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Abstract

A graph G is reconstructible if it is determined up to isomorphism from
the collection of all one-vertex deleted unlabeled subgraphs of G. A graph
G is a parity graph if for every pair of vertices (u, v) of G, the lengths
of all induced paths joining u and v have the same parity. A domino is
a cycle on six vertices with only one chord joining a pair of vertices at
distance 3. It is shown that all 2-connected graphs G, with diam(G) = 2
or diam(G) = diam(G) = 3, such that G is a domino-free parity graph
or a triangle-free graph of girth 5, are reconstructible.

1 Introduction

All graphs considered in this paper have finite orders and have no loops or multiple
edges. The terms not defined here are taken as in Harary [8]. The distance d(u, v)
between two vertices u and v in G is the minimum length of a path joining them
and the distance d(u, S) between a vertex u and S ⊆ V (G) is min{d(u, s) : s ∈ S},
where V (G) is the vertex set of G. The eccentricity of a vertex v, denoted e(v), is
max{d(u, v) : u ∈ V }. The radius rad(G) is the minimum eccentricity of the vertices
and the diameter diam(G) is the maximum eccentricity. If W is a nonempty subset
of V (G), then the subgraph induced by W (denoted by G[W ]) is the subgraph of
G whose vertex set is W and whose edge set consists of those edges of G incident
with two elements of W . If W is a nonempty proper subset of V (G), then G −W
denotes the induced subgraph G[V (G)−W ]. A vertex-cut of G is a subset S of V (G)
such that G − S is disconnected. A k-vertex-cut is a vertex-cut of k elements. The
connectivity κ(G) of a graph G is the minimum number of vertices whose removal
results in a disconnected or trivial graph. A vertex-deleted subgraph (or card) G− v
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of a graph G is the unlabeled subgraph obtained from G by deleting the vertex v and
all edges incident with v. The collection of all cards of G is the deck of G. A graph
H is a reconstruction of G if H has the same deck as G. A graph is reconstructible if
it is isomorphic to all its reconstructions. A family F of graphs is recognizable if, for
each G ∈ F , every reconstruction of G is also in F , and weakly reconstructible if,
for each graph G ∈ F , all reconstructions of G that are in F are isomorphic to G.
A family F of graphs is reconstructible if, for any graph G ∈ F , G is reconstructible
(i.e. if F is both recognizable and weakly reconstructible). A property (parameter)
Q defined on a class C of graphs is a recognizable property (reconstructible parameter)
if Q(G) = Q(H) whenever G ∈ C and H is a reconstruction of G.

The Reconstruction Conjecture (RC), proposed by Kelly and Ulam [3] in 1941,
asserts that every graph with at least three vertices is reconstructible. This conjecture
has proved notoriously difficult, and has motivated a large amount of work in graph
theory. Several classes of graphs have already been proved to be reconstructible
in the hope that one day all graphs would be proved reconstructible by including
enough classes of graphs. The manuscripts [2, 3, 5, 9, 10] are surveys of work done
on this problem.

The class of graphs G with diam(G) = 2 or diam(G) = diam(G) = 3 is denoted
by DR-class. Yongzhi [17] settled Problem 3 listed in the survey [2] when he proved
that the RC is true if and only if every 2-connected graph is reconstructible. Gupta
et al. [7] have proved that the RC is true if and only if all connected graphs G in the
DR-class are reconstructible. Ramachandran and Monikandan [14] have combined
the above two reductions of the RC and proved that the RC is true if and only if all
2-connected graphs G in the DR-class are reconstructible. Recently, the authors [6]
have shown that all distance hereditary 2-connected graphs G in the DR-class are
reconstructible.

A chord of a cycle of length at least 4 is an edge joining two non adjacent vertices
in the cycle. Two chords x1y1 and x2y2 of a cycle C are crossing chords if the ends
of the edges come in the order x1, x2, y1, y2 around C. A domino is a cycle on six
vertices with only one chord joining a pair of vertices at distance 3. A graph G is
H-free if no induced subgraph of G is isomorphic to H .

A graph G is a parity graph if for every pair of vertices (u, v), the lengths of all
induced paths joining u and v have the same parity (that is, they are both odd or both
even); this was introduced by Burlet and Uhry in [4]. Many classes of graphs such
as bipartite graphs and distance-hereditary graphs are subclasses of parity graphs,
and parity graphs are perfect. In this paper, we show that all 2-connected domino-
free parity graphs and graphs with no induced C4 and no C3 in the DR-class are
reconstructible.
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2 Recognition of Parity Graphs

Theorems 2.1, 2.2 and 2.3 will be used while proving the main result.

Theorem 2.1. (Tutte [16]) The number of non separable spanning subgraphs of G
with a given number of edges is reconstructible.

Theorem 2.2. (Gupta et al. [7]) Graphs G with diam(G) = 2 and graphs H with
diam(H) = diam(H) = 3 are recognizable.

Theorem 2.3. (Burlet and Uhry [4]) A graph G is a parity graph if and only if every
cycle of odd length at least 5 has at least two crossing chords.

As Bondy stated in his paper [3], “The RC has no direct algorithmic implications.
It is concerned not with the process of reconstruction but with the endproduct, and
asserts that this endproduct, the reconstructed graph is unique up to isomorphism”.
The expressions “Hence G is reconstructible”, “G can be obtained uniquely” and “G
is uniquely determined” are used in this paper in the above sense.

Lemma 2.4. Parity graphs G are recognizable.

Proof. If G itself is a cycle, then G is reconstructible. Otherwise, let C = {H :
|V (H)| < |V (G)| and H is an odd cycle with no crossing chords}. Now, for every
graph H in C , we can determine whether G contains H as an induced subgraph or
not by using Kelly’s Lemma [2]. If no graph H ∈ C is an induced subgraph of G,
then G is a parity graph by Theorem 2.3.

Notation. Let V1 and V2 be two disjoint subsets of V (G) of a graph G. By V1 ∼ V2,
we mean that every vertex in V1 is adjacent to every vertex in V2. When v1 /∈ V2, by
v1 ∼ V2, we mean that v1 is adjacent to every vertex in V2. Similarly, by v1 ∼ v2, we
mean that v1 is adjacent to v2; otherwise we write v1 �∼ v2. By v1 �∼ V2, we mean that
v1 is not adjacent to at least one vertex in V2; and by v1 �∼�∼ V2, we mean that v1 is
not adjacent to any vertex in V2. For u ∈ V (G), let Ni(u) = {v ∈ V (G) : d(u, v) = i}.

3 Reconstruction of Parity graphs

Here we focus on the reconstruction of a parity graph G that is 2-connected and
of diameter 2. Since the connectivity is reconstructible, these parity graphs are
recognizable by Theorem 2.2 and Lemma 2.4. Suppose there was an induced cycle C
of length at least 5 in G. Then C would contain two nonadjacent vertices connected
by an induced path of length 3, giving a contradiction to G being a parity graph of
diameter 2. Hence G contains no cycle of length at least 5 as an induced subgraph.
Since G is a parity graph, it contains no induced C5 + e or C5 + {e1, e2}, where e1
and e2 are non-crossing chords (by Theorem 2.3). Thus G is distance-hereditary and
it is proved to be reconstructible in [6]. So we have the following theorem.
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Theorem 3.1. All 2-connected parity graphs G with diam(G) = 2 are reconstructible.

We now focus on the reconstruction of a domino-free parity graph G that is
2-connected and with diam(G) = diam(G) = 3. Although the next lemma is well-
known, we give the proof for the sake of clarity.

Lemma 3.2. If G is a graph with diam(G) = diam(G) = 3, then rad(G) = 2.

Proof. Clearly rad(G) cannot be 1 as G is connected. Since diam(G) is 3, there is a
vertex u with e(u) = 3 in G. Now since the vertices in N2(u)∪N3(u) are nonadjacent
to u in G, they are adjacent to u in G. Also, in G no vertex in N1(u) is adjacent to
a vertex in N3(u), and hence N1(u) ∼ N3(u) in G. Therefore e(u) is 3 in G.

From now until the end of this section, we assume that G is a 2-connected domino-
free parity graph with diam(G) = diam(G) = 3. Then, by Lemma 3.2, there is a
vertex u with e(u) = 2. Let Z = N2(u), X = {v ∈ V (G) : d(v, z) ≥ 2, for any z ∈
N2(u)} and Y = N1(u)−X (Figure 3.1). We use here the notation u, X , Y and Z
in the sense of this meaning; and the connectivity of G is taken to be k, k ≥ 2.

� ��� � ���

� ���

N1(u)

N2(u)

u

X Y

Z
Figure 3.1. General structure of graphs with radius 2

� �� � ��

� ��

Lemma 3.3. If W is a k-vertex-cut of G, then W is not a subset of Z. Moreover,
if W ∩X �= ∅, then W contains the vertex u.

Proof. Since u ∼ X ∪Y and every vertex in Z is adjacent to a vertex in Y , it follows
that W is not a subset of Z. If W intersects X, then, by the minimality of W ,
separation is possible only among the vertices in N1(u) and hence W must contain
the vertex u.

Remark 3.4. For any k-vertex-cut W of G, Lemma 3.3 eliminates the following
cases.

(i) W ⊆ X.

(ii) W ∩X �= ∅,W ∩ Y �= ∅ and W ∩ [G− (X ∪ Y )] = ∅.
(iii) W ∩X �= ∅,W ∩ Z �= ∅ and W ∩ [G− (X ∪ Z)] = ∅.
(iv) W ∩X �= ∅,W ∩ Y �= ∅,W ∩ Z �= ∅ and u /∈ Z.
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Lemma 3.5. If W is a k-vertex-cut of G such that W ∩Y �= ∅ and W ∩Z �= ∅, then
W ∩ [V (G)− (Y ∪ Z)] �= ∅.

Proof. Suppose, to the contrary, that W ∩ [V (G) − (Y ∪ Z)] was empty. Then, in
G−W there would be a component C such that V (C) ⊆ Z. Since G− (W − {z}),
where z ∈ Z ∩W , is connected, we would get Y − W �= ∅. If z �∼�∼ Y − W , then
z is nonadjacent to any vertex of Z − [W ∪ V (C)] lying in the same component as
Y − W , because e(u) = 2. Thus G − (W − {z}) would be disconnected, giving a
contradiction. Otherwise, that is, if z is adjacent to a vertex in Y −W , then again we
will get a contradiction, but to e(u) = 2 (because z is adjacent to a vertex in C).

Lemma 3.6. If W is a k-vertex-cut of G such that u ∈ W and W ∩ Y �= ∅, then
W ∩ Z �= ∅.

Proof. Suppose, to the contrary, that W ∩Z = ∅. It is clear that not all the vertices
in N1(u)−W are confined to a single component of G−W . If a vertex y in W ∩ Y
is adjacent to a vertex in N1(u), then y must be adjacent to all those vertices in
N1(u)−W , since d(a, b) ≤ 2 for all a, b ∈ N1(u). Moreover, since the vertex u is in
W , the graph G−W has no component with vertices from Z alone. We now proceed
with two cases as below.

Case 1. Vertices in Y −W lie in different components of G−W.

Suppose that there was a vertex y in W ∩ Y such that y �∼�∼ N1(u)−W . Since
G − (W − {y}) is connected, the vertex y is adjacent to at least two vertices, say
z1, z2 ∈ Z, where z1 and z2 lie in different components; let y1 and y2 be their re-
spective neighbours in Y − W . Now, the six vertices u, y, y1, y2, z1 and z2 together
form a domino as induced subgraph of G, a contradiction. So we can assume that
W ∩ Y ∼ N1(u)−W . By the definition of Y , there exists a vertex z ∈ Z such that
z ∼ y. Therefore the five vertices u, y, z, any vertex from NY−W (z) and a vertex
y′ ∈ NY−W (u) lying in the component not containing z, together form C5 + {e1, e2}
as induced subgraph of G, where e1 and e2 are non-crossing edges, giving a contra-
diction.

Case 2. Vertices in Y −W lie in the same component of G−W.

Now X − W is nonempty and (W ∩ Y ) ∼ (N1(u) − W ). Since every vertex in
W ∩ Y is adjacent to a vertex in Z, we would obtain a similar contradiction by
proceeding as in Case 1 with a vertex from X −W instead of y′.

Remark 3.7. For any k-vertex-cut W of G, Lemma 3.6 eliminates the following
cases.

(i) u ∈ W,W ∩ Y �= ∅ and W ∩ (G− (u ∪ Y )) = ∅.
(ii) u ∈ W,W ∩X �= ∅,W ∩ Y �= ∅ and W ∩ Z = ∅.
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Theorem 3.8. If W is a k-vertex-cut of G, then NG−W (wi) = NG−W (wj) for any
wi, wj ∈ W , where 1 ≤ i, j ≤ k.

Proof. First, we consider the case that W ∩ X �= ∅ and W ∩ ((G − u) − X) = ∅.
Now W must contain u by Lemma 3.6. Since not all the vertices in N1(u)−W are
confined to the same component of G − W , it follows that W ∩ X ∼ N1(u) − W
(because d(a, b) = 2 for any two nonadjacent vertices a, b ∈ N1(u)). Hence all the
vertices in W have the same set of neighbours in G−W and u ∼ (W − {u}).

Now, let us discuss the cases which are not eliminated in Remarks 1 and 2 and
Lemma 3.5. That is, we consider the case when the k-vertex-cut W contains u and a
vertex from Z. Now G−W has at least two components with vertices from Y −W
and it has no component i with vertices from Z alone.

Case 1. The set Z −W is empty.

Since G − (W − z), where z ∈ Z ∩W , is connected and d(a, b) = 2 for any two
nonadjacent vertices a, b in N1(u), we get Z ∼ Y − W , which implies X − W = ∅
and W ∩ (X ∪ Y ) ∼ Y − W . That is, all the vertices in W have the same set of
neighbours in G−W .

Case 2. The set Z −W is nonempty.

Suppose there was a vertex z, where z ∈ Z ∩W , nonadjacent to every vertex y
in Y −W . Then, since G− (W − z) is connected, the vertex z would be adjacent to
a vertex in Z −W , giving a contradiction to u being a vertex of eccentricity 2. Thus
z ∼ y1, where y1 ∈ Y −W , and it is nonadjacent to any vertex z′ ∈ Z −W , when
z′ and y1 lie in different components of G−W . Therefore z ∼ y2 for some vertex y2
in Y −W , where y1 and y2 lie in different components of G −W . Since the parity
between u and its non neighbour is even, it follows that z �∼ Z −W .

Suppose that z �∼ y′, where y′ ∈ Y −W . Without loss of generality, let y′ lie in
the component C1 containing the vertex y1. Then, since G is a parity graph, y1 �∼ y′

and C1 ∩ (Z − W ) �= ∅. Also d(u, Z) = 2 implies that each y ∈ Y is adjacent to
NZ(y). Since the parity among the nonadjacent vertices in N1(u) is even, there exist
two nonadjacent vertices v1, v2 ∈ C1∩Y with a common neighbour z′ ∈ C1∩Z, where
v1 is nonadjacent to z (existence of v1 is guaranteed by y′) and v2 is adjacent to z
(existence of v2 is guaranteed by y1). Now the three vertices v1, v2, z

′ along with u, z
and y2 form a domino as induced subgraph of G (Figure 3.2), giving a contradiction.
Hence z is adjacent to all the vertices in Y − W . Again, since d(a, b) = 2 for any
two nonadjacent vertices a, b in N1(u), we will get W ∩X ∼ Y −W and X −W = ∅
(because G−W is disconnected).
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Figure 3.2. Structure of G under the case u ∈ W and W ∩ Z �= ∅
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Figure 3.3. Structure of G under the case W ⊆ Y
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If W ∩ Y �= ∅ and a vertex y ∈ Y ∩W is adjacent to a vertex in Y −W , then
y ∼ Y −W . Therefore y �∼�∼ Z −W since G is a parity graph and the vertices of
Y −W lie in different components. If y �∼�∼ Y −W , then each component of G−W
contains a vertex from Z, since G− (W − y) is connected. Also y is adjacent to z1
and z2, where z1, z2 ∈ Z −W and they lie in different components of G−W . Now
the vertices u, y, z1, z2 along with the neighbours of z1 and z2 in Y − W together
form a domino as an induced subgraph, giving a contradiction. Hence the vertices
in W have the same set of neighbours in G − W (Figure 3.3; X1 = N(W ) ∩ X,
Y1 = N(W )∩Y , a double line joining two vertex subsets denotes every vertex in one
set is adjacent to every vertex in the other set whereas a single line denotes a vertex
in one set may or may not be adjacent to a vertex in the other set).

Finally, the only remaining case to be discussed is W ⊆ Y . Now G − W has
at least one component, say C ′, such that V (C ′) ⊆ Z. Also, since d(u, Z) = 2
and C ′ is connected, each vertex in W is adjacent to i all the vertices in C ′. If a
vertex y ∈ Y −W is adjacent to a vertex in W , then d(y, V (C ′)) = 2. Suppose that
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y �∼ W . Then there exists yi ∈ W such that y �∼ yi. Now the induced path yuyiz,
where z ∈ V (C ′), has length 3, giving a contradiction to G being a parity graph.
Hence any two vertices in W have the same set of neighbours in Y − W . Again,
from the fact that G is a parity graph, we have a vertex in NZ(NY−W (W )) which
is adjacent to all the vertices in W whenever it is adjacent to at least one vertex
in W . In particular, if two vertices in W are adjacent, then they share the same
set of neighbours outside W . Consider the case when two vertices yi, yj ∈ W are
nonadjacent. Suppose there exists a vertex z ∈ Z such that z ∼ yi and z �∼ yj. Let
y′ ∈ Y − N(W ) be a neighbour of z. Then clearly y′ �∼ yi and y′ �∼ yj . Now the six
vertices z, y′, u, yi, yj and zi, where zi ∈ V (C ′), together form a domino as induced
subgraph, giving a contradiction to G. Thus, in all the cases, we have proved that
the vertices in W have the same set of neighbours in G−W .

Theorem 3.9. All 2-connected domino-free parity graphs G with diam(G) =
diam(G) = 3 are reconstructible.

Proof. Since the connectivity is a reconstructible parameter, recognizability of G
follows by Theorem 2.2, Lemma 2.4 and Kelly’s lemma [2].

Suppose that G contains a k-vertex-cut W with a vertex, say w, such that w is
adjacent to the remaining k − 1 vertices in W (such a case arises when W ⊂ N [u]).
Consider a card G − v containing a (k − 1)-vertex-cut such that the degree of the
deleted vertex is equal to the sum of k−1 and the number of common neighbours of
those k− 1 vertices outside the (k− 1)-vertex-cut. Now G can be obtained uniquely
from G− v by adding a new vertex to G− v and making it adjacent to the common
neighbours of the vertices in the (k−1)-vertex-cut and to those k−1 vertices. So we
can assume that no k-vertex-cut of G contains a vertex adjacent to all other vertices
in the vertex-cut.

If G contains at least two k-vertex-cuts, then all these vertex-cuts are disjoint
because the vertices in a minimal vertex-cut have the same set of neighbours outside
it. So we can determine the subgraph induced by any k-vertex-cut from the collection
of all cards containing a (k − 1)-vertex-cut. Now G can be obtained uniquely from
a card containing a (k − 1)-vertex-cut by replacing the (k − 1)-vertex-cut with the
required induced subgraph already identified.

The only remaining case to be discussed is when G contains exactly one k-vertex-
cut. Let W ′ be the unique k-vertex-cut of G. The proof of this case differs somewhat
from the above cases; we reconstruct the subgraph G[W ′] of G induced by W ′ from
the deck of G by using mathematical induction on the order of G and then we
replace a (k − 1)-vertex-cut by W ′ in a specified card. Assume that all 2-connected
domino-free parity graphs of order strictly less than that of G and with diameter 2
are reconstructible. Now the deck of W ′ can be determined from the deck of G (by
considering all the cards of G containing a (k− 1)-vertex-cut). Since G is a domino-
free parity graph, so is the subgraph G[W ′] of G induced by W ′. Again, since all
the vertices in W ′ have the same set of neighbours in G − W ′, the parity amongst
any two nonadjacent vertices in W ′ is even. Now, we take G[W ′] to be connected as
otherwise it is reconstructible.
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Suppose that G[W ′] has a cut vertex, say w. Let C1 be a component of G[W ′]−w
and let C2 be the union of all other components of G[W ′] − w. If dG[W ′](w,w1)
was equal to 2 for some vertex w1 in C1, then dG[W ′](w1, C2) would be 3, giving a
contradiction. Hence w ∼ C1 and similarly w ∼ C2, which imply w ∼ G[W ′] − w.
Therefore diam(G[W ′]) = 1 and thus G[W ′] is reconstructible.

Now let G[W ′] be 2-connected and diam(G[W ′]) > 1. Then diam(G[W ′]) =
2 (as otherwise, diam(G[W ′]) would be at least 3 and G[W ′] would contain two
nonadjacent vertices at distance 3, a contradiction). Thus G[W ′] is a 2-connected
domino-free parity graph of order strictly less than that of G and diam(G[W ′]) = 2.
By the induction assumption, W ′ is thus reconstructible. We now reconstruct G
from any card G − x containing a unique (k − 1)-vertex-cut, say S, as follows. All
graphs obtained from G− x, by replacing S with G[W ′] and making the vertices in
W ′ adjacent to the common neighbours of all the vertices of S but outside S, are
isomorphic and they are G.

4 Triangle-free graphs

Let G be a triangle-free graph with diam(G) = diam(G) = 3. Consider a vertex u
with eccentricity 3 in G. Since G is triangle-free, the vertex independence number
of G is at most 2. Therefore the vertices in N2(u) ∪ N3(u) (in G) form a complete
subgraph of G. Similarly, any two vertices in N1(u) (in G) are adjacent in G. Thus
G will be a bipartite graph with diam(G) = diam(G) = 3, which is proved to be
reconstructible in [12]. So we have the following theorem.

Theorem 4.1. All 2-connected triangle-free graphs G with diam(G) = diam(G) = 3
are reconstructible.

Since graphs with diameter 2 and girth 5 are Moore graphs which are regular,
the next theorem is evident.

Theorem 4.2. All 2-connected triangle-free graphs G with diam(G) = 2 and girth 5
are reconstructible.

5 Conclusion

Let G be a triangle-free graph of diameter 2. Suppose that diam(G) ≥ 3. Then,
by arguing as above, we get that G is a bipartite graph of diameter 2 and hence G
is complete bipartite, which is reconstructible. Also if the girth of G is not 5, then
it must be 4 since G has diameter 2. Thus, the only remaining class of triangle-
free graphs to reconstruct is all 2-connected triangle-free graphs G with diam(G) =
diam(G) = 2 and girth 4.

The next two theorems conclude all our results described above.
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Theorem 5.1. The class E of all 2-connected graphs G with diam(G) = 2 is recon-
structible if and only if one of the following subclasses of E is proved to be recon-
structible.

(E1) All non-parity graphs.

(E2) Graphs with C3 or C4 as an induced subgraph.

Proof. The necessity is obvious. For sufficiency, suppose that G is a 2-connected
graph with diam(G) = 2 but not in E1∪E2. Then G is a parity graph or a triangle-free
graph with no C4 as an induced subgraph. Hence G is reconstructible by Theorem 3.1
or Theorem 4.2.

Theorem 5.2. The class F of all 2-connected graphs G with diam(G) = diam(G) =
3 is reconstructible if and only if one of the following subclasses of F is proved to be
reconstructible.

(F1) All non-parity graphs and graphs with domino as an induced subgraph.

(F2) Graphs with triangles.

Proof. The necessity is obvious. For sufficiency, suppose that G is a 2-connected
graph with diam(G) = diam(G) = 3 but not in F1 ∪ F2. Then G is a domino-free
parity graph or a triangle-free graph. Hence G is reconstructible by Theorem 3.9 or
Theorem 4.1.

It is known [14] that the RC is true if and only if all 2-connected graphs G in
the DR-class are reconstructible. Thus the RC is true if and only if one of the pairs
(E1,F1), (E1,F2), (E2,F1) or (E2,F2) of classes of graphs is reconstructible.
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