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Abstract

We study a family of graphs with diameter two and asymptotically op-
timal order for their maximum degree, obtained from perfect difference
sets. We show that for all known examples of perfect difference sets, the
graph we obtain is isomorphic to one of the Brown graphs, a well-known
family of graphs in the degree-diameter problem.

1 Introduction

The degree-diameter problem seeks to find the largest possible graph of diameter
k and maximum degree Δ. In the case of diameter 2, a simple counting argument
yields an upper bound of Δ2 + 1 for the number of vertices in a graph. Graphs
attaining this bound (the Moore bound) are necessarily regular and are known to be
exceedingly rare; the only examples being the cycle C5 with degree 2, the Petersen
graph of degree 3 and the Hoffman-Singleton graph of degree 7. By a classical result
in algebraic graph theory [10], the only other possible graph would have degree 57,
and this existence or otherwise of such a graph is a famous open problem. For much
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more on Moore graphs and the degree-diameter problem, the reader is referred to
the survey [13]; for more on the missing Moore graph see [12].

Given the scarcity of Moore graphs, it is natural to consider instead families of
graphs which are in some sense close to the Moore bound. In Section 2, we describe
a family of graphs of diameter two which asymptotically approach the Moore bound
for certain values of the maximum degree Δ. For many values of Δ, the current
largest known graphs of diameter two in the literature are the Brown graphs (also
known as polarity graphs). In Section 3 we describe the Brown graphs, and show
that in fact our graphs are in all known cases isomorphic to one of the Brown graphs,
even though their construction is quite different.

Our graphs are based on perfect difference sets, and before describing their con-
struction we give some background on these interesting combinatorial objects. A
perfect difference set S is a set of residues modulo n (for some positive integer n)
with the property that every non-zero residue modulo n can be uniquely expressed
as the difference of two elements of S. If |S| = k, it is immediate by counting pairs
of elements of S that n = k2 − k + 1. If S is a perfect difference set modulo n, then
it is clear that S + m (for any integer m) and rS (for any positive integer r with
gcd(n, r) = 1) are also perfect difference sets. We call two perfect difference sets
which are related in this way equivalent.

In 1938, Singer [15] showed that a sufficient condition for a perfect difference set
S modulo n to exist is that n = q2 + q + 1 for some prime power q. The set S then
has size q + 1. Singer’s construction based on finite fields is crucial to form the link
between our difference graphs and the Brown graphs in the degree-diameter problem,
and we review the construction in Section 2.

To date, no perfect difference set with |S| not equal to one more than a prime
power is known to exist. Such a set would lead immediately to a projective plane
of non prime power order, the existence of which is one of the most famous open
problems in combinatorics.

2 Difference graphs

Let S be a perfect difference set modulo n. We define the difference graph Diff(Zn, S)
as follows. The vertex set of Diff(Zn, S) is the set of residues modulo n, which we
identify with the additive cyclic group Zn. For any x, y ∈ Zn, there is an edge from
x to y in the graph if and only if x+ y ∈ S. (We suppress the loops in the graph for
any x with x+ x ∈ S.)

It is apparent from the definition that Diff(Zn, S) has order n = q2+ q+1, where
q+1 = |S|. A vertex x has degree q+1, unless x+x ∈ S in which case it has degree
q. Thus Diff(Zn, S) has q + 1 vertices of degree q and q2 vertices of degree q + 1.
If x and y are distinct vertices, then we may write x − y = s − t for some s, t ∈ S.
Then the vertex s − x = t − y is adjacent to both x and y. Thus Diff(Zn, S) has
diameter 2, and since it has maximum degree Δ = q + 1 and order q2 + q + 1, its
order asymptotically approaches the Moore bound for large q.
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The following lemma is easily proved.

Lemma 2.1. Let S and T be equivalent perfect difference sets for the cyclic group
Zn. Then the difference graphs Diff(Zn, S) and Diff(Zn, T ) are isomorphic.

Figure 1 shows an example of a difference graph of order 21, derived from the
perfect difference set S = {0, 1, 4, 14, 16} in Z21. We can see that the five vertices
0, 2, 7, 8, 11 have degree 4, and the remainder have degree 5. In this case vertex 14
is adjacent to all the vertices of minimum degree, although this is not typical.
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Figure 1: The difference graph Diff(Z21, {0, 1, 4, 14, 16})

We now recast the definition of our difference graphs in terms of Singer’s con-
struction [15] of perfect difference sets, as amplified by Halberstam and Laxton [8]
and others. We use standard notation and results from the theory of finite fields;
see for example [11] for background. Let q be a prime power, and let K = GF (q)
be the unique finite field with q elements. Let F = GF (q3), so that K is a subfield
of F . The multiplicative groups K∗ and F ∗ are cyclic, of orders q − 1 and q3 − 1
respectively, and so the quotient group G = F ∗/K∗ is cyclic of order q2 + q + 1.

We let ξ be a primitive element of F . By [15, 8] the set S = {ξK∗} ∪ {(1 +
tξ)K∗; t ∈ K} of q + 1 cosets of K∗ is a perfect difference set for the cyclic group
G. We therefore define the graph Diff(G, S) to have vertex set G, with vertices ξiK∗

and ξjK∗ adjacent if and only if ξi+jK∗ ∈ S.
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Different choices of ξ will in general give different perfect difference sets S by
this construction. However, it is proved in [8] that all such perfect difference sets
for a given prime power q are equivalent. By Lemma 2.1 therefore, all difference
graphs obtained in this way are isomorphic, and we may denote them by Diff(q) for
a given q.

We note that these graphs have been studied before in the context of networks
for large-scale computer systems; see [2].

3 Relationship to Brown graphs

In [3], Brown introduced a family of graphs of diameter 2 which asymptotically
approach the Moore bound for certain values of the maximum degree Δ. (These
graphs had previously been studied by Erdős, Rényi and Sós in a different con-
text [7].) Given a prime power q, we define the graph B(q) as follows. The vertex set
of B(q) is the set of points in the projective space PG(2, q); equivalently, we identify
a vertex with a vector x = (x0, x1, x2) in (GF (q))3, with not all coordinates zero,
considering vectors to be the same if one is a constant multiple of the other. Two
vertices in B(q) represented by vectors x and y are adjacent if and only if x · y = 0;
that is, x0y0 + x1y1 + x2y2 = 0.

The properties of these graphs were studied in detail in [1] and we list their most
relevant parameters here.

• B(q) has order q2 + q + 1 and diameter 2.

• B(q) has q + 1 vertices of order q and q2 vertices of order q + 1.

• For odd q ≥ 7, the graph B(q) is the largest known graph of diameter 2 and
maximum degree q + 1 [13].

• For even q, it was shown in [6] that a small improvement can be made by
adding a new vertex to B(q) and joining it to all q + 1 vertices of degree q,
resulting in a (q + 1)-regular graph of diameter 2 and order q2 + q + 2.

The correspondence between the properties of B(q) and our difference graph
Diff(q) is striking. It is natural to ask whether these are in fact isomorphic; indeed
in [4] the authors assume without proof that the isomorphism exists. For small q,
an explicit isomorphism can be readily determined. For example, an isomorphism
between the graph Diff(4) illustrated in Figure 1 and the Brown graph B(4) is shown
in Table 1. In the table, the elements of GF (4) are taken to be 0, 1, ζ and ζ2 = ζ+1,
where ζ is a primitive element of GF (4)∗.

In the remainder of this section, we prove our main result which is that B(q)
and Diff(q) are isomorphic for all q. Throughout, we let F = GF (q3) for a prime
power q and let K = GF (q) be the (unique) subfield of F of order q; we let F ∗ and
K∗ denote the corresponding multiplicative groups. We let ξ be a primitive element
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0 (1, 0, 1) 1 (1, ζ2, 1) 2 (1, 1, 0)
3 (1, ζ2, ζ2) 4 (0, 1, 0) 5 (1, ζ, ζ)
6 (0, 1, ζ) 7 (1, ζ, ζ2) 8 (1, ζ2, ζ)
9 (1, ζ2, 0) 10 (1, 0, 0) 11 (0, 1, 1)
12 (0, 0, 1) 13 (1, ζ, 0) 14 (1, 1, 1)
15 (0, 1, ζ2) 16 (1, ζ, 1) 17 (1, 0, ζ2)
18 (1, 0, ζ) 19 (1, 1, ζ2) 20 (1, 1, ζ)

Table 1: An isomorphism between graphs Diff(4) and B(4)

of F , and it turns out that the algebra is much simplified if the minimal polynomial
of ξ over K has a zero quadratic term. We therefore need the following lemma.

Lemma 3.1. If q is a prime power other than 4, then F = GF (q3) has a primitive
element with a minimal polynomial over K = GF (q) of the form x3 − (αx+ β) for
some non-zero α, β ∈ K.

Proof. By [5], there is a primitive cubic polynomial p(x) ∈ K[x] of the required form
provided q �= 4. Clearly β �= 0 since p is irreducible; and α �= 0 since a cube root of
an element in K must have multiplicative order at most 3(q − 1) and so cannot be
primitive in F .

The idea of the proof of isomorphism is to identify the vertex sets in Diff(q) and
B(q) in a natural way using Singer’s finite field construction of the perfect difference
set from Section 2. In Diff(q), the vertices are the elements of G = F ∗/K∗ and
in B(q), the vertices are vectors of the form x = (x0, x1, x2) with scalar multiples
considered the same vector. By choosing a basis for F as a 3-dimensional vector
space over K, we immediately have a bijection between the two vertex sets. If we
can find a K-basis for F such that this bijection becomes a graph isomorphism, then
we are done.

We are now ready to prove the main result of this section. The proof requires one
further small lemma, which is a standard result; see for example [11, Remark 6.25].

Lemma 3.2. Let q be a prime power and let b be any element of GF (q). Then there
exist c, d ∈ GF (q) such that c2 + d2 = b.

Theorem 3.3. Let q be any prime power. Then the graphs Diff(q) and B(q) are
isomorphic.

Proof. If q = 4, then an explicit isomorphism is given in Table 1. So suppose q �= 4.
By Lemma 3.1 there is a primitive element ξ of F such that ξ3 = αξ+β for non-zero
α, β ∈ K.

We will use the Singer difference set S on G = F ∗/K∗ given by the set of q + 1
cosets of the form S = {ξK∗} ∪ {(1 + tξ)K∗ : t ∈ K}. To simplify the notation, for
any pair of elements r, s ∈ F ∗ we will write r ∼ s if and only if rK∗ = sK∗.
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In the difference graph Diff(G, S), two distinct vertices ξiK∗ and ξjK∗ are adja-
cent if and only if ξiK∗ · ξjK∗ ∈ S, which translates into ξi+j ∼ ξ or ξi+j ∼ 1+ tξ for
some t ∈ K. Writing down ξi and ξj in terms of the basis {1, ξ, ξ2} of F over K, one
has ξi = x0 + x1ξ + x2ξ

2 and ξj = y0 + y1ξ + y2ξ
2 for some xi, yi ∈ K, i ∈ {0, 1, 2}.

Now, using ξ3 = αξ + β and ξ4 = αξ2 + βξ, the product ξiξj evaluates to

ξi+j = γ + δξ + (x0y2 + x1y1 + x2y0 + αx2y2)ξ
2

where γ = x0y0 + (x1y2 + x2y1)β and δ = x0y1 + x1y0 + (x1y2 + x2y1)α+ x2y2β. It is
now clear that the adjacency condition ξi+j ∼ ξ or ξi+j ∼ 1 + tξ for some t ∈ K is
satisfied if and only if the value of the symmetric bilinear form

B(x, y) = x0y2 + x1y1 + x2y0 + αx2y2

is equal to zero for the vectors x = (x0, x1, x2) and y = (y0, y1, y2) representing the
elements ξi and ξj; note that K∗-multiples of x and y represent the elements ξiK∗

and ξjK∗ of F ∗/K∗. This gives an isomorphism of our difference graph Diff(G, S)
onto a Brown-like graph P (K3,B) whose vertices are projective non-zero triples in
K3, with two vertices xK∗ and yK∗ adjacent if and only if B(x, y) = 0.

To complete the proof, we must show that the above bilinear form B is projectively
equivalent to the standard dot product A(x, y) = x0y0 + x1y1 + x2y2; that is to say,
there is a basis change matrix A which takes one to the other, up to a scalar multiple.
We let B be represented by the symmetric matrix

B =

⎛
⎝
0 0 1
0 1 0
1 0 α

⎞
⎠

so that B(x, y) = xByT . Similarly, A is represented by the 3 × 3 identity matrix I.
So we seek a matrix A such that ATBA = γI, for some non-zero γ.

By [9, Theorem 5.8] for odd q the bilinear form B is indeed projectively equivalent
to A. In [9] a method is given to explicitly construct a basis change matrix A.
Recalling that by Lemma 3.2 there exist c, d ∈ K with c2+ d2 = −1, for odd q it can
be checked that the following matrix A satisfies ATBA = −I:

A =

⎛
⎝
d− cα/2 −(c+ dα/2) −(1 + α/2)
c− d c + d 1
c d 1

⎞
⎠ .

If q is a power of 2, then the non-zero element α ∈ K has a unique square root√
α ∈ K, and then one can take

A =

⎛
⎝

√
α 0 0
0 1 0√
α−1 0

√
α−1

⎞
⎠ .

In either case, the basis (1, ξ, ξ2)A is a K-basis for F demonstrating the isomorphism
between Diff(q) and B(q).



G. ERSKINE ET AL. /AUSTRALAS. J. COMBIN. 80 (1) (2021), 48–56 54

4 A variation on the construction

As it stands, Brown’s construction (and hence also our difference graph construction)
may be used only to construct graphs of diameter 2 and maximum degree Δ = q+1
for some prime power q. In [14], the authors address this issue by modifying the
Brown graphs to have larger maximum degree, by adding edges to the basic Brown
graph. In this way they are able to construct asymptotically good graphs of diameter
2 for any given value of maximum degree Δ, having order equal to the order of the
Brown graph corresponding to the largest prime power q such that q + 1 ≤ Δ. In
this section we expand the ideas of our difference graph construction in Section 2,
and show that for certain values of the maximum degree we can use an alternative
to the construction in [14].

We begin with some necessary definitions. Let G be a group and let N be some
proper normal subgroup of G. Suppose N has order n and G has order mn. An
(m,n, k, λ) relative difference set R is a set of k elements of G with the property that
every element of G \ N occurs exactly λ times as a difference of distinct elements
r1, r2 ∈ R, and no non-identity element of N occurs at all. Our construction will use
the relative difference set in the following lemma, which is easily proved.

Lemma 4.1. Let p be an odd prime, let F be the field GF (p) and denote the additive
and multiplicative groups of F by F+ and F ∗ respectively. Let G = F+×F+ and let N
be the subgroup of G defined by N = {(0, a) : a ∈ F+}. Then R = {(a, a2) : a ∈ F+}
is a (p, p, p, 1) relative difference set for G relative to N .

The idea of our modified construction is to use the relative difference set R from
Lemma 4.1 to define most of the adjacencies in a graph of order q2, then add further
edges based on the ideas of Section 2 so that the resulting graph has diameter 2.

Let p be an odd prime, let F = GF (p), G = F+ × F+ and let R be the relative
difference set in Lemma 4.1. Let Γ0 be the graph with vertex set G and edges defined
as follows.

(a, b) ∼ (c, d) ⇐⇒ (ab) + (c, d) ∈ R

(As usual we suppress any loops in the above definition.)

From the definition of R, it is immediate that two arbitrary vertices (a, b) and
(c, d) in Γ0 are at distance at most 2 provided a �= c. We now use the construction of
Section 2 to handle adjacencies between vertices where a = c. To do this, we require
that our prime p must be of the form p = q2 + q + 1 for some prime power q. This
motivates the final definition of our graph as follows.

Let q be a prime power such that p = q2 + q + 1 is a prime. Let R be the
relative difference set in Lemma 4.1; let S be a perfect difference set for Zp and let
F = GF (p), G = F+ ×F+. Let Γ be the graph with vertex set G and edges defined
as follows:

(a, b) ∼ (c, d) ⇐⇒ (a, b) �= (c, d) and

⎧⎪⎨
⎪⎩

(ab) + (c, d) ∈ R

or

a = c and b+ d ∈ S

.
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It is easy to see that Γ has maximum degree Δ = p+ q+1, order p2 and diameter 2.

The graphs produced by this construction are asymptotically optimal, in the
sense that the order approaches Δ2 as Δ → ∞. For those values of Δ for which our
construction applies, we should note that the method in [14] of simply adding edges
to a Brown graph will in general yield a slightly larger number of vertices; however,
the construction here is new as far as we are aware.
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[1] M. Bachratỳ and J. Širáň, Polarity graphs revisited, Ars Math. Contemp. 8(1)
(2014), 55–67.

[2] D. Brahme, O. Bhardwaj and V. Chaudhary, Symsig: A low latency inter-
connection topology for HPC clusters, In: 20th Annual Int. Conf. on High
Performance Computing, IEEE (2013), 462–471.

[3] W.G. Brown, On graphs that do not contain a Thomsen graph, Canad. Math.
Bull. 9(2) (1966), 1–2.

[4] C. Camarero, C. Mart́ınez, E. Vallejo and R. Beivide, Projective networks:
topologies for large parallel computer systems, IEEE Trans. Parallel Distrib.
Systems 28(7) (2016), 2003–2016.
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