

















path Qz which contains the edge xy cannot be of length at most k, a
contradiction. Hence r # 0, proving the first part of the lemma.

Now suppose that t = 3 and uz € E', z #* W. Let Q3 be the
(m,n)-path in G of length at most k such that

QN E’ = {uz}.

Suppose that r = 1. Then s =k -1 and so me€ Ll(u) and
n e Lk—1(u)' If m = w, then Q3 has length greater than k, since uw ¢
Qs' Hence m # w and, similarly, m # z. Furthermore, every (m,n)-path
in G containing uw or uz of length at most k must contain the edge mu.
But then

(m,n) = d (m,n) > k

dg-g~ G-E’

where
E” = {um} v E’\{uw,uz} ,
contradicting the fact that G is (k,t)-critical. This proves that

r # 1 thus completing the proof of the lemma. o

Lemma 2.9 : lLet G € §(k,t), k=22, t =2, and E' = (e},ezp..,et) be
any set of t edges of G. If for any two vertices m and n of G with
dG(m,n) = k and dG_E,(m,n) > k there are t (m,n)-paths p1’P2’”"Pt

such that P.l n E = {ei}, i =1,2,...,t, then the paths Pl’Pz’”"Pt

are pairwise edge-disjoint.

Proof : Clearly if e € Pi fa) Pj' io= j, then dG_E”(m,n) =

dG_E,(m,n) > k, where E” = {e'} v E’\{ei,ej}, contradicting the fact

that G € §(k,t). This proves the lemma. o

We are now ready to prove the main result of this section.
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Theorem 2.1 : Let G e §(k,t), k 22, t =z 2. If ecG(u) = k, then

dG(u) = 2t - 2.

Proof : Let Ll(u) = {ul,uz,...,ue) and x € Lk(u). Then by Lemma 2.1
£=t and hence we only need to consider the case t =z 3. Since
G e S(k,t), there are in G at least t edge-disjoint (u,x)-paths of
length k. Let p1’P2""’Pt be any t such paths and without any loss of
generality suppose that uu; € Pi' i=1,2,...,t.

Now consider the t edges

E' = {uul,uuz,...,uu

where vy ¢ Pt' Then, by lemmas 2.5 and 2.8, .there exist vertices

m e Lr(u) and n € Ls(u) with d (myn) >k, r+ s =%kand s 2 r = 2.

G-E’

Further, dG(m,n) = k. Lemma 2.3 implies the existence of (m,n)-paths

Ql’Qz""’Qt’ in G, of 1length k with Qi n E = {uui} for 1 =
1,2,...,t-1 and Qt n E° = {xy}. These t paths are, by Lemma 2.9,
pairwise edge-disjoint. Now since each Qi' i=1,2,...,t-1, contains 2
edges incident to u, dG(u) = 2(t-1), as required. o

For the case when G € §(k,2), k = 4 or 5 we have the following

lower bound on the degree of a vertex of G having eccentricity k.

Lemma 2.10 : Let G e §(k,2), k =4 or 5. If ecG(u) = Kk, then

v
w

dG(u)

Proof : Suppose to the contrary that dG(u) =< 2. Then, by Lemma 2.1,
dG(u) = 2. Let Ll(u) = {v,Ww}, x € Lk(u) and P1 and P2 be the two

edge-disjoint (u,x)-paths in G. Without any loss of generality let
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uv € P1 and uw € P2. Now consider the edges E’ = {uv,xy}, where y ¢
Pz. Then, by lemmas 2.5 and 2.8, there exist vertices m e Lr(u)

and nsLs(u)withd (mn) >k, r+s=%kand s 2z r = 1.

G-E’
As in the proof of Theorem 2.1 there exist (m,n)-paths Q1
and Q2 in G of length k with Q1 n E’ = {uv} and 02 n E’ = {xy}.
If v preceeds u on Q1 then, since dG-uw(u’n) = k, we have
dG—uw(v’n) <=k - 1. Let R denote a (v,n)-path of length at most k -1

in G-uw. Now since k=4or 5 and s =r =z 1, we have r =1 or 2.

If r =1, then m=v and hence d (m,n) = d (m,n) sk -1, a

G~-E’ G-uw

contradiction. If r = 2, then mv € E(G), and hence,

R u {mv}
is an (m,n)-path of length at most k in G-E’, a contradiction. Hence v
does not preceed u on Qx' A similar argument will establish that u

cannot preceed v on Ql. Hence the lemma. a

3. MAIN RESULTS
In this section we prove that §(k,t) = ¢ for : k 2 2 and t = 3;
and (k,t) = (4,2) and (5,2). Thus the only unresolved case of Kys’

conjecture is k = 6, t = 2.
Theorem 3.1 : §(k,t) = ¢ for k = 2 and t = 3.

Proof : In view of Lemma 2.2 we need only prove that %(k,3) = ¢ for
k =z 2. Assume to the contrary that ¥(k,3) # ¢, k = 2, and let
G € §(k,3).

Let u be a vertex of G with ecG(u) = k. Let Ll(u) =

(ul,uz,...,ug} and x € Lk(u). Theorem 2.1 implies that £ =z 4. Since
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G € 5(k,3), there are at least three edge-disjoint (u,x)-paths of
length k. Let P:' P2 and P3 be three such paths and assume without any
loss of generality that uu, € Pi’ i =1,2,3. Now consider the edges
E' = {uul,uua,xy},

where y ¢ Pa‘ As in the proof of Theorem 2.1, there exist vertices
m e Lr(u) and n € Ls(u) with dG—E’ (myn) >k, r+s =%k, szr =2,
dG(m,n) = k and pairwise edge-~disjoint (m,n)-paths Q1’ Qz and Q3. in G,
of length k with Qi nE = {uui), for i = 1,2, and Q3 n E = {xy}.

Since s =z r = 2, k =r + s 2 4, thus we have nothing to prove for
k =< 3. For k =z 4 we establish our contradiction by considering the
distance decomposition of vertex m. Clearly u € Lr(m) and x € Ls(m).
Lemma 2.6 and its Corollary implies that either u,u, € Ll___i(m) (when
u, preceeds u on Ql) or u, u, € Lr+1(m) (when u preceeds u, on Ql).
Further, y is in L__ (m) or L_, (m).

Choose vertices m, m, € Ll(m) and n e L (m) such that

k-1
m ¢ Q1 V] Q2 V] Q3, m2 € Q2 and m1 ¢ Q1 V) Q2 V) Qa' Such vertices exist
since, by Theorem 2.1, both m and n have degree at least four. Let
E” = {mml,mmz,nnl}.
We will establish that d(G-E”) = k, contradicting the criticality of G.
Suppose to the contrary that d(G-E”) > k.
Then there exist vertices a € Lr*(m) and b € LS*(m) with

*

#*
dG*E"(a’b) >k and r + s = k. Further, by lemmas 2.3, 2.5, 2.8 and
* *
2.9 we have : r = 2, s =z 2; and pairwise edge-disjoint (a,b)-paths
Rl, Pl2 and Ra’ in G, of length k with Ri n E” = {mmi} for i = 1,2 and
R3 nE” = {nnl}.
Let H be the subgraph of G formed by taking the union of the

three paths Rl, R2 and Ra' Observe that H is a connected graph of

108




diameter k containing m and n. We will establish the required
contradiction by showing that H contains an (m,n)-path G of length at
most k such that G n E’ = ¢. Note that such a § would also be an
(m,n)-path of length at most k in G-E’, a contradiction.

We assume without any loss of generality that s* =z r*, Now we

distinguish three cases according to the value of r*.

Case 1 : 2 =r#% =r -1
In this case s* =2 s + 1 since k = r* + s* = r + s. Sincer = s
Wwe have r* =r - 1 <r =5 < s* =k - 2. The situation is depicted in

Figure 3.1 below. Note that in all our figures we write Li for Li(m)'

L L L L L

L. k-1 Ly

r* r s
....... @ ...@..- . cee

Figure 3.1

Consequently, since y 1is in LS'_l(m) or Lsﬂ(m), X € Ls(m) and

|R3| =k, xy ¢ Rs(b,n). Further, by Remark 1, the section R3(b,n)
contains neither uu, nor uu: Now if R2 n E’ = ¢, then

Rz(m,b) V] Ra(b,n)

is an (m,n)-path of length

[Rz(m,b)l + lRa(b,n)l =g* + k - s* =k

in G-E’, a contradiction. Hence R2 nE #¢ .
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Suppose uu1 € Rz‘ If m2 preceeds m on Rz’ then the subgraph

Rz(a'mz) U Qz(mz'U) ] Rz(u,b)

contains (see Figure 3.2) an (a,b)-path of length at most

(r* —=1) + (r - 1) + (s* - r) =r* + g* - 2 <k

Figure 3.2

having no edges of E”, a contradiction. Hence m preceeds m, on Rz'
But then the subgraph

Rz(a,m) V] Ql(m,u) V] Rz(u,b)

contains (see Figure 3.3) an (a,b)-path of length at most

r¥* +r +s* -r =k,

Figure 3.3
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containing no edges of E”, again a contradiction. So uu, ¢ Rz‘
Similarly uu2 ¢ Rz'

The only possibility then is for Xy € sz. In this case Xxy ¢
R1 V] Ra' Consequently, if Ra n {uui,uuz) = ¢, then the subgraph

R (m,p) U R (b,n)
contai’ns‘an (m,n)-path of leng"t’hg&at‘ most s* + k - s* = k in G-E’, a
éonfr'ad::i‘ciion. Hence R1 n {uu:1 ,:ﬁuz}'* -
S\.lppose;\.m1 ‘e R1' If m precee§s mi\vbn Rl,ﬂ then the subgraph

R (a,m) v Q "tni,u)*umni(u,b)

=3

cont@lns Lsee Flgure 3. 4) an (a b)—path “of 16ngth at most

r*+*“r+s*—r=k

- ' Figure 3.4

having no.edges.of E”, a contradiction, Therefore m ~preceeds m on R .
But then, by ‘Lemma 2.6 and - its Corollary, m, preceeds m on "Rz.
Consequently the subgraph

ot

o ‘R(am)uQ(mu)uR(ub)

oontains (see Figure -3.5) an, (a b) path of length at most

e

gy e r* k—)1\+ r - Lk+ s* -.r k‘— 2

. L



*
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Figure 3.5

having no edge of E”, again a contradiction. hence uu, 3 Rf
Similarly uu, € R1' Therefore R1 n {uul,uuz} = ¢ and hence xy ¢ RZ

This completes the proof for Case 1.

Case 2 : r% = r

In this qase s* = s and so a,u € Lr(m) and b,x € Ls(m). Note
that a could be u and b could be x. Suppose first that a = u. Then
b # x, since otherwise Ql(u,m) V] Q3(m,x) would be a (u,x)-path in
G-E” of length k. Consequently, since r = s, |R3{ =k, be Ls(m)’and
in view of Remark 1, R3(b,n) n E’ = ¢. Therefore if R2 nE" = ¢, then
as in Case 1

Rz(m,b) v R3(b,n)

is a (m,n)-path of length k in G-E’. Hence R2 nE = ¢.
Suppose that uu1 € Rz' If m, preceeds m on Ra’ then the subgraph

Ql(a,m) V] Rz(m,b)

contains an (a,b)-path of length k having no edges of E”, a
contradiction. Hence m preceeds m, on Rz' But then the subgraph

Qz(u,mz) v Rz(mz,b)
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contains an (a,b)-path of length (r* - 1) + (s* - 1) < k having no
edges of E”, again a contradiction. Hence uu, [ Rz' Similarly uu, [
Rz. So the only possibility is for xy € R2 and hence y € Ls-1(m)' But
then, noting Remark 1, we must have b = x, a contradiction. This
proves that a = u.

Again we will prove that R2 nE = ¢. Suppose this is not the
case. Since a, u € Lr(m) and a # u, if uu, € R2 or uu2 € Rz’
then m preceeds u on R2. Similar to the proof of Case 1, we have
R, N {uul,uuz} =¢and R n {uulﬂn%} = ¢. The ohly possibility is
for xy € R2 and hence xy ¢ R1 V] Ra' Recall that b € Ls(m).
Consequently if r < s, then clearly b # u and when r = s, then by a
similar argument that used in case a = u, we can establish that b # u.
Consequently, R3(b,n) n (uul,uua} = ¢ and thus R3(b,n) n E’ = ¢. But
then

Rz(m’b) u Rg(b,n)

is an (m,n)-path of length k in G-E’, a contradiction. Thus xy ¢ R2
and hence R2 nE =¢. Now if xy ¢ Ra(b,n), then

Rz(m,b) V] R3(b,n)

is an (m,n)-path of length k in G-E’, a contradiction. Hence xy €
R3(b,n). Consequently, since a # u, Ra(a,n) nE’ = ¢. But then

Rz(m,a) Y] Ra(a,n)

is an (m,n)-path of length k in G-E’, a contradiction. This completes

the proof of the Case 2.

Case 3 : r¥ =z pr + 1

In this case, since r* + s*¥ =1 + s we have r + 1 = r* =
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s* = s - 1. Hence r =s - 2. Now since, X € Ls(m) and |R1[ = |R2| = k,
we have xy ¢ R1 V] Rz' Further, R3 n {uul,uuz} = ¢ since {Ra] = k,
u € Lr(m), rss-2and s¥*zr + 1. As in the previous cases we show
that R2 nE =¢.
Suppose that uu, € Rz' If m, preceeds m on Rz, then one of the

fellowing subgraphs occurs :

Rz(a,u) v Ql(u,m) v} Rz(m,b)
or

Rz(a,mz) v Q,(m,u) v Rz(u,b)
As each of. these contains an (a,b)-path of length at most k having no
edges of E”, we have a contradiction. Hence m preceeds m, on Ra' But
then one of the following subgraphs occurs :

Rz(a,u) v, Qz(u,mz) v Rz(mz,b)
or

Rz(a,m) v} Qi(m,u) v} Rz(u,b)

As each of these contains an (a,b)-path of length at most k having no
edge of E”, we again have a contradiction. Hence uu, [ Ra' Similarly
uu_ € R_and so R_ n E’ = ¢.
2 2 2
Now if xy € R3(a,n), then Rz(m,b) V] Ra(b,n) is an (m,n)-path of

length k in G-E’, a contradiction. Hence xy ¢ Ra(a,n). If xy e
R3(b,n), then

R_(m,a) v R_(a,n)

2 3
is an (m,n)-path of length k in G-E’, again a contradiction.
Consequently R3 n E’ = ¢. Hence R2 v} R3 contains an (m,n)-path of
length k containing no edges of E’, a contradiction. This completes

the proof of the theorem. o
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We now consider the case (k,t) = (4,2). We begin with the

following lemma.

Lemma 3.1 : Let G € §(4,2) and E’ = {uv,xy} be edges of G such that

dG(u,x) =d (u,x) = 4. If me Lr(U) and n € Ls(u), dG_E,(m,n) > 4,

G-E’

then either r = 1 or s = 1.

Proof : The situation here is very similar to that in the proof of
Theorem 3.1. Thus there exists (m,n)-paths 01 and Qz, in G, of
length 4 with Q1 n E’ = {uv} and (),2 n E’ = {xy}. Further, there are
edges E” = {mmi,nnl) with m ,n ¢ Q1 v QZ. There exist vertices

a € Lr,(m) and b € LS*(m) with d. (a,b) > 4, r* + s* =4 and

N
(a,b)-paths H1 and Rz’ in G, of length 4 with R1 n E” = {mml}
and R, n E” = {nnl).

The subgraph R1 v} Rz is a cycle of length 8 containing the
vertices m and n. Consequently E’ ¢ R1 V) Rz' since otherwise there
would exist an (m,n)-path of length 4 not containing edges of E’.

Now assume that r # 1 and s = 1. Then, by lemmas 2.5 and 2.8,
rz2, sz2, andr +s =4. Thusr =s = 2. We can without any loss

of generality assume that v preceeds u on Q1 and r* = s*. We now

distinguish two cases according to the location of x and y on Qz.

Case 1 : x preceeds y on 02

The situation is depicted in Figure 3.6
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Figure 3.6

Suppose first that r* = 1. Then a € Ll(m) and b € La(m). Since
mn € Rz and |R2| = 4, bn € E(G). If a = v, then R1 n E’ = {xy} since
E' < R1 V] R2 and R1 has length 4 and passes through ml. But theny =b
and heéence Ql(v,n) v {ny} is an (a,b)-path of length 4 in G-E”, a
contradiction. Hence a # v. By Lemma 2.10, dG(a) = 3. Thus there
exists a vertex a € NG(a)\(R1 ] Rz}' Hence, by Lemma 2.7 dG(a1’b)

= 3. Since dG (a,b) > 4, the (al,b)—path R of length 3 must contain

-E”
one of the edges E”. The only possibility is for a eL(m), nmn e R
and thus xy ¢ R. But then '{ma,aal} v} ﬁ(al,n) is an (m,n)-path of
length 4 in G-E’, a contradiction. This proves that r* = 1.

Next we suppose that r* = 2. Then a,b € Lz(m). Suppose a = u.
Since Ql(u,m) V] Qz(m,x) is a (u,x)-path of length 4 in G-E”, b = x.
But then xy ¢ R U R, otherwise lR1| or ]Ral is greater then 4, a
contradiction. Hence a # u. By the same argument we establish that a,

b, u and x are distinct vertices. Since |R1l = |K = 4, neither R

2|
nor Rz contains xy. But then E’ ¢ R1 v Rz’ a contradiction. This

completes the proof of Case 1.
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Case 2 : y preceeds X on Qz

The situation is depicted in Figure 3.7

Figure 3.7

Clearly, if a = u (a = x), then b # x (b # u). Since mm € R, |R1| =

4, nn_ € R_ and |R_| = 4 we must have [R. nE] =1 and IR, n E'| = 1.
1 2 2 1 2

Further, if ]R1 n E’'| = 1, then R2 A E = ¢. Hence E’ ¢ F{1 v Rz' a

contradiction. This completes the proof of the lemma.
Theorem 3.2 : §(4,t) = ¢ for t = 2.

Proof: In view of Lemma 2.2 we need only prove that §(4,2) = ¢.
Assume to the contrary that $(4,2) # ¢ and let G € §(4,2).

Letting u and x be vertices of G with dG(u,x) = 4 and following
the same line of argument as in the proof of Theorem 3.1 we define
edge-disjoint (u,x)-paths P1 and P2 of length 4 with uv € P1 and uw €
Pz' Further, we define

E’ = {uv,xy}
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where y ¢ Pz' Observe that d (u,x) = 4. Hence, by Lemma 3.1 there

G-E’

exists vertices m € L1(U) and  n € Ls(u) with d (m,n) > 4. We

G-E’

, R and R2 as in the proof of Lemma 3.1.

take E”, a, b, Q1’ Q 1

2
Further, we assume without any loss of generality that r* = s*, Ve

distinguish three cases according to the location of v and u on Qiand X

and y on Qz'

Case 1 : v preceeds u on Q1 and x preceeds y on Q2

Then y = n and m = v. Figure 3.8 depicts the situation.

Observe that xyeRl, since mm, ER1 and |R = 4. Similarly

N

uv ¢ Rz' As in the proof of Lemma 3.1, E’ ¢ R1 V] Rz' Consequently
uv € R1 and xy € Rz‘

First suppose that r* = 1. Then a = u or m, since uv € R1 and
|R1[ = 4. Further bn € E(G) since nn € R2 and |R2[ =4, If a = u,
then b # x and a must preceed m on Rl. But then‘Rl(m,b) v {bn}. is an
(m,n)-path of length 4 in G-E’, a contradiction. Therefore a # u.

Hence a = ml. Similarly b = nl. Now every (a,b)-path T of length 4,
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in G, must contain exactly one edge of E”. Further, if nm & T (nln €
T), thenmu € T (xy € T), for otherwise T(m,b) v {bn} ({mml} V] T(ml,n))
is an (m,n)-path of length 4 in G-E’, a contradiction. Now dG_E,(a,b)
> 4, a € Lz(u) and b € Lz(u), contradicting Lemma 3.1. Hence r* = 1.
The only possibility is r*¥ = g* = 2, Recall that uv € R1 and xy
€ Rz. Without any loss of generality we may take R1= (a, u, m, m, b).
Because dG(u,x) = 4, R2 = (b, X, ¥, D a). Since dG(a) z 3, there is
a vertex a ¢ R1 V] R2 that is adjacent to a. By Lemma 2.7, dG(a,b) = 3.
Hence because of the property of (a,b)-paths mentioned above « € Ll(m)
or Lb(mL Now o € LE(m), since otherwise {mo,ca} v R2 (a,n) is an

3y

(m,n)-path of length 4 in G-E‘. Hence a € Ls(m). But then (e, n, n,
b) is an (a,b)-path of length 3 in G, implying that n, is joined to

‘both a and b, a contradiction. This completes the proof for Case 1.

Case 2 : V preceeds u on Q1 and y preceeds X on Qz

Then v = mand y € Lz(m). Figure 3.9 depicts the situation.

Figure 3.9
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Observe that uv ¢ Rz' since nn, € R2 and |R2‘ = 4, Hence, since E’ ¢

R UR_, uv € R_.
1 2 1

Now suppose that r* = 1. Then a = u or m since uv € R1 and

!R = 4, As in Case 1 above a # u. Consequently a = m . Since

.|

dG(a) = 3, there is a vertex B ¢ R1 v} R2 that is adjacent to a. By
Lemma 2.7, dG(B,b) = 3. Let S be a (B,b)-path of length 3. Since

dG-E"(a'b) > 4, S must contain mm1 or nnl. Therefore, since b € Ls(m)’

B e Lz(m). Now, since S = (B, n, n, b), (m, m B, n, n) is an

(m,n)-path of length 4 in G-E’, a contradiction. Hence r* = 1.

The only possibility is for r* = s* = 2. Since xy € R2 one of a
or b must be y. Suppose without any loss of generality, b = y. Then
R2 =(y, X, n, n, a). If am, e E(G), then {mml,mia} V] Rz(a,n) is an

(m,n)-path of length 4 in G-E’, a contradiction. Hence am, ¢ E(G) and

thus R1 =(a, u, m, m, b). Now applying the same argument as in the

1

corresponding case in Case 1 will yield the desired contradiction.

Case 3 : u preceeds v on Q1 and y preceeds x on 02

The situation is depicted in Figure 3.10.

Figure 3.10
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Suppose that r* = 1. Then a € Ll(m) and b € L3(m). Since nn €

Rz and ‘Rz‘ = 4, bn € E(G). If a # u and m, then uv ¢ R1 V] Rz’ since
lR1| = ]th = 4. Consequently E’ ¢ Ry R, 2 contradiction. Hence
a = u or m. Now using a similar argument as in Case 1 above

1

establishes r* = 1.

The only possibiiity is r* = s* = 2. Then a, b € Lz(m). Suppose
a = v. Since Ql(v,m) v} Qz(m,y) is a (v,y)-path of length 4 in G-E",
b # y. But then xy ¢ R UR,, otherwise 1R1| or }Rzi is greater than

4, a contradiction. Hence a # V. By the same argument we establish

that a, b, v and y are distinct vertices. Since |R1| = [R2| = 4,
neither R1 nor Rz contains Xy. Consequently E’ ¢ R1 v} Rz‘ a
contradiction. This completes the proof of the theorem. o

The method of proof used in Lemma 3.1 and Theorem 3.2 can be
applied to the case k = 5 with very little change. In fact, conclusion
of the Lemma 3.1 is valid for k = 5. We do not detail the case
analysis here but simply state the result. However, the methods do not

extend beyond k = 5 and so the cases k = 6, t = 2 remain unresolved.

Theorem 3.3 : &(5,t) = ¢ for t = 2. o
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