










k - 1. Furthermore, there is exactly one edge of P. between L.(u) and 
1 J 

L. (u) for r ::$ j ::$ S - 1. 
J+l 

In the proofs that follow we make frequent use of the following 

simple fact which follows from Lemma 2.4. 

Lemma 2.7 : Le t G E !:'1 (k, t ), k z:: 2. t z:: 2. k, then 

dG(V,x) = k - 1 for every v E NG(u). o 

Our next two lemmas are important in establishing a lower bound 

on the degree of vertices of G E !:'1(k,t) having eccentricity k. 

Lemma 2.8: Let G E !:'1(k,t), k z:: 2, t z:: 2, and u, x be vertices of G 

k. Let PI be a (v,x)-path, v E L
1

(U), in G of length 

k - 1 and E' a set of t edges of G\{uv v ECP
1
)} containing the edges uw 

and xy. If for m E Lr(u) and nELs (u), dG- E, Cm,n) > k and r + s = k, 

then r z:: and S z:: 1. Moreover, if t z:: 3 and there are at least two 

edges of E' incident to u, then r z:: 2 and s z:: 2. 

Proof Without any loss of generality suppose that r ::$ s. We need to 

prove that r �~� O. By Lemma 2.3 there exists (m,n)-paths Q
1 

and Q
2 

in G 

of length at most k such that 

Q
1 

{\ E' {uw} 

and 

Q
2 

{\ E' = {xy}. 

If r = 0, then s = k and thus m = u and n E LkCul. Since P is a 
1 

(v,x)-path in G-E' of length k and uv E E', n �~� x. But then the 
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path Q
2 

which contains the edge xy cannot be of length at most k, a 

contradiction. Hence r * 0, proving the first part of the lemma. 

Now suppose that t :!!; 3 and uz E E'. Z * w. Let Q
3 

be the 

(m,n)-path in G of length at most k such that 

Q
3 

f'I E' = {UZ}. 

Suppose that r = 1. Then s = k - and so mEL (u) and 
1 

n E Lk_1(u). If m = w, then Q
3 

has length greater than k, since uw E 

Q3' Hence m * wand, similarly, m * z. Furthermore, every (m,n)-path 

in G containing uw or uz of length at most k must contain the edge mu. 

But then 

where 

E" = {urn} v E'\duw,uz} • 

contradicting the fact that G is (k,t)-critical. This proves that 

r * 1 thus completing the proof of the lemma. o 

Lemma 2.9: Let G E ~(k,t), k:!!; 2, t :!!; 2, and E' = {e1,e
2

, ... ,et } be 

any set of t edges of G. If for any two vertices m and n of G wi th 

k and dG- E, (m,n) > k there are t (m,n)-paths P
1

'P
2
'··· 'P t 

such tha t Pi f'I E' = {e i } , i = 1,2, ... , t, then the paths P l' P 2' ... ,P t 

are pairwise edge-disjoint. 

Proof : Clearly if e' i * j, then dG- E" (m, n) ~ 

dG_E,(m,n) > k, where E" = {e'} v E',,{ei,e
J
}, contradicting the fact 

that G e ~(k,t). This proves the lemma. o 

We are now ready to prove the main result of this section. 
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Theorem 2.1: Let G E ~Ck.t), k ~ 2, t ~ 2. If ecGCu) 

dG(u) ~ 2t - 2. 

k, then 

Proof 

t ~ t and hence we only need to consider the case t ~ 3. Since 

G E ~(k, t). there are in G at least t edge-disjoint (u,x)-paths of 

length k. Let P
1
'P

2
' ... 'P t be any t such paths and without any loss of 

generality suppose that uUi E Pi' i = 1,2, ... ,to 

Now consider the t edges 

where y ~ Pt' Then, by lemmas 2.5 and 2.8, there exist vertices 

m E Lr(u) and n E LsCu) with dG- E, Cm,n) > k, r + 5 = k and s ~ r ~ 2. 

Further, dG(m,n) = k. Lemma 2.3 implies the existence of (m,n)-paths 

{uu.} for i 
1 

1,2, ... ,t-1 and Qt (\ E' = {xy}. These t pa ths are, by Lemma 2. 9, 

pairwise edge-disjoint. Now since each Q
i

, i = 1,2, ... ,t-1, contains 2 

edges incident to u, dG(u) ~ 2(t-1), as required. o 

For the case when G E ~(k,2), k = 4 or 5 we have the following 

lower bound on the degree of a vertex of G having eccentricity k. 

Lemma 2.10 Let G E ~Ck,2), k 4 or 5. k, then 

Proof Suppose to the contrary that dGCu) ~ 2. Then, by Lemma 2.1, 

2. Let Ll Cu) = {v,w}, x E LkCu) and PI and P
2 

be the two 

edge-disjoint (u,x)-paths in G. Without any 105S of generality let 
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UV E P1 and uw E P
2

. Now consider the edges E' = {uv,xy}, where y ~ 

P. Then, by lemmas 2.5 and 2.8, there exist vertices m E L (U) 
2 r 

and n E L (u) 
s with dG- E, (m,n) > k, r + s = k and s ~ r ~ 1. 

As in the proof of Theorem 2.1 there exist (m,n)-paths Q
1 

and Q
2 

in G of length k with Q
1 

A E' = {uv} and Q
2 

n E' = {xy}. 

If v preceeds u on Q
1 

then, since dG- uw (u, n) :s k, we have 

dG_uw(v,n) :s k - 1. Let R denote a (v,n)-path of length at most k - 1 

in G-uw. Now since k = 4 or 5 and s ~ r ~ 1, we have r = 1 or 2. 

If r = 1, then m:: V and hence dG- E, (m, n) = d
G

- uw (m, n) :s k - 1, a 

contradiction. If r = 2, then mv E E(G), and hence, 

R v {my} 

is an (m,n)-path of length at most k in G-E', a contradiction. Hence v 

does not preceed u on Q1' A similar argument wi 11 establish that u 

cannot preceed v on Q1' Hence the lemma. D 

3. MAIN RESULTS 

In this section we prove that ~(k,t) = ~ for: k ~ 2 and t ~ 3; 

and (k, t) = ( 4 , 2 ) and ( 5 , 2 ) . Thus the only unresolved case of Kys' 

conjecture is k ~ 6, t = 2. 

Theorem 3.1 ~(k,t) ~ for k ~ 2 and t ~ 3. 

Proof: In view of Lemma 2.2 we need only prove that ~(k,3) = ¢ for 

k ~ 2. Assume to the contrary that ~(k,3) *~, k ~ 2, and let 

G E ~(k,3). 

Let u be a vertex of G with ecG(u) k. Let L (u) 
1 

{U
1

,U
2
"" ,Ut} and x E Lk(u). Theorem 2.1 implies that t ~ 4. Since 
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G E §'(k,3), there are at least three edge-disjoint (u,x)-paths of 

length k. Let Pl' P2 and P3 be three such paths and assume without any 

loss of generality that uUi E Pi' i = 1,2,3. Now consider the edges 

where y E P3. As in the proof of Theorem 2.1, there exist vertices 

mEL (u) and n E L (u) with dG- E, (m,n) > k, r + s = k, s ~ r ~ 2, r s 

dG(m,n) = k and pairwise edge-disjoint (m,n)-paths Q1' Q2 and Q3' in G, 

of length k with Q
i 
~ E' = {uu

i
}, for i = 1,2, and Q

3 
~ E' = {xy}. 

Since s ~ r ~ 2, k = r + s ~ 4, thus we have nothing to prove for 

k :S 3. For k ~ 4 we establish our contradiction by considering the 

distance decomposition of vertex m. Clearly u E Lr(m) and x E Ls(m). 

Lemma 2.6 and its Corollary implies that either u
l

' u2 E Lr - 1 (m) (when 

u
l 

preceeds u on Ql) or u
l

' u2 E Lr+l (m) (when u preceeds u
l 

on Ql)' 

Further, y is in L
S

_
1

(m) or L
S

+
1

(m). 

Choose vertices mEL (m) 
2 1 

and such that 

m
l 

E Q
1 

U Q
2 

U Q3' m2 E Q2 and n
1 

E Q
1 

U Q2 U Q3' Such vertices exist 

since, by Theorem 2.1, both m and n have degre~ at least four. Let 

We will establish that d(G-E") = k, contradicting the criticality of G. 

Suppose to the contrary that d(G-E") > k. 

Then there exist vertices a E Lr*(m) and b E Ls.(m) with 

• * 
dG_E,,(a,bl > k and r + s = k. Further, by lemmas 2.3, 2.5, 2.8 and 

* * 2.9 we have: r ~ 2, s ~ 2; and pairwise edge-disjoint (a,b)-paths 

R
I

, R2 and R3, in G, of length k with Ri ~ E" = {mmi} for i = 1,2 and 

R3 (\ E" = {nn
1
}· 

Let H be the subgraph of G formed by taking the union of the 

Observe that H is a connected graph of 

108 



diameter k containing m and n. We will establish the required 

contradiction by showing that H contains an (m,nl-path Q of length at 

most k such that Q () E' = cp. Note that such a Q would also be an 

(m,nl-path of length at most k in G-E', a contradiction. 

We assume without any loss of generality that s* 2: r*. Now we 

distinguish three cases according to the value of r*. 

Case 1: 2 ~ r* ~ r - 1 

In this case s* 2: s + 1 since k = r* + s* = r + s. Since r ~ s 

we have r* ~ r - 1 < r ~ s < s* ~ k 2. The situation is depicted in 

Figure 3.1 below. Note that in all our figures we write Li for Li (m). 

L 
1 L r * L 

r 
L 

Figure 3.1 

L 
s* 

L 
k·l 

Consequently, since y is in L
S

_
1

(ml or L
S

+
1

(m), x E Ls(m) and 

Further, by Remark 1, the section R3 (b. n) 

contains neither uu nor uu. Now if R () E' 
1 2 2 

cp, then 

is an (m,n)-path of length 

in G-E'. a contradiction. Hence R2 () E' ~ cp . 
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Suppose uu
1 

e R
2

. If m
2 

preceeds m on R
2

, then the subgraph 

R
2

(a,m
2

) v Q2(m2,u) v R
2

(u,b) 

contains (see Figure 3.2) an (a,b)-path of length at most 

(r· - 1) + (r - 1) + (s* - r) = r* + s* - 2 < k 

m 
n 

Figure 3.2 

having no edges of Ell. a contradiction. 

But then the subgraph 

Hence m preceeds m
2 

on R
2

. 

R
2

(a,m) v Ql(m,u) v R2(u,b) 

contains (see Figure 3.3) an (a,b)-path of length at most 

r* + r + s* - r = k, 

m 

Figure 3.3 
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containing no edges of E", again a contradiction. So uu f! R. 
1 2 

Similarly uu
2 

f! R
2

. 

The only possibili ty then is for xy e R
2

. In this case xy f! 

Rl V R
3

• Consequently, if Rl A {UU
1
,uu

2
} = ~, then the subgraph 

Rl(m~p) v R
3

(b,n) 

contains an (iii,n)-path of lepgth" at Illost s* + k - s* k in G-£', a 

contradiction. 

Suppose uu
1 

e Rl 

Hence R A {uri ,UU } :I- ~. 
112 

If m preceeds m~ on R
1

, then the subgraph 

Rl',(a~m) v Q1Cm.u)v,R1(u,b) 

~, 

CO{lJ~~ins lsee Figure 3.4) an (a.'9)-::path'of" length at 1)10st 

m 

Figl,lre 3.4 

having no .... e~~~.,pf £", a contradicJio:Q~ Therefore m1 
preceeds m on R

1
. 

But then, by Lemma 2.6 

Consequently_the subgraph 

and' its Corollary. m 
2 

preceeds m on 

contains (see Figure-3.S) an. (a,b)-path of length C!t most 

r* - 1 + r - 1., + s* -. r = \C - 2 

111 
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m 

... 
• * 

• • • R (a,b) • 2 

a 

...• 
............................................. 

Figure 3.5 

n 

b 

having no edge of E", again a contradiction. hence uu E R. 
1 1 

Similarly uu2 E R
1

. 

This completes the proof for Case 1. 

Case 2 : r* = r 

In this case s* = s and so a,u E Lr(m) and b,x E Ls(mL Note 

that a could be u and b could be x. Suppose first that a = u. Then 

b '* x, since otherwise Ql(u,m) v Q3(m,x) would be a (u,x)-path in 

G-E" of length k. Consequently, since r :5 s, 1R31 = k, b E Ls(m) and 

in view of Remark 1, R3(b,n) n E' =~. Therefore if R2 nE' = ~, then 

as in Case 1 

is a (m,n)-path of length k in G-E', Hence R2 n E' '* ~. 

Suppose that uU
l 

E R
2

, If m
2 

preceeds m on R
2

, then the subgraph 

contains an (a,b)-path of length k having no edges of E", a 

contradiction, Hence m preceeds m
2 

on R
2

, But then the subgraph 

Q2(u,m
2

) v R2(m
2
,b) 
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contains an (a,b)-path of length (r* - 1) + (s* - 1) < k having no 

edges of E", again a contradiction. Hence uu
1 

I! R
2

. Simi lar ly uU2 I! 

R
2

. So the only possibility is for xy E R2 and hence y E L
S

_
1

(m). But 

then, noting Remark 1, we must have b x, a contradiction. This 

proves that a * u. 

Again we will prove that R2 A E' =~. Suppose this is not the 

case. Since a, u E L (m) 
r 

and a * u, if uu 
1 

E R 
2 

or 

then m preceeds u on R 
2 

Similar to the proof of Case 1, we have 

The only possibili ty is 

Recall that bEL (m). 
s 

Consequently if r < s, then clearly b * u and when r = s, then by a 

similar argument that used in case a = u, we can establish that b * u. 

Consequently, R/b,n) A {uu
1
'uu2} = 1> and thus R

3
(b,n) A E' = 1>. But 

then 

is an (m,n)-path of length k in G-E'. a contradiction. 

and hence R2 A E' =~. Now if xy I! R
3
(b,n), then 

R
2

(m,b) v R
3

(b,n) 

is an (m,n)-path of length k in G-E', a contradiction. 

Thus xy I! R2 

Hence xy E 

R
3

(b,n). Consequently, since a * u. R
3

(a,n) A E' =~. But then 

R
2

(m,a) v R
3
(a,n) 

is an (m,n)-path of length k in G-E', a contradiction. This completes 

the proof of the Case 2. 

Case 3 : r* ~ r + 1 

In this case, since r* + s* r + s we have r + 1 ~ r* ~ 
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s* ~ s - 1. Hence r ~ s - 2. Now since, x E Ls(m) and IR11 = IR21 k, 

k, 

U E Lr(m), r ~ s - 2 and s* ~ r + 1. As in the previous cases we show 

that R2 n E' = ~. 

Suppose that uu1 E R2 . 

. fGllowing subgraphs occurs : 

If m
2 

preceeds m on R2, then one of the 

R
2

(a,u) v Q1(u,m) v R
2

(m,b) 

As each of these contains an (a, b)-path of length at most k having no 

edges of EN, we have a contradiction. Hence m preceeds m2 on R
2

. But 

then one of the following subgraphs occurs : 

R
2

(a,u) v Q2(u,m
2

) v R
2

(m2,b) 

or 

As each of these contains an (a,b)-path of length at most k having no 

edge of EN, we again have a contradiction. Hence uu
1 

~ R2. Similarly 

uu2 ~ R2 and so R2 n E' = ~. 

Now if xy E R
3
(a,n), then R

2
(m,b) v R

3
(b,n) is an (m,n)-path of 

length k in G-E', a contradiction. Hence xy ~ R3 (a, n). 

R
3

(b,n), then 

R
2

(m,a) v R
3
(a,n) 

If xy € 

is an (m,n)-path of length k in G-E', again a contradiction. 

Consequently R3 n E' = ~. Hence R2 v R3 contains an (m,n)-path of 

length k containing no edges of E', a contradiction. 

the proof of the theorem. 
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We now consider the case (k,t) (4,2). We begin with the 

following lemma. 

Lemma 3.1 Let G E ~(4,2) and E' = {uv,xy} be edges of G such that 

then either r = 1 or s = 1. 

Proof : The situation here is very similar to that in the proof of 

Theorem 3. 1 . Thus there exists (m,n)-paths Q
I 

and Q2' in G, of 

length 4 with Q
I 

A E' = {uv} and Q
2 

A E' = {xy}. Further, there are 

edges E" {mInI' nn
1

} with m
1
,n

t 
E Q

1 
U Q2' There exist vertices 

a E Lr * (m) and b E Ls*(m) with dG_E"(a,b) > 4, r* + s* = 4 and 

(a,b)-paths R and R
2

, in G, of length 4 with R A E" = {mm } 
1 1 1 

and RAE" = {nn }. 
2 1 

The subgraph Rl u It2 is a cycle of length 8 containing the 

vertices m and n. Consequently E' ~ Rl U R
2

, since otherwise there 

would exist an (m,n)-path of length 4 not containing edges of E' . 

Now assume that r *' 1 and s *' 1. Then, by lemmas 2.5 and 2.8, 

r 2: 2, s 2: 2, and r + s = 4. Thus r = s = 2. We can without any loss 

of generality assume that v preceeds u on Q
1 

and r* :S s*. We now 

distinguish two cases according to the location of x and y on Q2' 

Case 1 : x preceeds y on Q
2 

The situation is depicted in Figure 3.6 
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L 
1 

Figure 3.6 

Suppose first that r* = 1. Then a e Ll (m) and b e L3 (m). Since 

nnl e R2 and IR21 = 4, bn e £(G). If a = v, then Rl n £' = {xy} since 

£' ~ Rl V R2 and Rl has length 4 and passes through m
1

. But then y = b 

and hence Q
l 
(v,n) v {ny} is an (a,b)-path of length 4 in G-£", a 

contradiction. Hence a $ v. By Lemma 2.10, dG(a) ~ 3. Thus there 

exists a vertex a
1 

e NG(a)\{Rl v R2}. Hence, by Lemma 2.7 dG(al,b) 

= 3. Since dG_£"(a,b) > 4. the (al,b)-path R of length 3 must contain 

one of the edges E". The only possibility is for a
1 

e L2(m), nn eR 
1 

and thus xy E R. But then {ma,aa } v R(a ,n} is an (m,n)-path of 
1 1 

length 4 in G-E', a contradiction. This proves that r* $ 1. 

Next we suppose that r* = 2. Then a,b e L2(m). Suppose a = u. 

Since Q1 (u,m) v Q2(m,x) is a (u,x)-path of length 4 in G-£" , b $ x. 

But then xy E Rl V R2 otherwise IR11 or IR21 is greater then 4, a 

contradiction. Hence a $ u. By the same argument we establish that a, 

b, u and x are distinct vertices. Since IRll 

nor R2 contains xy. But then E' ¢ R v R, a contradiction. This 
1 2 

completes the proof of Case 1. 
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Case 2 : y preceeds x on Q
2 

The situation is depicted in Figure 3.7 

Clearly, if a = 

4, nn E R and 
1 2 

Further, if IR 
1 

contradiction. 

L 
1 

u (a = x), 

IR21 = 4 we 

(\ E' I 1, 

Figure 3.7 

then b '* x (b '* u). 

must have IR (\ E' I 
1 

then R (\ E' </>. 2 

This completes the proof of the 

Theorem 3.2 ~(4, t) </> for t i!: 2. 

Since mm 1 E R
1

, IR I = 
1 

:S 1 and IR2 (\ E' I :S 1. 

Hence E' $ R V R
2

, a 
1 

lemma. 

Proof: In view of Lemma 2.2 we need only prove that ~(4,2) </>. 

Assume to the contrary that ~(4,2) * <p and let G E ~(4,2). 

Letting u and x be vertices of G with dG(u,x) = 4 and following 

the same line of argument as in the proof of Theorem 3.1 we define 

edge-disjoint (u,x)-paths Pl and P
2 

of length 4 with uv E P
1 

and uw E 

P
2

, Further, we define 

E' {uv,xy} 
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where y E P2' Observe that dG- E, (u,x) = 4. Hence, by Lemma 3.1 there 

exists vertices m E Ll (u) and n E L
3

(u) wi th d
G

-
E

, (m, n) > 4. We 

take E", a, b, Ql' Q2' Rl and R2 as in the proof of Lemma 3.1. 

Further, we assume without any loss of generality that r* s s*. We 

distinguish three cases according to the location of v and u on Qland x 

Case 1: v preceeds u on Q
1 

and x preceeds y on Q
2 

Then y = nand m = v. Figure 3.8 depicts the situation. 

L 
1 

Figure 3.8 

Observe that xy ~ R
1

, since mm E Rand Similarly 
1 1 

uv ~ R
2

• As in the proof of Lemma 3.1, E' S;; R v R . 
1 2 

Consequently 

UV E Rl and xy E R
2

. 

First suppose that r* = 1. Then a u or m since uv E Rand 
1 1 

4. Further bn E E(G) since nni E R2 and IR21 = 4. If a = u, 

then b :t: X and a must preceed m on R
i

. But then Ri (m, b) v {bn} is an 

(m,n)-path of length 4 in G-E', a contradiction. Therefore a :t: u. 

Hence a = mi' Similarly b nt' Now every (a,b)-path T of length 4, 
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in G, must contain exactly one edge of E". Further, if mlm E T (n1n E 

T), then mu E T (xy E T), for otherwise T(m,b) v {bn} ({mm
1

} v T(ml,n» 

is an (m,n)-path of length 4 in G-E', a contradiction. Now dG_E,(a,b) 

> 4, a E L2
(u) and b E L2(U), contradicting Lemma 3.1. Hence r* * 1. 

The only possibility is r* = s* = 2. Recall that uv E Rl and xy 

E R2
. Without any loss of generality we may take R1

= Ca, u, m, m
l

, b). 

Because dG(u,x) = 4, R2 = (b, x, y, n
1

, a). Since dG(a) ~ 3, there is 

a vertex a ~ Rl v R2 that is adjacent to a. By Lemma 2.7, dGCa,b) = 3. 

Hence because of the property of (a,b)-paths mentioned above a E L (m) 
1 

or L (m). 
3 

Now a ~ Ll (m), since otherwise {ma, aa} v R2 Ca, n) is an 

(m,n)-path of length 4 in G-E'. Hence a E L
3

(m). But then (a, n, n
1

, 

b) is an Ca, b)-path of length 3 in G, implying that n
1 

is joined to 

both a and b, a contradiction. This completes the proof for Case 1. 

Case 2: v preceeds u on Q'
l 

and y preceeds x on Q
2 

Then v = m and y E L2
(m). Figure 3.9 depicts the situation. 

L 
1 

Figure 3.9 

119 

L 
3 



Observe that uv ~ R2 , since nn
1 

E R2 and IR21 

Rl v R2 , uv € R
1

· 

4. Hence, since E' ~ 

Now suppose that r* = 1. Then a = u or m l' since uv E R and 
1 

I Rli = 4. As in Case 1 above a *" u. Consequently a = m. Since 
1 

dG(a) 2:: 3, there is a vertex (3 ~ R v R that is adjacent to a. By 
1 2 

Lemma 2.7, dGC{3,b) = 3. Let S be a ({3,b)-path of length 3. Since 

dG_E"(a,b) > 4, S must contain mm or nn . Therefore, since b € L
3

(m) , 
1 1 

{3 € L (m). 
2 

Now, since S = ({3, n
1

, n, b), (m, m
l

, (3. n
I

, n) is an 

(m,n)-path of length 4 in G-E', a contradiction. Hence r* *" 1. 

The only possibility is for r* = s* = 2. Since xy € R2 one of a 

or b must be y. Suppose without any loss of generality, b = y. Then 

R2 =(y, x, n, n
1

, a). 

(m,n)-path of length 4 in G-E', a contradiction. Hence am ~ E(G) and 
1 

thus R1 =(a, u, m, m
l

, b). Now applying the same argument as in the 

corresponding case in Case 1 will yield the desired contradiction. 

Case 3: u preceeds v on Q
1 

and y preceeds x on Q
2 

The situation is depicted in Figure 3.10. 

m 

L 
1 

Figure 3.10 
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Suppose that r* = 1. Then a E L (m) and b E L (m). Since nn E 
1 3 1 

R and IR21 4, bn E E(G) . If a :;:. u and m
1

, then uv e R v R
2

, since 
2 

1 

IRll IR21 4. Consequently E' i R V R
2

, a contradiction. Hence 
1 

a = u or m. Now using a similar argument as in Case 1 above 
1 

establishes r* :;:. 1. 

The only possibility is r* = s* = 2. Then a, b E L
2

(m). Suppose 

a = v. Since Ql(v,m) v Q2(m,y) is a (v,y)-path of length 4 in G-E", 

b :;:. y. But then xy e Rl v R2 , otherwise IR11 or /R21 is greater than 

4, a contradiction. Hence a :;:. v. By the same argument we establish 

that a, b, 

neither R 
1 

v and yare distinct vertices. Since 

nor R2 contains xy. Consequently E' 

contradiction. This completes the proof of the theorem. 

4, 

v a 

o 

The method of proof used in Lemma 3. 1 and Theorem 3.2 can be 

applied to the case k = 5 with very little change. In fact, conclusion 

of the Lemma 3.1 is valid for k = 5. We do not detai 1 the case 

analysis here but simply state the result. However, the methods do not 

extend beyond k = 5 and so the cases k ~ 6, t 2 remain unresolved. 

Theorem 3.3 §,(5,t) 1> for t ~ 2. o 
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