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ABSTRACT: 

Let G be a simple undirected graph with edge set E(G) and 

diameter k. G is said to be strongly t-edge-cri tical or simply 

(k,t)-critical if for any E' ~ E(G), G-E' has diameter greater than k 

if and only if I E' I ~ t. . (k, 1)-Critical graphs have been studied by 

many authors. P. Kys conjectured that there is no (k,t)-critical graph 

for k ~ 2, t ~ 2. To date this conjecture has been established for : 

k = 2; k = 3; k = 4, t ~ 3; and for k ~ 2, t ~ k. In this paper, we 

prove the conjecture for k ~ 2, t ~ 3 and for k = 4 and 5. 

1. INTRODUCTION 

All graphs considered in this paper are finite loopless and have 

no multiple edges. For the most part our notation and terminology 

follows that of Bondy and Murty [11. Thus G is a graph with vertex set 

V(G), edge set E(G) and minimum degree o(G). The distance dG(x,y) 

between two vertices x and y in G is defined as the length of the 
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shortest (x, y)-path in G; if there is no path connecting x and y we 

define dG(x,y) to be infinite. The diameter of a graph G, denoted 

d(G), is defined to be the maximum distance in G; that is 

d(G) max {dG(X,y)} 

x,yeV(G) 

Note that for any E' ~ E(G), d(G-E') ~ d(G). 

Let G be a graph having diameter k. G is said to be strongly 

t-edge-critical or simply (k.t)-critical if for any E' ~ E(G), G-E' has 

diameter greater than k if and only if I E' I ~ t. Denote the class of 

(k,t)-critical graphs by ~(k.t). 

(k, 1) -cri tical graphs do exist. For example : ~(k, 1) contains 

the cycle of length 2k and 2k + 1; ~(2.1) contains the well known 

Petersen graph and the class of complete bipartite graphs. The class 

§'(k, 1) has been studied by many authors - see for example [2-6, 8]. 

There are many open problems concerning this class, the most well known 

being the conjecture of Plesnik [8] and Simon and Murty [2] that a 

graph G e §'(2,1) has at most L i v
2 J. v = IV(G)I, edges and this bound 

is attained if and only if 

This conjecture has recently been established by FUredi [3] 

for extremely large v. 

For t ~ 2 the class ~(k,t) has been studied only by Kys [7]. He 

conjectured that ~(k,t) = ~ for k ~ 2, t ~ 2. Further, he established 

the conjecture for about half the cases : for k = 2; k = 3; k = 4 

and t ~ 3; and for t ~ k ~ 2. In this paper, we prove that the 

conjecture holds for : k ~ 2, t ~ 3; and for k = 4 and 5. This leaves 
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the only unresolved cases as : k ~ 6, t = 2. 

We present our main results in Section 3. In the next section we 

study the properties of (k, t)-critical graphs which are crucial in 

establishing our main results. 

2. PROPERTIES OF (k.t)-CRITICAL GRAPHS 

Let G be a graph of diameter k and u any vertex of G. The 

eccentricity of u, denoted ecG(u), is defined as 

Let L.(u) denote the vertices of G that are at a distance i from 
1 

u, i = 0,1,2, ... ,ecG(u). We call {L
i 

(u): i 0, 1 , ... ,ec
G 

(u)} the 

distance decomposition of V(G) from the vertex u. 

We denote the length of a path P in G by Ipl. Further, for 

E' ~ E(G), P A E' denotes the set of edges of G which belong to P and 

E'. We now state a number of results of Kys [7] which we make use of 

in our work. 

Lemma 2.1: If G E ~(k,t). then o(G) ~ t. o 

Lemma 2.2: If ~(k,t) <p. then ~(k,t+1) <p. o 

Lemma 2.3: Let G e ~(k.t), k ~ 2, t ~ 2, and E' = {e
l
,e

2
, ... ,e

t
} be 

any set of t edges of G. Then for any two vertices m and n of G with 

dG- E, (m, n) > k there are t (m,n)-paths P
l

' P
2 
•••• , Pt in G such 

o 
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Lemma 2.4 : Let G E ~(k,t), k ~ 2, t ~ 2, and u a vertex of G having 

ecG(u) = k. Then no two vertices of Lk(u) are joined in G. o 

Lemma 2.5: Let G E ~(k,t), k ~ 2, t ~ 2, and u, x be vertices of G 

with dG(u,x) = k. Let E' be a set of t edges of G containing the edges 

uv and xy with vEL (u) 
1 

and Y E L
k

_
1
(u). If for mEL (u) 

r 
and 

n E (u), dG_E,(m,n) > k, then r + s = k. Furthermore, if every edge 

of E'\{uv,xy} is incident to u or x,then dG(m,n) = k. o 

Note that the m and n in the above lemma exist for some rand s 

since G is (k,t)-critical. 

To establish our main results we need, in addition to the above 

mentioned lemmas, a number of further properties concerning the class 

~(k,t). Before presenting these new results we need to introduce some 

further terminology. 

Let P be an (a,b)-path in a graph G. We say that the vertex x 

preceeds y on P if the (a,y)-section of P, denoted by P(a,y), contains 

the vertex x. 

Our first lemma is essentially an extension of Lemma 2.5. 

Lemma 2.6: Let G E ~(k,t), k ~ 2, t ~ 2, and u. x be vertices of G 

with dG(u,x) = k. Let E' be a set of t edges of G containing the edges 

uv and xy with vEL (u) 
1 

and YEL
k

_
1
(u). If for mEL (u) and 

r 

n E Ls(u), dG_E,(m,n) > k, then there exists an (m,n)-path PI in G of 

length at most k containing the edge uv such that either 

0) !p (m,v)! = r - 1 and IP (u,nJ! = s 
1 1 
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or 

Proof: Lemma 2.3 implies the existence of an (m,n)-path P1 of length 

at most k containing the edge uv. So we need only establish that P
1 

satisfies condition (i) or (ii). Suppose that v preceeds 

Then clearly IP1(m,v)1 ~ r - 1 and IP1(u,n)1 ~ s. Further 

IP1(m,v)1 = IP11 - IP1(u,n)1 - 1:s k - s - 1, 

and hence, since by Lemma 2.5, r + s = k, 

IP (m,u)1 :s r - 1. 
1 

u on P . 
1 

This proves (i). When u preceeds v on P
1 

the same argument yields 

(ii). This completes the proof of the lemma. Cl 

Corollary: Assume the hypothesis of Lemma 2.6 and let uw be an edge of 

E"{uv,xy}. If P
2 

is an (m,n)-path of length at most k in G containing 

the edge uw, then w preceeds u on P
2 

if condition (i) of Lemma 2.6 

holds. 

Proof: Suppose that condition (i) of Lemma 2.6 holds and u preceeds w 

on P
2

. Then condition (ii) of Lemma 2.6 holds for P
2

. But then, by 

Lemma 2.3 

contains an (m,nJ-path in G-E' of length at most r + s k, a 

contradiction. This completes the proof. Cl 

Remark 1 : If the length of Pi' i = 1, 2 is exactly k, then at most two 

edges of P. 
1 

join vertices of L. (u) 
J 
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k - 1. Furthermore, there is exactly one edge of P. between L.(u) and 
1 J 

L. (u) for r ::$ j ::$ S - 1. 
J+l 

In the proofs that follow we make frequent use of the following 

simple fact which follows from Lemma 2.4. 

Lemma 2.7 : Le t G E !:'1 (k, t ), k z:: 2. t z:: 2. k, then 

dG(V,x) = k - 1 for every v E NG(u). o 

Our next two lemmas are important in establishing a lower bound 

on the degree of vertices of G E !:'1(k,t) having eccentricity k. 

Lemma 2.8: Let G E !:'1(k,t), k z:: 2, t z:: 2, and u, x be vertices of G 

k. Let PI be a (v,x)-path, v E L
1

(U), in G of length 

k - 1 and E' a set of t edges of G\{uv v ECP
1
)} containing the edges uw 

and xy. If for m E Lr(u) and nELs (u), dG- E, Cm,n) > k and r + s = k, 

then r z:: and S z:: 1. Moreover, if t z:: 3 and there are at least two 

edges of E' incident to u, then r z:: 2 and s z:: 2. 

Proof Without any loss of generality suppose that r ::$ s. We need to 

prove that r ~ O. By Lemma 2.3 there exists (m,n)-paths Q
1 

and Q
2 

in G 

of length at most k such that 

Q
1 

{\ E' {uw} 

and 

Q
2 

{\ E' = {xy}. 

If r = 0, then s = k and thus m = u and n E LkCul. Since P is a 
1 

(v,x)-path in G-E' of length k and uv E E', n ~ x. But then the 
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path Q
2 

which contains the edge xy cannot be of length at most k, a 

contradiction. Hence r * 0, proving the first part of the lemma. 

Now suppose that t :!!; 3 and uz E E'. Z * w. Let Q
3 

be the 

(m,n)-path in G of length at most k such that 

Q
3 

f'I E' = {UZ}. 

Suppose that r = 1. Then s = k - and so mEL (u) and 
1 

n E Lk_1(u). If m = w, then Q
3 

has length greater than k, since uw E 

Q3' Hence m * wand, similarly, m * z. Furthermore, every (m,n)-path 

in G containing uw or uz of length at most k must contain the edge mu. 

But then 

where 

E" = {urn} v E'\duw,uz} • 

contradicting the fact that G is (k,t)-critical. This proves that 

r * 1 thus completing the proof of the lemma. o 

Lemma 2.9: Let G E ~(k,t), k:!!; 2, t :!!; 2, and E' = {e1,e
2

, ... ,et } be 

any set of t edges of G. If for any two vertices m and n of G wi th 

k and dG- E, (m,n) > k there are t (m,n)-paths P
1

'P
2
'··· 'P t 

such tha t Pi f'I E' = {e i } , i = 1,2, ... , t, then the paths P l' P 2' ... ,P t 

are pairwise edge-disjoint. 

Proof : Clearly if e' i * j, then dG- E" (m, n) ~ 

dG_E,(m,n) > k, where E" = {e'} v E',,{ei,e
J
}, contradicting the fact 

that G e ~(k,t). This proves the lemma. o 

We are now ready to prove the main result of this section. 
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Theorem 2.1: Let G E ~Ck.t), k ~ 2, t ~ 2. If ecGCu) 

dG(u) ~ 2t - 2. 

k, then 

Proof 

t ~ t and hence we only need to consider the case t ~ 3. Since 

G E ~(k, t). there are in G at least t edge-disjoint (u,x)-paths of 

length k. Let P
1
'P

2
' ... 'P t be any t such paths and without any loss of 

generality suppose that uUi E Pi' i = 1,2, ... ,to 

Now consider the t edges 

where y ~ Pt' Then, by lemmas 2.5 and 2.8, there exist vertices 

m E Lr(u) and n E LsCu) with dG- E, Cm,n) > k, r + 5 = k and s ~ r ~ 2. 

Further, dG(m,n) = k. Lemma 2.3 implies the existence of (m,n)-paths 

{uu.} for i 
1 

1,2, ... ,t-1 and Qt (\ E' = {xy}. These t pa ths are, by Lemma 2. 9, 

pairwise edge-disjoint. Now since each Q
i

, i = 1,2, ... ,t-1, contains 2 

edges incident to u, dG(u) ~ 2(t-1), as required. o 

For the case when G E ~(k,2), k = 4 or 5 we have the following 

lower bound on the degree of a vertex of G having eccentricity k. 

Lemma 2.10 Let G E ~Ck,2), k 4 or 5. k, then 

Proof Suppose to the contrary that dGCu) ~ 2. Then, by Lemma 2.1, 

2. Let Ll Cu) = {v,w}, x E LkCu) and PI and P
2 

be the two 

edge-disjoint (u,x)-paths in G. Without any 105S of generality let 
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UV E P1 and uw E P
2

. Now consider the edges E' = {uv,xy}, where y ~ 

P. Then, by lemmas 2.5 and 2.8, there exist vertices m E L (U) 
2 r 

and n E L (u) 
s with dG- E, (m,n) > k, r + s = k and s ~ r ~ 1. 

As in the proof of Theorem 2.1 there exist (m,n)-paths Q
1 

and Q
2 

in G of length k with Q
1 

A E' = {uv} and Q
2 

n E' = {xy}. 

If v preceeds u on Q
1 

then, since dG- uw (u, n) :s k, we have 

dG_uw(v,n) :s k - 1. Let R denote a (v,n)-path of length at most k - 1 

in G-uw. Now since k = 4 or 5 and s ~ r ~ 1, we have r = 1 or 2. 

If r = 1, then m:: V and hence dG- E, (m, n) = d
G

- uw (m, n) :s k - 1, a 

contradiction. If r = 2, then mv E E(G), and hence, 

R v {my} 

is an (m,n)-path of length at most k in G-E', a contradiction. Hence v 

does not preceed u on Q1' A similar argument wi 11 establish that u 

cannot preceed v on Q1' Hence the lemma. D 

3. MAIN RESULTS 

In this section we prove that ~(k,t) = ~ for: k ~ 2 and t ~ 3; 

and (k, t) = ( 4 , 2 ) and ( 5 , 2 ) . Thus the only unresolved case of Kys' 

conjecture is k ~ 6, t = 2. 

Theorem 3.1 ~(k,t) ~ for k ~ 2 and t ~ 3. 

Proof: In view of Lemma 2.2 we need only prove that ~(k,3) = ¢ for 

k ~ 2. Assume to the contrary that ~(k,3) *~, k ~ 2, and let 

G E ~(k,3). 

Let u be a vertex of G with ecG(u) k. Let L (u) 
1 

{U
1

,U
2
"" ,Ut} and x E Lk(u). Theorem 2.1 implies that t ~ 4. Since 
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G E §'(k,3), there are at least three edge-disjoint (u,x)-paths of 

length k. Let Pl' P2 and P3 be three such paths and assume without any 

loss of generality that uUi E Pi' i = 1,2,3. Now consider the edges 

where y E P3. As in the proof of Theorem 2.1, there exist vertices 

mEL (u) and n E L (u) with dG- E, (m,n) > k, r + s = k, s ~ r ~ 2, r s 

dG(m,n) = k and pairwise edge-disjoint (m,n)-paths Q1' Q2 and Q3' in G, 

of length k with Q
i 
~ E' = {uu

i
}, for i = 1,2, and Q

3 
~ E' = {xy}. 

Since s ~ r ~ 2, k = r + s ~ 4, thus we have nothing to prove for 

k :S 3. For k ~ 4 we establish our contradiction by considering the 

distance decomposition of vertex m. Clearly u E Lr(m) and x E Ls(m). 

Lemma 2.6 and its Corollary implies that either u
l

' u2 E Lr - 1 (m) (when 

u
l 

preceeds u on Ql) or u
l

' u2 E Lr+l (m) (when u preceeds u
l 

on Ql)' 

Further, y is in L
S

_
1

(m) or L
S

+
1

(m). 

Choose vertices mEL (m) 
2 1 

and such that 

m
l 

E Q
1 

U Q
2 

U Q3' m2 E Q2 and n
1 

E Q
1 

U Q2 U Q3' Such vertices exist 

since, by Theorem 2.1, both m and n have degre~ at least four. Let 

We will establish that d(G-E") = k, contradicting the criticality of G. 

Suppose to the contrary that d(G-E") > k. 

Then there exist vertices a E Lr*(m) and b E Ls.(m) with 

• * 
dG_E,,(a,bl > k and r + s = k. Further, by lemmas 2.3, 2.5, 2.8 and 

* * 2.9 we have: r ~ 2, s ~ 2; and pairwise edge-disjoint (a,b)-paths 

R
I

, R2 and R3, in G, of length k with Ri ~ E" = {mmi} for i = 1,2 and 

R3 (\ E" = {nn
1
}· 

Let H be the subgraph of G formed by taking the union of the 

Observe that H is a connected graph of 
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diameter k containing m and n. We will establish the required 

contradiction by showing that H contains an (m,nl-path Q of length at 

most k such that Q () E' = cp. Note that such a Q would also be an 

(m,nl-path of length at most k in G-E', a contradiction. 

We assume without any loss of generality that s* 2: r*. Now we 

distinguish three cases according to the value of r*. 

Case 1: 2 ~ r* ~ r - 1 

In this case s* 2: s + 1 since k = r* + s* = r + s. Since r ~ s 

we have r* ~ r - 1 < r ~ s < s* ~ k 2. The situation is depicted in 

Figure 3.1 below. Note that in all our figures we write Li for Li (m). 

L 
1 L r * L 

r 
L 

Figure 3.1 

L 
s* 

L 
k·l 

Consequently, since y is in L
S

_
1

(ml or L
S

+
1

(m), x E Ls(m) and 

Further, by Remark 1, the section R3 (b. n) 

contains neither uu nor uu. Now if R () E' 
1 2 2 

cp, then 

is an (m,n)-path of length 

in G-E'. a contradiction. Hence R2 () E' ~ cp . 

109 



Suppose uu
1 

e R
2

. If m
2 

preceeds m on R
2

, then the subgraph 

R
2

(a,m
2

) v Q2(m2,u) v R
2

(u,b) 

contains (see Figure 3.2) an (a,b)-path of length at most 

(r· - 1) + (r - 1) + (s* - r) = r* + s* - 2 < k 

m 
n 

Figure 3.2 

having no edges of Ell. a contradiction. 

But then the subgraph 

Hence m preceeds m
2 

on R
2

. 

R
2

(a,m) v Ql(m,u) v R2(u,b) 

contains (see Figure 3.3) an (a,b)-path of length at most 

r* + r + s* - r = k, 

m 

Figure 3.3 
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containing no edges of E", again a contradiction. So uu f! R. 
1 2 

Similarly uu
2 

f! R
2

. 

The only possibili ty then is for xy e R
2

. In this case xy f! 

Rl V R
3

• Consequently, if Rl A {UU
1
,uu

2
} = ~, then the subgraph 

Rl(m~p) v R
3

(b,n) 

contains an (iii,n)-path of lepgth" at Illost s* + k - s* k in G-£', a 

contradiction. 

Suppose uu
1 

e Rl 

Hence R A {uri ,UU } :I- ~. 
112 

If m preceeds m~ on R
1

, then the subgraph 

Rl',(a~m) v Q1Cm.u)v,R1(u,b) 

~, 

CO{lJ~~ins lsee Figure 3.4) an (a.'9)-::path'of" length at 1)10st 

m 

Figl,lre 3.4 

having no .... e~~~.,pf £", a contradicJio:Q~ Therefore m1 
preceeds m on R

1
. 

But then, by Lemma 2.6 

Consequently_the subgraph 

and' its Corollary. m 
2 

preceeds m on 

contains (see Figure-3.S) an. (a,b)-path of length C!t most 

r* - 1 + r - 1., + s* -. r = \C - 2 

111 
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m 

... 
• * 

• • • R (a,b) • 2 

a 

...• 
............................................. 

Figure 3.5 

n 

b 

having no edge of E", again a contradiction. hence uu E R. 
1 1 

Similarly uu2 E R
1

. 

This completes the proof for Case 1. 

Case 2 : r* = r 

In this case s* = s and so a,u E Lr(m) and b,x E Ls(mL Note 

that a could be u and b could be x. Suppose first that a = u. Then 

b '* x, since otherwise Ql(u,m) v Q3(m,x) would be a (u,x)-path in 

G-E" of length k. Consequently, since r :5 s, 1R31 = k, b E Ls(m) and 

in view of Remark 1, R3(b,n) n E' =~. Therefore if R2 nE' = ~, then 

as in Case 1 

is a (m,n)-path of length k in G-E', Hence R2 n E' '* ~. 

Suppose that uU
l 

E R
2

, If m
2 

preceeds m on R
2

, then the subgraph 

contains an (a,b)-path of length k having no edges of E", a 

contradiction, Hence m preceeds m
2 

on R
2

, But then the subgraph 

Q2(u,m
2

) v R2(m
2
,b) 
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contains an (a,b)-path of length (r* - 1) + (s* - 1) < k having no 

edges of E", again a contradiction. Hence uu
1 

I! R
2

. Simi lar ly uU2 I! 

R
2

. So the only possibility is for xy E R2 and hence y E L
S

_
1

(m). But 

then, noting Remark 1, we must have b x, a contradiction. This 

proves that a * u. 

Again we will prove that R2 A E' =~. Suppose this is not the 

case. Since a, u E L (m) 
r 

and a * u, if uu 
1 

E R 
2 

or 

then m preceeds u on R 
2 

Similar to the proof of Case 1, we have 

The only possibili ty is 

Recall that bEL (m). 
s 

Consequently if r < s, then clearly b * u and when r = s, then by a 

similar argument that used in case a = u, we can establish that b * u. 

Consequently, R/b,n) A {uu
1
'uu2} = 1> and thus R

3
(b,n) A E' = 1>. But 

then 

is an (m,n)-path of length k in G-E'. a contradiction. 

and hence R2 A E' =~. Now if xy I! R
3
(b,n), then 

R
2

(m,b) v R
3

(b,n) 

is an (m,n)-path of length k in G-E', a contradiction. 

Thus xy I! R2 

Hence xy E 

R
3

(b,n). Consequently, since a * u. R
3

(a,n) A E' =~. But then 

R
2

(m,a) v R
3
(a,n) 

is an (m,n)-path of length k in G-E', a contradiction. This completes 

the proof of the Case 2. 

Case 3 : r* ~ r + 1 

In this case, since r* + s* r + s we have r + 1 ~ r* ~ 
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s* ~ s - 1. Hence r ~ s - 2. Now since, x E Ls(m) and IR11 = IR21 k, 

k, 

U E Lr(m), r ~ s - 2 and s* ~ r + 1. As in the previous cases we show 

that R2 n E' = ~. 

Suppose that uu1 E R2 . 

. fGllowing subgraphs occurs : 

If m
2 

preceeds m on R2, then one of the 

R
2

(a,u) v Q1(u,m) v R
2

(m,b) 

As each of these contains an (a, b)-path of length at most k having no 

edges of EN, we have a contradiction. Hence m preceeds m2 on R
2

. But 

then one of the following subgraphs occurs : 

R
2

(a,u) v Q2(u,m
2

) v R
2

(m2,b) 

or 

As each of these contains an (a,b)-path of length at most k having no 

edge of EN, we again have a contradiction. Hence uu
1 

~ R2. Similarly 

uu2 ~ R2 and so R2 n E' = ~. 

Now if xy E R
3
(a,n), then R

2
(m,b) v R

3
(b,n) is an (m,n)-path of 

length k in G-E', a contradiction. Hence xy ~ R3 (a, n). 

R
3

(b,n), then 

R
2

(m,a) v R
3
(a,n) 

If xy € 

is an (m,n)-path of length k in G-E', again a contradiction. 

Consequently R3 n E' = ~. Hence R2 v R3 contains an (m,n)-path of 

length k containing no edges of E', a contradiction. 

the proof of the theorem. 
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We now consider the case (k,t) (4,2). We begin with the 

following lemma. 

Lemma 3.1 Let G E ~(4,2) and E' = {uv,xy} be edges of G such that 

then either r = 1 or s = 1. 

Proof : The situation here is very similar to that in the proof of 

Theorem 3. 1 . Thus there exists (m,n)-paths Q
I 

and Q2' in G, of 

length 4 with Q
I 

A E' = {uv} and Q
2 

A E' = {xy}. Further, there are 

edges E" {mInI' nn
1

} with m
1
,n

t 
E Q

1 
U Q2' There exist vertices 

a E Lr * (m) and b E Ls*(m) with dG_E"(a,b) > 4, r* + s* = 4 and 

(a,b)-paths R and R
2

, in G, of length 4 with R A E" = {mm } 
1 1 1 

and RAE" = {nn }. 
2 1 

The subgraph Rl u It2 is a cycle of length 8 containing the 

vertices m and n. Consequently E' ~ Rl U R
2

, since otherwise there 

would exist an (m,n)-path of length 4 not containing edges of E' . 

Now assume that r *' 1 and s *' 1. Then, by lemmas 2.5 and 2.8, 

r 2: 2, s 2: 2, and r + s = 4. Thus r = s = 2. We can without any loss 

of generality assume that v preceeds u on Q
1 

and r* :S s*. We now 

distinguish two cases according to the location of x and y on Q2' 

Case 1 : x preceeds y on Q
2 

The situation is depicted in Figure 3.6 

115 



L 
1 

Figure 3.6 

Suppose first that r* = 1. Then a e Ll (m) and b e L3 (m). Since 

nnl e R2 and IR21 = 4, bn e £(G). If a = v, then Rl n £' = {xy} since 

£' ~ Rl V R2 and Rl has length 4 and passes through m
1

. But then y = b 

and hence Q
l 
(v,n) v {ny} is an (a,b)-path of length 4 in G-£", a 

contradiction. Hence a $ v. By Lemma 2.10, dG(a) ~ 3. Thus there 

exists a vertex a
1 

e NG(a)\{Rl v R2}. Hence, by Lemma 2.7 dG(al,b) 

= 3. Since dG_£"(a,b) > 4. the (al,b)-path R of length 3 must contain 

one of the edges E". The only possibility is for a
1 

e L2(m), nn eR 
1 

and thus xy E R. But then {ma,aa } v R(a ,n} is an (m,n)-path of 
1 1 

length 4 in G-E', a contradiction. This proves that r* $ 1. 

Next we suppose that r* = 2. Then a,b e L2(m). Suppose a = u. 

Since Q1 (u,m) v Q2(m,x) is a (u,x)-path of length 4 in G-£" , b $ x. 

But then xy E Rl V R2 otherwise IR11 or IR21 is greater then 4, a 

contradiction. Hence a $ u. By the same argument we establish that a, 

b, u and x are distinct vertices. Since IRll 

nor R2 contains xy. But then E' ¢ R v R, a contradiction. This 
1 2 

completes the proof of Case 1. 
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Case 2 : y preceeds x on Q
2 

The situation is depicted in Figure 3.7 

Clearly, if a = 

4, nn E R and 
1 2 

Further, if IR 
1 

contradiction. 

L 
1 

u (a = x), 

IR21 = 4 we 

(\ E' I 1, 

Figure 3.7 

then b '* x (b '* u). 

must have IR (\ E' I 
1 

then R (\ E' </>. 2 

This completes the proof of the 

Theorem 3.2 ~(4, t) </> for t i!: 2. 

Since mm 1 E R
1

, IR I = 
1 

:S 1 and IR2 (\ E' I :S 1. 

Hence E' $ R V R
2

, a 
1 

lemma. 

Proof: In view of Lemma 2.2 we need only prove that ~(4,2) </>. 

Assume to the contrary that ~(4,2) * <p and let G E ~(4,2). 

Letting u and x be vertices of G with dG(u,x) = 4 and following 

the same line of argument as in the proof of Theorem 3.1 we define 

edge-disjoint (u,x)-paths Pl and P
2 

of length 4 with uv E P
1 

and uw E 

P
2

, Further, we define 

E' {uv,xy} 
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where y E P2' Observe that dG- E, (u,x) = 4. Hence, by Lemma 3.1 there 

exists vertices m E Ll (u) and n E L
3

(u) wi th d
G

-
E

, (m, n) > 4. We 

take E", a, b, Ql' Q2' Rl and R2 as in the proof of Lemma 3.1. 

Further, we assume without any loss of generality that r* s s*. We 

distinguish three cases according to the location of v and u on Qland x 

Case 1: v preceeds u on Q
1 

and x preceeds y on Q
2 

Then y = nand m = v. Figure 3.8 depicts the situation. 

L 
1 

Figure 3.8 

Observe that xy ~ R
1

, since mm E Rand Similarly 
1 1 

uv ~ R
2

• As in the proof of Lemma 3.1, E' S;; R v R . 
1 2 

Consequently 

UV E Rl and xy E R
2

. 

First suppose that r* = 1. Then a u or m since uv E Rand 
1 1 

4. Further bn E E(G) since nni E R2 and IR21 = 4. If a = u, 

then b :t: X and a must preceed m on R
i

. But then Ri (m, b) v {bn} is an 

(m,n)-path of length 4 in G-E', a contradiction. Therefore a :t: u. 

Hence a = mi' Similarly b nt' Now every (a,b)-path T of length 4, 
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in G, must contain exactly one edge of E". Further, if mlm E T (n1n E 

T), then mu E T (xy E T), for otherwise T(m,b) v {bn} ({mm
1

} v T(ml,n» 

is an (m,n)-path of length 4 in G-E', a contradiction. Now dG_E,(a,b) 

> 4, a E L2
(u) and b E L2(U), contradicting Lemma 3.1. Hence r* * 1. 

The only possibility is r* = s* = 2. Recall that uv E Rl and xy 

E R2
. Without any loss of generality we may take R1

= Ca, u, m, m
l

, b). 

Because dG(u,x) = 4, R2 = (b, x, y, n
1

, a). Since dG(a) ~ 3, there is 

a vertex a ~ Rl v R2 that is adjacent to a. By Lemma 2.7, dGCa,b) = 3. 

Hence because of the property of (a,b)-paths mentioned above a E L (m) 
1 

or L (m). 
3 

Now a ~ Ll (m), since otherwise {ma, aa} v R2 Ca, n) is an 

(m,n)-path of length 4 in G-E'. Hence a E L
3

(m). But then (a, n, n
1

, 

b) is an Ca, b)-path of length 3 in G, implying that n
1 

is joined to 

both a and b, a contradiction. This completes the proof for Case 1. 

Case 2: v preceeds u on Q'
l 

and y preceeds x on Q
2 

Then v = m and y E L2
(m). Figure 3.9 depicts the situation. 

L 
1 

Figure 3.9 
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Observe that uv ~ R2 , since nn
1 

E R2 and IR21 

Rl v R2 , uv € R
1

· 

4. Hence, since E' ~ 

Now suppose that r* = 1. Then a = u or m l' since uv E R and 
1 

I Rli = 4. As in Case 1 above a *" u. Consequently a = m. Since 
1 

dG(a) 2:: 3, there is a vertex (3 ~ R v R that is adjacent to a. By 
1 2 

Lemma 2.7, dGC{3,b) = 3. Let S be a ({3,b)-path of length 3. Since 

dG_E"(a,b) > 4, S must contain mm or nn . Therefore, since b € L
3

(m) , 
1 1 

{3 € L (m). 
2 

Now, since S = ({3, n
1

, n, b), (m, m
l

, (3. n
I

, n) is an 

(m,n)-path of length 4 in G-E', a contradiction. Hence r* *" 1. 

The only possibility is for r* = s* = 2. Since xy € R2 one of a 

or b must be y. Suppose without any loss of generality, b = y. Then 

R2 =(y, x, n, n
1

, a). 

(m,n)-path of length 4 in G-E', a contradiction. Hence am ~ E(G) and 
1 

thus R1 =(a, u, m, m
l

, b). Now applying the same argument as in the 

corresponding case in Case 1 will yield the desired contradiction. 

Case 3: u preceeds v on Q
1 

and y preceeds x on Q
2 

The situation is depicted in Figure 3.10. 

m 

L 
1 

Figure 3.10 
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Suppose that r* = 1. Then a E L (m) and b E L (m). Since nn E 
1 3 1 

R and IR21 4, bn E E(G) . If a :;:. u and m
1

, then uv e R v R
2

, since 
2 

1 

IRll IR21 4. Consequently E' i R V R
2

, a contradiction. Hence 
1 

a = u or m. Now using a similar argument as in Case 1 above 
1 

establishes r* :;:. 1. 

The only possibility is r* = s* = 2. Then a, b E L
2

(m). Suppose 

a = v. Since Ql(v,m) v Q2(m,y) is a (v,y)-path of length 4 in G-E", 

b :;:. y. But then xy e Rl v R2 , otherwise IR11 or /R21 is greater than 

4, a contradiction. Hence a :;:. v. By the same argument we establish 

that a, b, 

neither R 
1 

v and yare distinct vertices. Since 

nor R2 contains xy. Consequently E' 

contradiction. This completes the proof of the theorem. 

4, 

v a 

o 

The method of proof used in Lemma 3. 1 and Theorem 3.2 can be 

applied to the case k = 5 with very little change. In fact, conclusion 

of the Lemma 3.1 is valid for k = 5. We do not detai 1 the case 

analysis here but simply state the result. However, the methods do not 

extend beyond k = 5 and so the cases k ~ 6, t 2 remain unresolved. 

Theorem 3.3 §,(5,t) 1> for t ~ 2. o 
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