn−l is the leave of some MP(n, 4).

Proof: We first show that the result holds for 24 | n, n ≥ 960. For this case, put
n = 24m and write l = l1+l2+· · ·+lm with li ∈ {0, 3, 4, . . . , 12} for each i = 1, . . . , m,
where furthermore at most one li belongs to {3, 4, 5}. Fill a 4-HGDD of type 3m×8 so
that group i receives an MP(24, 4) having leave Cli ∪C24−li. (When li = 0, this is to
be interpreted as C24.) The holes are to be filled with MP(3m, 4) whose leaves have
cycle lengths in {3, 6}, using Proposition 3.9. Cycles of length six are used to join
together the cycles Cli and (separately) the complementary cycles C24−li . Note that,
by the condition that at most one li belongs to {3, 4, 5}, it is possible to merge cycles
Cli along an alternating sequence of two holes, so that merging cycles of length six
suffice.

For the general case, write n = 3(8m + r) where 8 | m, m ≥ 320, and r ≡ 0, 1
(mod 4), 5 ≤ r ≤ 68. Write l = l1 + l2 + · · · + l8 with li ∈ {0, 3, 4, . . . , 2m}.
Construct as in the proof of Theorem 4.1 a 4-DGDD with 8 groups of size 3m, one
group of size 3r, r holes of size 27, and m − r holes of size 24. Fill groups of size
3m with MP(3m, 4) having leave Cli ∪ C3m−li ; these packings exist by the first part
of the proof. The group of size 3r can be filled with an MP(3r, 4) having leave C3r;
these exist by the main result of [8] on Hamiltonian 2-regular leaves. Holes are to
be filled with MP(24, 4) and MP(27, 4) having leaves with cycle lengths in {3, 6} as
needed to join together the cycles Cli across groups to form Cl and (separately) the
cycles C3m−li along with C3r to form Cn−l. �
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5 Other congruence classes

5.1 Nonempty bounded leaves

Suppose n ≡ 7, 10 (mod 12). Here, the leave of an MP(n, 4) is bounded (non-
spanning) since n ≡ 1 (mod 3) and its number of edges is 3 (mod 6). Since we are
assuming λ = 1, the leave is a simple graph and so at least nine edges is necessary.
The unique MP(7, 4) has two blocks intersecting in one point. Its leave is isomorphic
to K3,3. For larger orders, use a 4-GDD of type 1n−771 (a design with a hole), which
exists, [19], for all n ≡ 7, 10 (mod 12), n ≥ 22. Filling the group of size 7 with an
MP(7, 4) settles the existence problem for MP(n, 4) for these congruence classes.

There is exactly one other graph up to isomorphism with 9 edges and all degrees
a multiple of three: this is the ‘triangular prism’ K2�K3. In the appendix, we
present an MP(31, 4) with this leave. Then, proceeding as above, we have a bound
for existence of packings with each of the two possible leaves.

Proposition 5.1 For all n ≡ 7, 10 (mod 12), n ≥ 94, there exists an MP(n, 4) with
each of the possible leaves K3,3 and K2�K3.

Proof: It remains to consider the leave K2�K3. Take a 4-GDD of type 1n−31311,
which exists from [19] for all n ≥ 3 × 31 + 1 = 94. Fill the group of size 31 with
the example packing shown in the appendix. The resulting set of blocks gives an
MP(n, 4) with leave K2�K3. �

5.2 Irregular spanning leaves

We now briefly consider n ≡ 6, 9 (mod 12). In this case, similar to our earlier work,
every vertex in the leave has degree 2 (mod 3). However, the global divisibility
condition forces |E(L)| ≡ n + 3 (mod 6). When coupled with the degree condition,
it follows that the target leaves for MP(n, 4), n ≡ 6, 9 (mod 12), have two possible
degree sequences:

• 8, 2, 2, . . . , 2; or

• 5, 5, 2, 2, . . . , 2.

The former degree sequence is realized by four cycles identified at a common vertex
(and vertex-disjoint unions with 2-regular graphs). For the latter sequence, the two
odd degree vertices must belong to the same connected component, by parity. There
are one, three, or five internally disjoint paths joining these vertices. To summarize
the cases, our leave has one component which is a subdivision of one of the four
structures shown in Figure 6, and (optionally) cycles as other components.

The MP(6, 4) consisting of a single block has leave K6 \ K4, which consists of
five internally disjoint paths joining two vertices (those not in the block). The path
lengths are as small as possible for simple graphs, namely 1,2,2,2,2.
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Figure 6: Possible connected leave types for MP(n, 4), n ≡ 6, 9 (mod 12)

Filling the groups of a 4-GDD of type 3u61, [7, IV 4.1], one obtains for n ≡
6, 9 (mod 12), n 	= 9, 18, an MP(n, 4) having leave uC3 ∪ (K6 \ K4). Somewhat
more generally, a variety of non-isomorphic leaves with one component equal to
K6 \K4 can be obtained by filling GDDs having one group of size 6 and other group
sizes 0 or 3 (mod 12). For this, our earlier constructions produce the remaining 2-
regular subgraph of the leave. Moreover, it seems that our cycle merging technique
of Section 4 could be adapted to create longer paths and cycles in the non-regular
component. We leave it as an open problem to obtain some explicit bound for the
existence of all possible leaves in this more challenging case.

5.3 Summary

We conclude with a summary of the status of this problem in Table 2, which builds
on [7, Table 40.23]. A bold value indicates that the bound is best possible; G denotes
a subdivision of one of the graphs in Figure 6.

n ≡ possible leaves existence for n ≥
1, 4 (mod 12) empty 1
7, 10 (mod 12) K3,3 or K2�K3 94
2, 8 (mod 12) n

2
K2 14

5, 11 (mod 12) K1,4 ∪ n−5
2
K2 23

0, 3 (mod 12) 2-regular 107

6, 9 (mod 12) 2-regular ∪ G ?

Table 2: Bounds for MP(n, 4) with arbitrary leaves

Appendix: Small examples

We give the explicit packings MP(n, 4) defined on {0, 1, . . . , n−1} for small n appear-
ing in Lemma 3.2 and for Proposition 5.1. When n ≡ 0, 3 (mod 12), we naturally
label the cycles in the leave, starting at 0. For instance, an MP(15, 4) with leave
C3 ∪ 2C6 is presented with cycles (0, 1, 2), (3, 4, 5, 6, 7, 8) and (9, 10, 11, 12, 13, 14) as
its leave. Only ‘base blocks’ are listed below. The set of all blocks is obtained by
developing these base blocks under the action of some group G = 〈α〉, where α ∈ Sn

is presented as a product of disjoint (permutation) cycles. Base blocks marked with
a ∗ generate short orbits.
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n = 15 with leaves 3C5 and C3 ∪ 2C6:

3C5: α = (0, 1, 2, 3, 4)(5, 6, 7, 8, 9)(10, 11, 12, 13, 14).

{0, 2, 5, 10}, {0, 6, 9, 12}, {0, 7, 11, 14}.

C3 ∪ 2C6: α = (0, 1, 2)(3, 5, 7)(4, 6, 8)(9, 11, 13)(10, 12, 14).

{0, 3, 5, 9}, {3, 6, 11, 14}, {0, 7, 10, 14}, {0, 6, 8, 12}, {0, 4, 11, 13}.

n = 27 with leaves C3 ∪ 4C6, 3C3 ∪ 3C6, 5C3 ∪ 2C6, 7C3 ∪ C6, and 3C4 ∪ 3C5:

C3 ∪ 4C6: α = (0, 1, 2)(3, 9, 15)(4, 10, 16)(5, 11, 17)(6, 12, 18)(7, 13, 19)
(8, 14, 20)(21, 23, 25)(22, 24, 26).

{0, 3, 5, 9}, {3, 6, 11, 13}, {0, 4, 13, 15}, {3, 7, 12, 21}, {3, 20, 23, 26},
{3, 18, 22, 24}, {3, 14, 16, 25}, {0, 7, 19, 26}, {4, 7, 10, 24}, {5, 8, 13, 20},
{5, 19, 21, 23}, {4, 11, 17, 26}, {0, 11, 18, 21}, {0, 8, 17, 24}, {0, 6, 14, 22},
{0, 12, 16, 23}, {4, 6, 8, 12}, {0, 10, 20, 25}.

3C3 ∪ 3C6: α = (0, 1, 2)(3, 4, 5)(6, 7, 8)(9, 15, 21)(10, 16, 22)(11, 17, 23)
(12, 18, 24)(13, 19, 25)(14, 20, 26).

{0, 3, 9, 15}, {0, 6, 21, 24}, {3, 8, 12, 21}, {6, 13, 15, 22}, {9, 13, 17, 23},
{9, 19, 24, 26}, {9, 11, 20, 22}, {0, 12, 18, 23}, {6, 12, 16, 19}, {3, 14, 18, 26},
{3, 16, 22, 24}, {0, 10, 20, 25}, {0, 8, 22, 26}, {0, 4, 11, 16}, {0, 5, 13, 19},
{0, 7, 14, 17}, {3, 6, 17, 20}, {3, 7, 11, 13}.

5C3 ∪ 2C6: α = (0, 1, 2)(3, 6, 9)(4, 7, 10)(5, 8, 11)(12, 13, 14)(15, 17, 19)(16, 18, 20)
(21, 23, 25)(22, 24, 26).

{0, 3, 6, 10}, {0, 5, 9, 14}, {3, 13, 15, 17}, {3, 16, 19, 21}, {3, 11, 23, 26},
{3, 14, 18, 25}, {3, 20, 22, 24}, {4, 8, 13, 22}, {0, 11, 19, 22}, {5, 8, 19, 23},
{0, 8, 16, 18}, {4, 11, 12, 16}, {0, 13, 20, 26}, {4, 7, 20, 23}, {4, 14, 15, 26},
{0, 4, 17, 24}, {0, 7, 15, 21}, {0, 12, 23, 25}.

7C3 ∪ C6: α = (0, 1, 2)(3, 6, 9)(4, 7, 10)(5, 8, 11)(12, 15, 18)(13, 16, 19)(14, 17, 20)
(21, 23, 25)(22, 24, 26).

{0, 3, 6, 10}, {0, 5, 9, 18}, {3, 13, 15, 19}, {3, 11, 14, 21}, {3, 16, 20, 23},
{3, 18, 22, 25}, {3, 17, 24, 26}, {0, 11, 17, 20}, {4, 12, 15, 20}, {4, 7, 17, 25},
{0, 14, 16, 26}, {0, 7, 12, 22}, {5, 8, 15, 22}, {0, 15, 21, 25}, {0, 4, 19, 24},
{0, 8, 13, 23}, {4, 8, 16, 21}, {4, 11, 13, 22}.

3C4 ∪ 3C5: α = (0, 4, 8)(1, 5, 9)(2, 6, 10)(3, 7, 11)(12, 17, 22)(13, 18, 23)(14, 19, 24)
(15, 20, 25)(16, 21, 26).
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{0, 2, 4, 9}, {2, 6, 11, 12}, {0, 6, 14, 16}, {2, 14, 17, 20}, {2, 13, 15, 19},
{2, 16, 21, 23}, {1, 10, 13, 20}, {0, 17, 19, 24}, {0, 7, 13, 18}, {0, 20, 23, 26},
{0, 12, 21, 25}, {0, 11, 15, 22}, {1, 3, 15, 25}, {1, 7, 19, 23}, {1, 12, 18, 22},
{1, 11, 16, 17}, {3, 7, 16, 24}, {1, 5, 14, 26}.

n = 36 with leaves C3 ∪ 2C4 ∪ 5C5, 2C3 ∪ 6C5, and 6C6:

C3 ∪ 2C4 ∪ 5C5: α = (1, 2)(3, 5)(4, 6)(7, 9)(8, 10)(11, 16)(12, 17)(13, 18)(14, 19)
(15, 20)(22, 25)(23, 24) (27, 30)(28, 29)(32, 35)(33, 34).

{0, 21, 26, 31}∗ , {3, 5, 11, 16}∗ , {4, 6, 13, 18}∗ , {7, 9, 14, 19}∗ ,
{8, 10, 15, 20}∗ , {12, 17, 22, 25}∗ , {27, 30, 32, 35}∗ , {0, 3, 7, 12},
{0, 4, 11, 20}, {0, 8, 13, 27}, {0, 14, 22, 32}, {0, 23, 28, 33},
{1, 4, 7, 25}, {4, 8, 16, 22}, {1, 3, 10, 22}, {3, 9, 25, 30},
{11, 13, 22, 29}, {13, 15, 25, 32}, {14, 23, 25, 26}, {15, 22, 30, 33},
{22, 28, 31, 34}, {4, 14, 21, 30}, {4, 17, 33, 35}, {4, 10, 23, 34},
{4, 9, 24, 32}, {4, 12, 27, 29}, {4, 15, 19, 31}, {1, 6, 26, 29},
{7, 11, 28, 32}, {7, 16, 26, 34}, {7, 18, 21, 33}, {7, 15, 17, 29},
{7, 20, 24, 30}, {1, 9, 18, 31}, {1, 13, 20, 33}, {1, 5, 30, 34},
{11, 18, 24, 27}, {1, 14, 17, 27}, {8, 11, 30, 31}, {3, 8, 14, 34},
{11, 17, 19, 34}, {3, 13, 19, 28}, {1, 16, 19, 32}, {1, 11, 21, 23},
{8, 19, 23, 29}, {8, 12, 18, 26}, {1, 8, 28, 35}, {1, 12, 15, 24},
{3, 17, 24, 31}, {8, 17, 21, 32}, {3, 15, 26, 35}, {3, 18, 23, 32},
{3, 20, 21, 29}.

2C3 ∪ 6C5: α = (0, 1, 2)(3, 4, 5)(6, 11, 16)(7, 12, 17)(8, 13, 18)(9, 14, 19)(10, 15, 20)
(21, 26, 31)(22, 27, 32) (23, 28, 33)(24, 29, 34)(25, 30, 35).

{0, 3, 6, 11}, {0, 8, 10, 16}, {3, 7, 13, 16}, {6, 8, 14, 19}, {6, 9, 17, 21},
{6, 20, 23, 25}, {6, 22, 24, 28}, {6, 30, 31, 33}, {6, 27, 32, 35}, {6, 26, 29, 34},
{0, 4, 13, 30}, {3, 18, 21, 30}, {0, 18, 25, 34}, {9, 15, 25, 30}, {3, 17, 28, 35},
{0, 12, 22, 35}, {7, 9, 24, 35}, {7, 18, 28, 31}, {8, 13, 22, 34}, {8, 15, 23, 28},
{8, 20, 27, 31}, {0, 7, 19, 23}, {0, 5, 28, 32}, {0, 14, 21, 27}, {3, 9, 23, 29},
{3, 14, 24, 32}, {0, 9, 26, 33}, {3, 15, 19, 27}, {3, 10, 26, 31}, {3, 12, 20, 34},
{7, 10, 12, 27}, {0, 15, 20, 24}, {0, 17, 29, 31}.

6C6: α = (0, 1, 2, 3, 4, 5)(6, 7, 8, 9, 10, 11)(12, 13, 14, 15, 16, 17)
(18, 19, 20, 21, 22, 23)(24, 25, 26, 27, 28, 29) (30, 31, 32, 33, 34, 35).

{0, 3, 6, 9}∗ , {12, 15, 18, 21}∗ , {24, 27, 30, 33}∗ , {0, 2, 7, 12}, {0, 8, 20, 24},
{0, 13, 15, 26}, {0, 21, 28, 30}, {0, 23, 25, 29}, {0, 17, 19, 33}, {0, 18, 22, 34},
{0, 10, 27, 32}, {0, 14, 31, 35}, {6, 14, 26, 33}, {6, 16, 21, 24}, {6, 12, 22, 27},
{6, 8, 19, 32}, {6, 13, 20, 31}, {6, 15, 25, 35}.

n = 39 with leave C3 ∪ 9C4: α = (0, 1, 2)(3, 7, 11, 15, 19, 23, 27, 31, 35)(4, 8, 12, 16, 20,

24, 28, 32, 36)(5, 9, 13, 17, 21, 25, 29, 33, 37)(6, 10, 14, 18, 22, 26, 30, 34, 38).

{0, 3, 15, 27}∗ , {0, 12, 24, 36}∗ , {0, 14, 26, 38}∗ , {0, 4, 7, 11}, {0, 5, 8, 21},
{0, 6, 10, 13}, {3, 8, 10, 28}, {4, 12, 21, 34}, {4, 14, 25, 30}, {3, 5, 12, 16},
{3, 24, 29, 38}, {3, 18, 20, 26}, {3, 9, 11, 30}, {3, 14, 19, 33}, {3, 13, 21, 25}.
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n = 48 with leave C3 ∪ 9C5: α = (0, 1, 2)(3, 8, 13, 4, 9, 14, 5, 10, 15, 6, 11, 16, 7, 12, 17)

(18, 23, 28, 19, 24, 29, 20, 25, 30, 21, 26, 31, 22, 27, 32) (33, 38, 43, 34, 39, 44, 35, 40, 45, 36,

41, 46, 37, 42, 47).

{0, 3, 8, 14}, {0, 18, 23, 29}, {0, 33, 38, 44}, {3, 5, 18, 33}, {3, 10, 32, 34},
{3, 12, 23, 37}, {3, 30, 35, 42}, {3, 29, 31, 43}, {3, 20, 27, 45}, {3, 28, 38, 41}
{3, 24, 40, 44}, {3, 22, 26, 39}.

n = 31 with leave K3�K2 consisting of edges {0, 1}, {0, 2}, {1, 2}, {3, 4}, {3, 5},
{4, 5}, {0, 3}, {1, 4}, {2, 5}:
α = (0, 1, 2)(3, 4, 5)(7, 8, 9)(10, 11, 12)(13, 14, 15)(16, 17, 18)(19, 20, 21)(22, 23, 24)
(25, 26, 27)(28, 29, 30).

{6, 10, 11, 12}∗ , {6, 13, 14, 15}∗ , {6, 16, 17, 18}∗ , {6, 19, 20, 21}∗ , {6, 22, 23, 24}∗ ,
{6, 25, 26, 27}∗ , {6, 28, 29, 30}∗ , {0, 4, 6, 7}, {0, 5, 9, 10}, {0, 12, 13, 16},
{0, 8, 15, 19}, {0, 14, 18, 22}, {0, 20, 24, 25}, {0, 17, 26, 28}, {0, 21, 27, 30},
{0, 11, 23, 29}, {7, 12, 15, 26}, {10, 15, 20, 30}, {3, 14, 23, 30}, {3, 13, 19, 26},
{3, 15, 17, 29}, {7, 13, 23, 25}, {3, 12, 27, 28}, {10, 18, 23, 26}, {3, 8, 18, 25},
{3, 16, 20, 22}, {3, 10, 21, 24}, {7, 8, 22, 30}, {7, 10, 16, 19}, {7, 18, 20, 28}.
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