A note on uniformly resolvable $\{P_4, C_6\}$ -designs

SALVATORE MILICI

Dipartimento di Matematica e Informatica Università di Catania Italy milici@dmi.unict.it

Dedicated to my friends Prof. Carmelo Mammana and Prof. Biagio Micale, recently passed away

Abstract

Given a collection of graphs \mathcal{H} , a uniformly resolvable \mathcal{H} -design of order v is a decomposition of the edges of K_v into isomorphic copies of graphs from \mathcal{H} (also called *blocks*) in such a way that all blocks in a given parallel class are isomorphic to the same graph from \mathcal{H} . We consider the case $\mathcal{H} = \{P_4, C_6\}$, and prove that the necessary conditions on the existence of such designs are also sufficient.

1 Introduction

Given a collection of graphs \mathcal{H} , an \mathcal{H} -design of order v (also called an \mathcal{H} -decomposition of K_v) is a decomposition of the edges of K_v into isomorphic copies of graphs from \mathcal{H} ; the copies of $H \in \mathcal{H}$ in the decomposition are called *blocks*. An \mathcal{H} -design is called *resolvable* if it is possible to partition the blocks into *classes* \mathcal{P}_i such that every point of K_v appears exactly once in some block of each \mathcal{P}_i .

A resolvable \mathcal{H} -decomposition of K_v is sometimes also referred to as an \mathcal{H} factorization of K_v , and a class can be called an \mathcal{H} -factor of K_v . A resolvable \mathcal{H} -design is called *uniform* if every block of the class is isomorphic to the same graph from \mathcal{H} . Uniformly resolvable decompositions of K_v have also been studied in [4, 7–14, 16]. In what follows, we will denote by (a_1, a_2, \ldots, a_n) the *n*-cycle on $\{a_1, a_2, \ldots,$

 a_n with edge-set $\{\{a_1, a_2\}, \{a_2, a_3\}, \ldots, \{a_{n-1}, a_n\}, \{a_n, a_1\}\}$ and by $[a_1, \ldots, a_n]$, $n \geq 2$, the path P_n having vertex set $\{a_1, \ldots, a_n\}$ and edge set $\{\{a_1, a_2\}, \{a_2, a_3\}, \ldots, \{a_{n-1}, a_n\}\}$. In this paper we study the existence of uniformly resolvable decompositions into paths P_4 and cycles C_6 for the complete graph K_v .

The existence of resolvable decompositions for each of P_k and C_k has been studied separately, some time ago.

- There exists a resolvable C_k -decomposition of $K_v I$ if and only if $v \equiv 0 \pmod{2}$ and k divides v (see [5]).
- There exists a resolvable P_k -decomposition of λK_v if and only if $v \equiv 0 \pmod{k}$ and $\lambda k(v-1) \equiv 0 \pmod{2(k-1)}$ (see [1,6]).

A uniformly resolvable (P_4, C_6) -decomposition of K_v into exactly $r P_4$ -factors and $s C_6$ -factors is abbreviated (P_4, C_6) -URD(v; r, s). Since the results for the extremal cases r = 0 and s = 0 are known (see, for instance, [1, 5, 6]) we deal with (P_4, C_6) -URD(v; r, s) where r, s > 0. For $v \equiv 0 \pmod{12}$, we define the set

$$J(v) = \left\{ \left(\frac{2(v-3)}{3} - 4x, 1 + 3x\right), \ x = 0, 1, \dots, \frac{v-6}{6} \right\}$$

In this paper we completely solve the existence problem of a (P_4, C_6) -URD(v; r, s) of K_v by proving the following result:

Main Theorem. Let $v \equiv 0 \pmod{12}$. There exists a (P_4, C_6) -URD(v; r, s) of K_v if and only if $(r, s) \in J(v)$.

2 Necessary conditions

Lemma 2.1. If there exists a (P_4, C_6) -URD(v; r, s), then $v \equiv 0 \pmod{12}$ and $(r, s) \in J(v)$.

Proof. The condition $v \equiv 0 \pmod{12}$ is trivial. Assume that there exists a (P_4, C_6) -URD(v; r, s). By resolvability, it follows that

$$\frac{3rv}{4} + \frac{6sv}{6} = \frac{v(v-1)}{2}$$
$$3r + 4s = 2(v-1).$$
 (1)

and hence

This equation implies that $3r \equiv 2(v-1) \pmod{4}$ and $4s \equiv 2(v-1) \pmod{3}$. Then we obtain $r \equiv 2 \pmod{4}$ and $s \equiv 1 \pmod{3}$. Now letting s = 1 + 3x, the equation (1) yields $r = \frac{2(v-3)}{3} - 4x$. Since r and s cannot be negative, and x is an integer, the value of x has to be in the range as given in the definition of J(v). This completes the proof.

3 Preliminaries and constructions

An \mathcal{H} -decomposition of the complete multipartite graph with u parts each of size g is known as a group divisible design \mathcal{H} -GDD of type g^u , and the parts of size g are called the groups of the design. When $\mathcal{H} = \{H\}$, we simply write H-GDD and when $H = K_n$ we refer to such a group divisible design as an n-GDD. We denote a

(uniformly) resolvable \mathcal{H} -GDD by \mathcal{H} -(U)RGDD. It is easy to deduce that the number of parallel classes of an H-RGDD is $\frac{g(u-1)|V(H)|}{2|E(H)|}$. A (P_4, C_6) -URGDD (r, s) of type g^u is a uniformly resolvable decomposition of the complete multipartite graph with u parts each of size g into r classes containing only copies of P_4 -paths and s classes containing only copies of C_6 -cycles.

If the blocks of an *n*-GDD of type g^u can be partitioned into partial parallel classes, each of them containing all points except those of one group, we refer to the decomposition as an *n*-frame. It is easy to deduce that the number of partial factors missing a specified group is $\frac{g}{n-1}$ ([3]). It is well-known that a 2-frame of type g^u exists if and only if $u \geq 3$ and $g(u-1) \equiv 0 \pmod{2}$ ([3]).

An incomplete resolvable (P_4, C_6) -decomposition of K_v with a hole of size h is a (P_4, C_6) -decomposition of $K_{v+h} - K_h$ in which there are two types of classes, full classes and partial classes which cover every point except those in the hole (the points of K_h are referred to as the hole). Specifically, a (P_4, C_6) -IURD $(v + h, h; [r_1, s_1], [\bar{r}_1, \bar{s}_1])$ is a uniformly resolvable (P_4, C_6) -decomposition of $K_{v+h} - K_h$ with r_1 partial classes of paths P_4 and s_1 partial classes of cycles C_6 which cover only the points not in the hole, \bar{r}_1 full classes of paths P_4 and \bar{s}_1 full classes cycles C_6 which cover every point of K_{v+h} .

We also recall the following definitions. Let (s_1, t_1) and (s_2, t_2) be two pairs of non-negative integers. Define $(s_1, t_1) + (s_2, t_2) = (s_1 + s_2, t_1 + t_2)$. If X and Y are two sets of pairs of non-negative integers, then X + Y denotes the set $\{(s_1, t_1) + (s_2, t_2) :$ $(s_1, t_1) \in X, (s_2, t_2) \in Y\}$. If X is a set of pairs of non-negative integers and h is a positive integer, then h * X denotes the set of all pairs of non-negative integers which can be obtained by adding any h elements of X together (repetitions of elements of X are allowed).

The following three constructions have been proved in a more general setting in [7]. For the ease of the reader, since we will make use of them, we adapt their proofs in our case.

Construction 3.1. Let t be a positive integer and \mathcal{G} be an n-RGDD of type g^u . If there exists a (P_4, C_6) -URGDD (\bar{r}, \bar{s}) of type t^n for each $(\bar{r}, \bar{s}) \in J_1$, then so does a (P_4, C_6) -URGDD(r, s) of type $(gt)^u$ for each $(r, s) \in h * J$, where $h = \frac{g(u-1)}{n-1}$.

Proof. Let \mathcal{G} be an *n*-RGDD of type g^u , with *u* groups G_i , $i = 1, 2, \ldots, u$, of size g; let R_1, R_2, \ldots, R_h , $h = \frac{g(u-1)}{n-1}$, be the parallel classes of this *n*-RGDD. Expand t times each point and for each block b of a given resolution class of \mathcal{G} place on $b \times \{1, 2, \ldots, t\}$ a copy of a (P_4, C_6) -URGDD (r_1, s_1) of type t^n with $(r_1, s_1) \in J_1$. Thus we obtain a (P_4, C_6) -URGDD(r, s) of type $(gt)^u$ with $(r, s) \in h * J_1$.

Construction 3.2. Let v, g, t and u be non-negative integers such that v = gtu. If there exist

- (1) an *n*-RGDD of type g^u ;
- (2) $a (P_4, C_6)$ -URGDD (r_1, s_1) of type t^n with $(r_1, s_1) \in J_1$;

(3)
$$a (P_4, C_6)$$
- $URD(gt; r_2, s_2), with (r_2, s_2) \in J_2;$

then there exists a (P_4, C_6) -URD(v; r, s) for each $(r, s) \in J_2 + h * J_1$, where $h = \frac{g(u-1)}{n-1}$ is the number of parallel classes of an n-RGDD of type g^u .

Proof. Let \mathcal{G} be an *n*-RGDD of type g^u , with *u* groups G_i , $i = 1, 2, \ldots, u$, of size g with $h = \frac{g(u-1)}{n-1}$ parallel classes. Expand each point t times and for each block b of a given resolution class of \mathcal{G} place on $b \times \{1, 2, \ldots, t\}$ a copy of a (P_4, C_6) -URGDD (r_1, s_1) of type t^n with $(r_1, s_1) \in J_1$. For each $i = 1, 2, \ldots, u$, place on $G_i \times \{1, 2, \ldots, t\}$ a copy of a (P_4, C_6) -URD $(gt; r_2, s_2)$ with $(r_2, s_2) \in J_2$. The result is a $(K_2, K_{1,3})$ -URD(v; r, s) with $(r, s) \in J_2 + h * J_1$.

Construction 3.3. Let v, g, t, h and u be non-negative integers such that v = gtu + h. If there exist

- (1) a 2-frame \mathcal{F} of type g^u ;
- (2) $a (P_4, C_6)$ - $URD(h; r_1, s_1)$ with $(r_1, s_1) \in J_1$;
- (3) $a (P_4, C_6)$ -URGDD (r_2, s_2) of type t^2 with $(r_2, s_2) \in J_2$;
- (4) $a (P_4, C_6)$ - $IURD(gt + h, h; [r_1, s_1], [r_3, s_3])$ with $(r_1, s_1) \in J_1$ and $(r_3, s_3) \in J_3 = g * J_2;$

then there exists a (P_4, C_6) -URD(v; r, s) for each $(r, s) \in J_1 + u * J_3$.

Proof. Let \mathcal{F} be a 2-frame of type g^u with groups G_i , $i = 1, 2, \ldots, u$; expand each point t times and add a set $H = \{a_1, a_2, \ldots, a_h\}$. For j = 1, 2, let $p_{i,j}$ be the jth partial parallel class which miss the group G_i ; for each $b \in p_{i,j}$, place on $b \times \{1, 2, \ldots, t\}$ a copy $D_{i,j}^b$ of a (P_4, C_6) -URGDD (r_2, s_2) of type t^2 , with $(r_2, s_2) \in J_2$; place on $G_i \times \{1, 2, \ldots, t\} \cup H$ a copy D_i of a (P_4, C_6) -IURD $(gt + h, h; [r_1, s_1], [r_3, s_3])$ with H as hole, $(r_1, s_1) \in J_1$ and $(r_3, s_3) \in J_3 = g * J_2$. Now combine all together the parallel classes of $D_{i,j}^b$, $b \in p_{i,j}$, along with the full classes of D_i . We obtain r_3 classes of paths P_4 and s_3 classes of 6-cycles, $(r_3, s_3) \in J_3$, on $\cup_{i=1}^u G_i \times \{1, 2, \ldots, t\} \cup H$. Fill the hole H with a copy D of (P_4, C_6) -URD $(h; r_1, s_1)$ with $(r_1, s_1) \in J_1$ and combine the classes of D with the partial classes of D_i . Then we obtain r_1 classes of paths P_4 and s_1 classes of 6-cycles, on $\cup_{i=1}^u G_i \times \{1, 2, \ldots, t\} \cup H$. The result is a (P_4, C_6) -URD(v; r, s) for each $(r, s) \in J_1 + u * J_3$.

We also recall the following two results that we use to prove the main theorem.

Lemma 3.4. ([2]) For $l \ge 3$ and $u \ge 2$, there exists a C_l -RGDD of type g^u if and only if $g(u-1) \equiv 0 \pmod{2}$, $gu \equiv 0 \pmod{l}$, $l \equiv 0 \pmod{2}$ if u = 2, and $(g, u, l) \notin \{(2, 3, 3), (6, 3, 3), (2, 6, 3), (6, 2, 6)\}.$

Lemma 3.5. ([15]) $K_{m,n}$ has a P_{2k} -factorization if and only if m = n and $m \equiv 0 \pmod{k(2k-1)}$.

4 Small cases

Lemma 4.1. A (P_4, C_6) -URGDD(r, s) of type 4^3 exists for every $(r, s) \in \{(4, 1), (0, 4)\}$.

Proof. The case (0, 4) follows by Lemma 3.4. For the case (4, 1) take the groups to be $\{1, 2, 3, 4\}, \{5, 6, 7, 8\}, \{x, y, z, t\}$ and the following factors:

$$\begin{split} &\{(1,x,2,6,y,5),(3,t,4,7,z,8)\}, \\ &\{[y,1,6,t],[7,2,8,x],[4,z,5,3]\}, \{[1,7,x,4],[t,5,2,z],[8,y,3,6]\}, \\ &\{[y,7,t,2],[1,8,4,5],[3,z,6,x]\}, \{[7,3,x,5],[6,4,y,2],[z,1,t,8]\}. \end{split}$$

Lemma 4.2. A (P_4, C_6) -URD(12; r, s) exists for every $(r, s) \in J(12)$.

Proof. Take a (P_4, C_6) -URGDD(r, s) of type 4^3 with $(r, s) \in \{(4, 1), (0, 4)\}$, which exist from Lemma 4.1. Place on each group of size 4 a copy of a (P_4, C_6) -URD(4; 2, 0). This gives a (P_4, C_6) -URD(12; r, s) for each $(r, s) \in \{(2, 0) + \{(0, 4), (4, 1)\}\} = \{(6, 1), (2, 4)\} = J(12)$. □

Lemma 4.3. A (P_4, C_6) -URGDD(r, s) of type 12^2 exists for every $(r, s) \in \{(8, 0), (4, 3), (0, 6)\}$.

Proof. The cases (0,6) and (8,0) are covered by Lemmas 3.4 and 3.5, respectively. For the case (4,3), we take the groups to be

 $\{a_1, a_2, a_3, a_4, b_1, b_2, b_3, b_4, c_1, c_2, c_3, c_4\}, \{x_1, x_2, x_3, x_4, y_1, y_2, y_3, y_4, z_1, z_2, z_3, z_4\}$ and the following factors :

 $\{(a_i, x_{1+i}, b_i, y_{1+i}, c_i, z_{1+i}), i = 1, 2, 3, 4\}, \\\{(a_i, x_{2+i}, b_i, y_{2+i}, c_i, z_{2+i}), i = 1, 2, 3, 4\},\$

 $\{(a_i, x_{3+i}, b_i, y_{3+i}, c_i, z_{3+i}), i = 1, 2, 3, 4\},\$

 $\{ [y_2, a_1, y_1, a_4], [a_2, y_3, a_3, y_4], [z_4, b_1, z_3, b_4], [b_2, z_1, b_3, z_2], [x_4, c_3, x_3, c_2], [c_4, x_1, c_1, x_2] \}, \\ \{ [a_1, y_4, a_4, y_3], [y_1, a_2, y_2, a_3], [b_1, z_2, b_4, z_1], [z_3, b_2, z_4, b_3], [c_3, x_2, c_2, x_1], [x_3, c_4, x_4, c_1] \}, \\ \{ [z_1, a_1, x_1, b_1], [z_2, a_2, x_2, b_2], [x_3, c_1, y_1, a_3], [x_4, c_2, y_2, a_4], [y_3, b_3, z_3, c_3], [y_4, b_4, z_4, c_4] \}, \\ \{ [a_1, y_3, c_3, x_1], [a_2, y_4, c_4, x_2], [b_3, x_3, a_3, z_3], [b_4, x_4, a_4, z_4], [y_1, b_1, z_1, c_1], [y_2, b_2, z_2, c_2] \}.$

Lemma 4.4. A (P_4, C_6) -URGDD(r, s) of type 12^3 exists for every $(r, s) \in \{(16 - 4x, 3x), x = 0, 1, 2, 3, 4\}.$

Proof. For the case (16,0), we apply Construction 3.1 with t = 6 to a 2-RGDD of type 2^3 (with 4 parallel classes) to obtain a (P_4, C_6) -URGDD(16,0) of type 12^3 . For the remaining cases we apply Construction 3.1 with t = 4 to a 3-RGDD of type 3^3 (with 3 parallel classes) to obtain a (P_4, C_6) -URGDD(\bar{r}, \bar{s}) of type 12^3 for each $(\bar{r}, \bar{s}) \in 3 * \{(4, 1), (0, 4)\} = \{(16 - 4y, 3y), y = 1, 2, 3, 4\}$. The input designs are given by Lemma 4.1. □

Lemma 4.5. A (P_4, C_6) -URD(36; r, s) exists for every $(r, s) \in J(36)$.

Proof. Construction 3.2 applied to a (P_4, C_6) -URGDD (r_1, s_1) of type 12³ with $(r_1, s_1) \in \{(16 - 4y, 3y), y = 0, 1, 2, 3, 4\}$ (from Lemma 4.4) gives a (P_4, C_6) -URD(36; r, s) for each (r, s) with

$$\begin{array}{rcl} (r,s) &\in & J(12) + \{(16-4x,3x), \ x=0,1,2,3,4\} \\ &= & \{\{(6,1),(2,4)\} + \{(16-4x,3x), \ x=0,1,2,3,4\}\} \\ &= & \{(22-4x,1+3x), x=0,1,2,3,4,5\} \\ &= & J(36). \end{array}$$

The input designs are given by Lemmas 4.2 and 4.4.

Lemma 4.6. A (P_4, C_6) -URGDD(r, s) of type 12^5 exists for every $(r, s) \in \{(32 - 4x, 3x), x = 0, 2, 3, 4, 5, 6, 7, 8\}.$

Proof. For the case (32,0) apply Construction 3.1 with t = 6 to a 2-RGDD of type 2⁵ (with 8 parallel classes) to obtain a (P_4, C_6) -URGDD(32,0) of type 12⁵. For the remaining cases apply Construction 3.1 with t = 4 to a 3-RGDD of type 3⁵ (with 6 parallel classes) to obtain a (P_4, C_6) -URGDD (\bar{r}, \bar{s}) of type 12⁵ for each $(\bar{r}, \bar{s}) \in 6 * \{(4, 1), (0, 4)\} = \{(32 - 4y, 3y), y = 2, 3, 4, 5, 6, 7, 8\}$. The input designs are given by Lemma 4.1. □

Lemma 4.7. A (P_4, C_6) -URD(60; r, s) exists for every $(r, s) \in J(60)$.

Proof. Construction 3.2 applied to a (P_4, C_6) -URGDD (r_1, s_1) of type 12^5 with $(r_1, s_1) \in \{(32 - 4x, 3x), x = 0, 2, 3, 4, 5, 6, 7, 8\}$ (from Lemma 4.6) gives a (P_4, C_6) -URD(36; r, s) for each (r, s) with

$$\begin{array}{rcl} (r,s) &\in & J(12) + \{(32 - 4y, 3y), \ y = 0, 2, 3, 4, 5, 6, 7, 8\} \\ &= & \{\{(6,1), (2,4)\} + \{(32 - 4y, 3y), \ y = 0, 2, 3, 4, 5, 6, 7, 8\}\} \\ &= & \{(38 - 4x, 1 + 3x), \ x = 0, 1, 2, 3, 4, 5, 6, 7, 8\} \\ &= & J(60). \end{array}$$

The input designs are given by Lemmas 4.2 and 4.6.

5 Proof of Main Result

Lemma 5.1. Let $v \equiv 0 \pmod{24}$. Then a (P_4, C_6) -URD(v; r, s) exists for every $(r, s) \in J(v)$.

Proof. Let v = 24t. Apply Construction 3.1 with t = 12 to a 2-RGDD of type $12^{\frac{v}{12}}$ with $\frac{v-12}{12}$ parallel classes to obtain a (P_4, C_6) -URGDD (\bar{r}, \bar{s}) of type $12^{\frac{v}{12}}$ for each $(\bar{r}, \bar{s}) \in \frac{v-12}{12} * \{(8, 0), (4, 3), (0, 6)\}\}$ (the input designs are given by Lemma 4.3). Now fill the groups with a (P_4, C_6) -URD $(12; r_1, s_1)$ for each $(r_1, s_1) \in \{(6, 1), (2, 4)\}$

(see Lemma 4.2). Apply Construction 3.2 to get a (P_4, C_6) -URD(v; r, s) of K_v for each $(r, s) \in J(12) + \frac{v-12}{12} * \{(8, 0), (4, 3), (0, 6)\} \} = \{\{(6, 1), (2, 4)\} + \{(\frac{2(v-12)}{3} - 4x, 3x), x = 0, 1, \dots, \frac{v-12}{6}\}\} = \{(\frac{2(v-3)}{3} - 4x, 1 + 3x), x = 0, 1, \dots, \frac{v-6}{6}\} = J(v).$

Lemma 5.2. Let $v \equiv 12 \pmod{24}$. Then a (P_4, C_6) -URD(v; r, s) exists for every $(r, s) \in J(v)$.

Proof. Let v = 12 + 24t. The cases v = 12, 36, 60 follow by Lemmas 4.2,4.5 and 4.7. For $t \ge 3$ apply Construction 3.3 with t = 12 and h = 12 to a 2-frame of type $2^{\frac{v-12}{24}}$ to obtain a (P_4, C_6) -URD (v; r, s) for each $(r, s) \in J(12) + \frac{v-12}{24} * \{(16 - 4y, 3y), y = 0, 1, 2, 3, 4\} = \{\{(6, 1), (2, 4)\} + \{(\frac{2(v-12)}{3} - 4x, 3x), x = 0, 1, \dots, \frac{v-12}{6}\}\} = \{(\frac{2(v-3)}{3} - 4x, 1 + 3x), x = 0, 1, \dots, \frac{v-6}{6}\} = J(v)$. The input designs are given by Lemmas 4.1, 4.2, 4.5 and 4.7. □

As a consequence of Lemmas 2.1, 5.1, and 5.2 our main result immediately follows.

Theorem 5.3. A (P_4, C_6) -URD(v; r, s), with r, s > 0, exists if and only if $v \equiv 0 \pmod{12}$ and $(r, s) \in J(v)$.

Remark 5.4. Note that the existence of uniformly resolvable $\{P_{2t}, C_{2(2t-1)}\}$ -designs with $t \geq 3$ is currently under investigation.

References

- J. C. Bermond, K. Heinrich and M. L. Yu, Existence of resolvable paths designs, Europ. J. Combin. 11 (1990), 205–211.
- [2] H. Cao, M. Niu and C. Tang, On the existence of cycle frames and almost resolvable cycle systems, *Discrete Math.* **311** (2011), 2220–2232.
- [3] C.J. Colbourn and J.H. Dinitz, The CRC Handbook of Combinatorial Designs, Chapman and Hall/CRC, Boca Raton, FL (2007); online updates at www.emba.uvm.edu/~dinitz/newresults.html.
- [4] M. Gionfriddo and S. Milici, On the existence of uniformly resolvable decompositions of K_v and $K_v I$ into paths and kites, *Discrete Math.* **313** (2013), 2830–2834.
- [5] D. G. Hoffman and P. J. Schellenberg, The existence of C_k -factorizations of K_{2n} -I, Discrete Math. 97 (1991), 243–250.
- [6] D. G. Horton, Resolvable paths designs, J. Combin. Theory Ser. A 39 (1985), 117–131.
- [7] M. S. Keranen, D. L. Kreher, S. Milici and A. Tripodi, Uniformly resolvable decompositions of K_v into 1-factors and 4-stars, *Australas. J. Combin.* **76** (2020), 55–72.

- [8] G. Lo Faro, S. Milici and A. Tripodi, Uniformly resolvable decompositions of into paths on two, three and four vertices, *Discrete Math.* **338** (2015), 2212–2219.
- [9] S. Milici, A note on uniformly resolvable decompositions of K_v and $K_v I$ into 2-star and 4-cycles, Australas. J. Combin. 56 (2013), 195–200.
- [10] S. Milici and Zs. Tuza, Uniformly resolvable decompositions of K_v into P_3 and K_3 graphs, *Discrete Math.* **331** (2014), 137–141.
- [11] R. Rees, Uniformly resolvable pairwise balanced designs with block sizes two and three, J. Combin. Theory Ser. A 45 (1987), 207–225.
- [12] E. Schuster, Uniformly resolvable designs with index one and block sizes three and four—with three or five parallel classes of block size four, *Discrete Math.* **309** (2009), 2452–2465.
- [13] E. Schuster, Uniformly resolvable designs with index one and block sizes three and five and up to five with blocks of size five, *Discrete Math.* **309** (2009), 4435–4442.
- [14] E. Schuster and G. Ge, On uniformly resolvable designs with block sizes 3 and 4, *Des. Codes Cryptogr.* 57 (2010), 47–69.
- [15] H. Wang, P_{2p} -factorization of a complete bipartite graph, *Discrete Math.* **120** (1993), 307–308.
- [16] H. Wei and G. Ge, Uniformly resolvable designs with block sizes 3 and 4, Discrete Math. 339 (2016), 1069–1085.

(Received 16 Jan 2021)