ON STRONGLY EDGE-CRITICAL GRAPHS OF GIVEN DIAMETER

N. Anunchuen and L. Caccetta
School of Mathematics and Statistics
Curtin University of Technology
GPO Box U1987
Perth, 6001
Western Australia.

Dedicated to the memory of Alan Rahilly, 1947-1992

ABSTRACT:

Let G be a simple undirected graph with edge set $E(G)$ and diameter k. G is said to be strongly t-edge-critical or simply (k, t)-critical if for any $E^{\prime} \subseteq E(G), G-E^{\prime}$ has diameter greater than k if and only if $\left|E^{\prime}\right| \geq t$. ($k, 1$)-Critical graphs have been studied by many authors. P. Kys conjectured that there is no (k, t)-critical graph for $k \geq 2, t \geq 2$. To date this conjecture has been established for : $k=2 ; k=3 ; k=4, t \geq 3$; and for $k \geq 2, t \geq k$. In this paper, we prove the conjecture for $k \geq 2, t \geq 3$ and for $k=4$ and 5 .

1. INTRODUCTION

All graphs considered in this paper are finite loopless and have no multiple edges. For the most part our notation and terminology follows that of Bondy and Murty [1]. Thus G is a graph with vertex set $V(G)$, edge set $E(G)$ and minimum degree $\delta(G)$. The distance $d_{G}(x, y)$ between two vertices x and y in G is defined as the length of the
shortest (x, y)-path in G; if there is no path connecting x and y we define $d_{G}(x, y)$ to be infinite. The diameter of a graph G, denoted $d(G)$, is defined to be the maximum distance in G; that is

$$
d(G)=\max _{x, y \in V(G)}\left\{d_{G}(x, y)\right\}
$$

Note that for any $E^{\prime} \subseteq E(G), d\left(G-E^{\prime}\right) \geq d(G)$.
Let G be a graph having diameter $k . G$ is said to be strongly t-edge-critical or simply (k,t)-critical if for any $E^{\prime} \subseteq E(G), G-E^{\prime}$ has diameter greater than k if and only if $\left|E^{\prime}\right| \geq t$. Denote the class of (k, t)-critical graphs by $\mathcal{G}(k, t)$.
($k, 1$)-critical graphs do exist. For example : $\mathcal{G}(k, 1)$ contains the cycle of length 2 k and $2 \mathrm{k}+1 ; \mathcal{G}(2,1)$ contains the well known Petersen graph and the class of complete bipartite graphs. The class $\mathscr{G}(\mathrm{k}, 1)$ has been studied by many authors - see for example [2-6, 8]. There are many open problems concerning this class, the most well known being the conjecture of Plesnik [8] and Simon and Murty [2] that a graph $G \in \mathscr{\mathcal { G }}(2,1)$ has at most $\left\lfloor\frac{1}{4} v^{2}\right\rfloor, v=|V(G)|$, edges and this bound is attained if and only if

$$
G \cong K\left\lfloor\left\lfloor\frac{1}{2} \nu\right\rfloor,\left\lceil\frac{1}{2} \nu\right\rceil\right.
$$

This conjecture has recently been established by Füredi [3] for extremely large ν.

For $t \geq 2$ the class $\mathscr{G}(k, t)$ has been studied only by Kys [7]. He conjectured that $\mathscr{\mathcal { G }}(\mathrm{k}, \mathrm{t})=\phi$ for $\mathrm{k} \geq 2, \mathrm{t} \geq 2$. Further, he established the conjecture for about half the cases : for $k=2 ; k=3 ; k=4$ and $t \geq 3$; and for $t \geq k \geq 2$. In this paper, we prove that the conjecture holds for : $k \geq 2, t \geq 3$; and for $k=4$ and 5. This leaves
the only unresolved cases as : $\mathrm{k} \geq 6, \mathrm{t}=2$.
We present our main results in Section 3. In the next section we study the properties of (k, t)-critical graphs which are crucial in establishing our main results.

2. PROPERTIES OF (k, t)-CRITICAL GRAPHS

Let G be a graph of diameter k and u any vertex of G. The eccentricity of u, denoted $e c_{G}(u)$, is defined as :

$$
\mathrm{ec}_{\mathrm{G}}(\mathrm{u})=\max _{\mathrm{v} \in \mathrm{~V}(\mathrm{G})}\left\{\mathrm{d}_{\mathrm{G}}(\mathrm{u}, \mathrm{v})\right\} .
$$

Let $L_{i}(u)$ denote the vertices of G that are at a distance i from $u, i=0,1,2, \ldots, e_{G}(u)$. We call $\left\{L_{i}(u): i=0,1, \ldots, e_{G}(u)\right\}$ the distance decomposition of $V(G)$ from the vertex u.

We denote the length of a path P in G by $|P|$. Further, for $E^{\prime} \subseteq E(G), P \cap E^{\prime}$ denotes the set of edges of G which belong to P and E^{\prime}. We now state a number of results of Kys [7] which we make use of in our work.

Lemma 2.1: If $G \in \mathscr{G}(k, t)$, then $\delta(G) \geq t$.

Lemma 2.2: If $\mathscr{G}(\mathrm{k}, \mathrm{t})=\phi$, then $\mathscr{\mathcal { G }}(\mathrm{k}, \mathrm{t}+1)=\phi$.

Lemma 2.3 : Let $G \in \mathscr{G}(k, t), k \geq 2, t \geq 2$, and $E^{\prime}=\left\{e_{1}, e_{2}, \ldots, e_{t}\right\}$ be any set of t edges of G. Then for any two vertices m and n of G with $d_{G-E^{\prime}}(m, n)>k$ there are $t(m, n)$-paths $P_{1}, P_{2}, \ldots, P_{t}$ in G such that $\left|P_{i}\right| \leq k$ and $P_{i} \cap E^{\prime}=\left\{e_{i}\right\}, i=1,2, \ldots, t$.

Lemma 2.4 : Let $G \in \mathscr{G}(k, t), k \geq 2, t \geq 2$, and u a vertex of G having $\mathrm{ec}_{\mathrm{G}}(\mathrm{u})=\mathrm{k}$. Then no two vertices of $\mathrm{L}_{\mathrm{k}}(\mathrm{u})$ are joined in G.

Lemma 2.5 : Let $G \in \mathscr{G}(k, t), k \geq 2, t \geq 2$, and u, x be vertices of G with $d_{G}(u, x)=k$. Let E^{\prime} be a set of t edges of G containing the edges $u v$ and $x y$ with $v \in L_{1}(u)$ and $y \in L_{k-1}(u)$. If for $m \in L_{r}(u)$ and $n \in L_{s}(u), d_{G-E}(m, n)>k$, then $r+s=k$. Furthermore, if every edge of $E^{\prime} \backslash\{u v, x y\}$ is incident to u or x, then $d_{G}(m, n)=k$.

Note that the m and n in the above lemma exist for some r and s since G is (k,t)-critical.

To establish our main results we need, in addition to the above mentioned lemmas, a number of further properties concerning the class $\mathscr{\varphi}(\mathrm{k}, \mathrm{t})$. Before presenting these new results we need to introduce some further terminology.

Let P be an (a, b)-path in a graph G. We say that the vertex x preceeds y on P if the (a, y)-section of P, denoted by $P(a, y)$, contains the vertex x .

Our first lemma is essentially an extension of Lemma 2.5.

Lemma 2.6: Let $G \in \mathscr{G}(k, t), k \geq 2, t \geq 2$, and u, x be vertices of G with $d_{G}(u, x)=k$. Let E^{\prime} be a set of t edges of G containing the edges $u v$ and $x y$ with $v \in L_{1}(u)$ and $y \in L_{k-1}(u)$. If for $m \in L_{r}(u)$ and $n \in L_{s}(u), d_{G-E^{\prime}}(m, n)>k$, then there exists an (m, n)-path P_{1} in G of length at most k containing the edge uv such that either

$$
\begin{equation*}
\left|P_{1}(m, v)\right|=r-1 \text { and }\left|P_{1}(u, n)\right|=s \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\left|P_{1}(m, u)\right|=r \text { and }\left|P_{1}(v, n)\right|=s-1 \tag{ii}
\end{equation*}
$$

Proof : Lemma 2.3 implies the existence of an (m, n)-path P_{1} of length at most k containing the edge $u v$. So we need only establish that P_{1} satisfies condition (i) or (ii). Suppose that v preceeds u on P_{i}. Then clearly $\left|P_{1}(m, v)\right| \geq r-1$ and $\left|P_{1}(u, n)\right| \geq s$. Further

$$
\left|P_{1}(m, v)\right|=\left|P_{1}\right|-\left|P_{1}(u, n)\right|-1 \leq k-s-1
$$

and hence, since by Lemma 2.5, $r+s=k$,

$$
\left|P_{1}(m, u)\right| \leq r-1
$$

This proves (i). When u preceeds v on P_{1} the same argument yields (ii). This completes the proof of the lemma.

Corollary : Assume the hypothesis of Lemma 2.6 and let uw be an edge of $E^{\prime} \backslash\{u v, x y\}$. If P_{2} is an (m, n)-path of length at most k in G containing the edge $u w$, then w preceeds u on P_{2} if condition (i) of Lemma 2.6 holds.

Proof : Suppose that condition (i) of Lemma 2.6 holds and u preceeds w on P_{2}. Then condition (ii) of Lemma 2.6 holds for P_{2}. But then, by Lemma 2.3

$$
P_{2}(m, u) \cup P_{1}(u, n)
$$

contains an (m, n)-path in $G-E^{\prime}$ of length at most $r+s=k$, a contradiction. This completes the proof.

Remark 1 : If the length of $P_{i}, i=1,2$ is exactly k, then at most two edges of P_{i} join vertices of $L_{j}(u)$ to vertices of $L_{j+1}(u), 0 \leq j \leq$
$k-1$. Furthermore, there is exactly one edge of P_{i} between $L_{j}(u)$ and $L_{j+1}(u)$ for $r \leq j \leq s-1$.

In the proofs that follow we make frequent use of the following simple fact which follows from Lemma 2.4.

Lemma 2.7: Let $G \in \mathscr{G}(k, t), k \geq 2, t \geq 2$. If $d_{G}(u, x)=k$, then $d_{G}(v, x)=k-1$ for every $v \in N_{G}(u)$.

Our next two lemmas are important in establishing a lower bound on the degree of vertices of $G \in \mathscr{G}(k, t)$ having eccentricity k.

Lemma 2.8 : Let $G \in \mathscr{G}(k, t), k \geq 2, t \geq 2$, and u, x be vertices of G with $d_{G}(u, x)=k$. Let P_{1} be a (v, x)-path, $v \in L_{1}(u)$, in G of length $k-1$ and E^{\prime} a set of t edges of $G \backslash\left\{u v \cup E\left(P_{1}\right)\right\}$ containing the edges $u w$ and $x y$. If for $m \in L_{r}(u)$ and $n \in L_{s}(u), d_{G-E^{\prime}}(m, n)>k$ and $r+s=k$, then $r \geq 1$ and $s \geq 1$. Moreover, if $t \geq 3$ and there are at least two edges of E^{\prime} incident to u, then $r \geq 2$ and $s \geq 2$.

Proof : Without any loss of generality suppose that $r \leq s$. We need to prove that $r \neq 0$. By Lemma 2.3 there exists (m, n) - paths Q_{1} and Q_{2} in G of length at most k such that

$$
Q_{1} \cap E^{\prime}=\{u w\}
$$

and

$$
Q_{2} \cap E^{\prime}=\{x y\}
$$

If $r=0$, then $s=k$ and thus $m=u$ and $n \in L_{k}(u)$. Since P_{i} is a (v, x) -path in $G-E^{\prime}$ of length $k-1$ and $u v \notin E^{\prime}, n \neq x$. But then the
path Q_{2} which contains the edge $x y$ cannot be of length at most k, a contradiction. Hence $r \neq 0$, proving the first part of the lemma.

Now suppose that $t \geq 3$ and $u z \in E^{\prime}, z \neq w$. Let Q_{3} be the (m, n)-path in G of length at most k such that

$$
Q_{3} \cap E^{\prime}=\{u z\}
$$

Suppose that $r=1$. Then $s=k-1$ and so $m \in L_{1}(u)$ and $n \in L_{k-1}(u)$. If $m=w$, then Q_{3} has length greater than k, since $u w \notin$ Q_{3}. Hence $m \neq w$ and, similarly, $m \neq z$. Furthermore, every (m, n)-path in G containing $u w$ or $u z$ of length at most k must contain the edge mu. But then

$$
d_{G-E^{\prime \prime}}(m, n) \geq d_{G-E^{\prime}}(m, n)>k
$$

where

$$
E^{\prime \prime}=\{u m\} \cup E^{\prime} \backslash\{u w, u z\},
$$

contradicting the fact that G is (k, t)-critical. This proves that $r \neq 1$ thus completing the proof of the lemma.

Lemma 2.9 : Let $G \in \mathscr{G}(k, t), k \geq 2, t \geq 2$, and $E^{\prime}=\left\{e_{1}, e_{2}, \ldots, e_{t}\right\}$ be any set of t edges of G. If for any two vertices m and n of G with $d_{G}(m, n)=k$ and $d_{G-E^{\prime}}(m, n)>k$ there are $t(m, n)$-paths $P_{1}, P_{2}, \ldots, P_{t}$ such that $P_{i} \cap E^{\prime}=\left\{e_{i}\right\}, i=1,2, \ldots, t$, then the paths $P_{1}, P_{2}, \ldots, P_{t}$ are pairwise edge-disjoint.

Proof: Clearly if $e^{\prime} \in P_{i} \cap P_{j}, i \neq j$, then $d_{G-E^{\prime \prime}}(m, n) \geq$ $d_{G-E^{\prime}}(m, n)>k$, where $E^{\prime \prime}=\left\{e^{\prime}\right\} \cup E^{\prime} \backslash\left\{e_{i}, e_{j}\right\}$, contradicting the fact that $G \in \mathscr{G}(\mathrm{k}, \mathrm{t})$. This proves the lemma.

We are now ready to prove the main result of this section.

Theorem 2.1: Let $G \in \mathscr{G}(k, t), k \geq 2, t \geq 2$. If $e c_{G}(u)=k$, then $d_{G}(u) \geq 2 t-2$.

Proof : Let $L_{1}(u)=\left\{u_{1}, u_{2}, \ldots, u_{\ell}\right\}$ and $x \in L_{k}(u)$. Then by Lemma 2.1 $\ell \geq t$ and hence we only need to consider the case $t \geq 3$. Since $G \in \mathscr{G}(k, t)$, there are in G at least t edge-disjoint (u, x)-paths of length k. Let $P_{1}, P_{2}, \ldots, P_{t}$ be any t such paths and without any loss of generality suppose that $u_{i} \in P_{i}, i=1,2, \ldots, t$.

Now consider the t edges

$$
E^{\prime}=\left\{u u_{1}, u u_{2}, \ldots, u u_{t-1}, x y\right\}
$$

where $y \notin P_{t}$. Then, by lemmas 2.5 and 2.8 , there exist vertices $m \in L_{r}(u)$ and $n \in L_{s}(u)$ with $d_{G-E^{\prime}}(m, n)>k, r+s=k$ and $s \geq r \geq 2$. Further, $d_{G}(m, n)=k$. Lemma 2.3 implies the existence of (m, n)-paths $Q_{1}, Q_{2}, \ldots, Q_{t}$, in G, of length k with $Q_{i} \cap E^{\prime}=\left\{u_{i}\right\}$ for $i=$ $1,2, \ldots, t-1$ and $Q_{t} \cap E^{\prime}=\{x y\}$. These t paths are, by Lemma 2.9, pairwise edge-disjoint. Now since each $Q_{i}, i=1,2, \ldots, t-1$, contains 2 edges incident to u, $d_{G}(u) \geq 2(t-1)$, as required.

For the case when $G \in \mathscr{G}(k, 2), k=4$ or 5 we have the following lower bound on the degree of a vertex of G having eccentricity k.

Lemma 2.10: Let $G \in \mathscr{G}(k, 2), k=4$ or 5 . If $\mathrm{ec}_{\mathrm{G}}(\mathrm{u})=k$, then $d_{G}(u) \geq 3$.

Proof : Suppose to the contrary that $d_{G}(u) \leq 2$. Then, by Lemma 2.1, $d_{G}(u)=2$. Let $L_{1}(u)=\{v, w\}, x \in L_{k}(u)$ and P_{1} and P_{2} be the two edge-disjoint (u, x)-paths in G. Without any loss of generality let
$u v \in P_{1}$ and $u w \in P_{2}$. Now consider the edges $E^{\prime}=\{u v, x y\}$, where $y \notin$ P_{2}. Then, by lemmas 2.5 and 2.8 , there exist vertices $m \in L_{r}(u)$ and $n \in L_{s}(u)$ with $d_{G-E^{\prime}}(m, n)>k, r+s=k$ and $s \geq r \geq 1$.

As in the proof of Theorem 2.1 there exist (m,n)-paths Q_{1} and Q_{2} in G of length k with $Q_{1} \cap E^{\prime}=\{u v\}$ and $Q_{2} \cap E^{\prime}=\{x y\}$.

If v preceeds u on Q_{1} then, since $d_{G-u w}(u, n) \leq k$, we have $d_{G-u w}(v, n) \leq k-1$. Let R denote a (v, n)-path of length at most $k-1$ in G-uw. Now since $k=4$ or 5 and $s \geq r \geq 1$, we have $r=1$ or 2 . If $r=1$, then $m=v$ and hence $d_{G-E^{\prime}}(m, n)=d_{G-u w}(m, n) \leq k-1$, a contradiction. If $r=2$, then $m v \in E(G)$, and hence,

$$
R \cup\{m v\}
$$

is an (m, n)-path of length at most k in $G-E^{\prime}$, a contradiction. Hence v does not preceed u on Q_{1}. A similar argument will establish that u cannot preceed v on Q_{1}. Hence the lemma.

3. MAIN RESULTS

In this section we prove that $\mathscr{G}(\mathrm{k}, \mathrm{t})=\phi$ for $: \mathrm{k} \geq 2$ and $\mathrm{t} \geq 3$; and $(k, t)=(4,2)$ and $(5,2)$. Thus the only unresolved case of Kys' conjecture is $k \geq 6, t=2$.

Theorem 3.1: $\mathscr{G}(k, t)=\phi$ for $k \geq 2$ and $t \geq 3$.

Proof : In view of Lemma 2.2 we need only prove that $\varphi(k, 3)=\phi$ for $\mathrm{k} \geq 2$. Assume to the contrary that $\mathcal{G}(\mathrm{k}, 3) \neq \phi, \mathrm{k} \geq 2$, and let $G \in \mathscr{G}(k, 3)$.

Let u be a vertex of G with $e c_{G}(u)=k$. Let $L_{1}(u)=$ $\left\{u_{1}, u_{2}, \ldots, u_{\ell}\right\}$ and $x \in L_{k}(u)$. Theorem 2.1 implies that $\ell \geq 4$. Since
$G \in \mathscr{G}(k, 3)$, there are at least three edge-disjoint (u,x)-paths of length k. Let P_{1}, P_{2} and P_{3} be three such paths and assume without any loss of generality that $u u_{i} \in P_{i}, i=1,2,3$. Now consider the edges

$$
E^{\prime}=\left\{{u u_{1}}_{1} u u_{2}, x y\right\}
$$

where $y \notin P_{3}$. As in the proof of Theorem 2.1, there exist vertices $m \in L_{r}(u)$ and $n \in L_{s}(u)$ with $d_{G-E^{\prime}}(m, n)>k, r+s=k, s \geq r \geq 2$, $d_{G}(m, n)=k$ and pairwise edge-disjoint (m, n)-paths Q_{1}, Q_{2} and Q_{3}, in G, of length k with $Q_{i} \cap E^{\prime}=\left\{u_{i}\right\}$, for $i=1,2$, and $Q_{3} \cap E^{\prime}=\{x y\}$.

Since $s \geq r \geq 2, k=r+s \geq 4$, thus we have nothing to prove for $k \leq 3$. For $k \geq 4$ we establish our contradiction by considering the distance decomposition of vertex m. Clearly $u \in L_{r}(m)$ and $x \in L_{s}(m)$. Lemma 2.6 and its Corollary implies that either $u_{1}, u_{2} \in L_{r-1}(m)$ (when u_{1} preceeds u on Q_{1}) or $u_{1}, u_{2} \in L_{r+1}(m)$ (when u preceeds u_{1} on Q_{1}). Further, y is in $L_{s-1}(m)$ or $L_{s+1}(m)$.

Choose vertices $m_{1}, m_{2} \in L_{1}(m)$ and $n_{1} \in L_{k-1}(m)$ such that $m_{1} \notin Q_{1} \cup Q_{2} \cup Q_{3}, m_{2} \in Q_{2}$ and $n_{1} \notin Q_{1} \cup Q_{2} \cup Q_{3}$. Such vertices exist since, by Theorem 2.1, both m and n have degree at least four. Let

$$
E^{\prime \prime}=\left\{\mathrm{mm}_{1}, \mathrm{~mm}_{2}, \mathrm{nn}_{1}\right\}
$$

We will establish that $d\left(G-E^{\prime \prime}\right)=k$, contradicting the criticality of G. Suppose to the contrary that $d\left(G-E^{\prime \prime}\right)>k$.

Then there exist vertices $a \in L_{r^{*}}(m)$ and $b \in L_{S^{*}}(m)$ with $d_{G-E^{\prime \prime}}(a, b)>k$ and $r^{*}+s^{*}=k$. Further, by lemmas $2.3,2.5,2.8$ and 2.9 we have : $r^{*} \geq 2, s^{*} \geq 2$; and pairwise edge-disjoint (a,b)-paths R_{i}, R_{2} and R_{3}, in G, of length k with $R_{i} \cap E^{\prime \prime}=\left\{m m_{i}\right\}$ for $i=1,2$ and $R_{3} \cap E^{\prime \prime}=\left\{n n_{1}\right\}$.

Let H be the subgraph of G formed by taking the union of the three paths R_{1}, R_{2} and R_{3}. Observe that H is a connected graph of
diameter k containing m and n. We will establish the required contradiction by showing that H contains an (m, n)-path \hat{Q} of length at most k such that $\hat{Q} \cap E^{\prime}=\phi$. Note that such a \hat{Q} would also be an (m, n)-path of length at most k in $\mathrm{G}-\mathrm{E}^{\prime}$, a contradiction.

We assume without any loss of generality that $s^{*} \geq r^{*}$. Now we distinguish three cases according to the value of $r *$.

Case 1: $2 \leq r \leq r-1$
In this case $s^{*} \geq s+1$ since $k=r^{*}+s^{*}=r+s$. Since $r \leq s$ we have $r^{*} \leq r-1<r \leq s<s^{*} \leq k-2$. The situation is depicted in Figure 3.1 below. Note that in all our figures we write L_{i} for $L_{i}(m)$.

Figure 3.1

Consequently, since y is in $L_{s-1}(m)$ or $L_{s+1}(m), x \in L_{s}(m)$ and $\left|R_{3}\right|=k, x y \notin R_{3}(b, n)$. Further, by Remark 1 , the $\operatorname{section} R_{3}(b, n)$ contains neither $u u_{1}$ nor $u u_{2}$. Now if $R_{2} \cap E^{\prime}=\phi$, then

$$
R_{2}(m, b) \cup R_{3}(b, n)
$$

is an (m, n)-path of length

$$
\left|R_{2}(m, b)\right|+\left|R_{3}(b, n)\right|=s^{*}+k-s^{*}=k
$$

in $G-E^{\prime}$, a contradiction. Hence $R_{2} \cap E^{\prime} \neq \phi$.

Suppose $u_{1} \in R_{2}$. If m_{2} preceeds m on R_{2}, then the subgraph

$$
R_{2}\left(a, m_{2}\right) \cup Q_{2}\left(m_{2}, u\right) \cup R_{2}(u, b)
$$

contains (see Figure 3.2) an (abb)-path of length at most

$$
\left(r^{*}-1\right)+(r-1)+\left(s^{*}-r\right)=r^{*}+s^{*}-2<k
$$

Figure 3.2
having no edges of $E^{\prime \prime}$, a contradiction. Hence m proceeds m_{2} on R_{2}. But then the subgraph

$$
R_{2}(a, m) \cup Q_{1}(m, u) \cup R_{2}(u, b)
$$

contains (see Figure 3.3) an (as)-path of length at most

$$
r^{*}+r+s^{*}-r=k
$$

Figure 3.3
containing no edges of " $E^{\prime \prime}$, again a contradiction. So $u u_{1} \mathbb{R}_{2}$. Similarly $u u_{2} \notin R_{2}$.

The only possibility then is for $x y \in R_{2}$. In this case $x y \quad \notin$ $R_{1} \cup R_{3}$. Consequently, if $R_{1} \cap\left\{u u_{1}, u u_{2}\right\}=\phi$, then the subgraph

$$
R_{1}(m, b) \cup R_{3}(b, n)
$$

contains an (m, n)-path of length at most $s^{*}+k-s^{*}=k$ in $G-E^{\prime}$, a contradiction. Hence $R_{1} \cap\left\{u_{1}, u_{2}\right\} \neq \phi$.
Suppose $u u_{1} \in R_{1}$. If m proceeds m_{1} on R_{1}, then the subgraph

$$
R_{1}(a, m) \cup Q_{1}(m, u) \cup R_{1}(u, b)
$$

contains (see Figure 3.4) an (arb)-path of length at most

$$
r^{*}+r+s^{*}-r=k
$$

Figure 3.4
having no edges of $E^{\prime \prime}$, a contradiction, Therefore m_{1} proceeds m on R_{1}. But then, by Lemma 2.6 and its Corollary, m_{2} proceeds m on R_{2}. Consequently the subgraph

$$
R_{2}\left(a, m_{2}\right) \cup Q_{2}\left(m_{2}, u\right) \cup R_{1}(u, b)
$$

contains (see Figure 3.5) an, (a, b)-path of length at most

$$
r^{*}-1+r-1+s^{*}-r=k-2
$$

Figure 3.5
having no edge of $E^{\prime \prime}$, again a contradiction. hence $u u_{1} \& R_{1}$. Similarly $u u_{2} \notin R_{1}$. Therefore $R_{1} \cap\left\{u_{1}, u_{2}\right\}=\phi$ and hence $x y \notin R_{2}$. This completes the proof for Case 1.

Case 2 : $r^{*}=r$
In this case $s^{*}=s$ and so $a, u \in L_{r}(m)$ and $b, x \in L_{s}(m)$. Note that could be u and b could be x. Suppose first that $a=u$. Then $b \neq x$, since otherwise $Q_{1}(u, m) \cup \quad Q_{3}(m, x)$ would be $a(u, x)$-path in $G-E^{\prime \prime}$ of length k. Consequently, since $r \leq s,\left|R_{3}\right|=k, b \in L_{s}(m)$ and in view of Remark $1, R_{3}(b, n) \cap E^{\prime}=\phi$. Therefore if $R_{2} \cap E^{\prime}=\phi$, then as in Case 1

$$
R_{2}(m, b) \cup R_{3}(b, n)
$$

is a (m, n) -path of length k in $G-E^{\prime}$. Hence $R_{2} \cap E^{\prime} \neq \phi$.
Suppose that $u u_{1} \in R_{2}$. If m_{2} preceeds m on R_{2}, then the subgraph

$$
Q_{1}(a, m) \cup R_{2}(m, b)
$$

contains an (a,b)-path of length k having no edges of $E^{\prime \prime}$, a contradiction. Hence m preceeds m_{2} on R_{2}. But then the subgraph

$$
Q_{2}\left(u, m_{2}\right) \cup R_{2}\left(m_{2}, b\right)
$$

contains an (a,b)-path of length ($\left.r^{*}-1\right)+\left(s^{*}-1\right)<k$ having no edges of $E^{\prime \prime}$, again a contradiction. Hence $u u_{1} \notin R_{2}$. Similarly uu \neq R_{2}. So the only possibility is for $x y \in R_{2}$ and hence $y \in L_{s-1}(m)$. But then, noting Remark 1, we must have $b=x$, a contradiction. This proves that $a \neq u$.

Again we will prove that $R_{2} \cap E^{\prime}=\phi$. Suppose this is not the case. Since $a, u \in L_{r}(m)$ and $a \neq u$, if $u u_{1} \in R_{2}$ or $u u_{2} \in R_{2}$, then m preceeds u on R_{2}. Similar to the proof of Case 1 , we have $R_{2} \cap\left\{{u u_{1}}_{1},{u u_{2}}\right\}=\phi$ and $R_{1} \cap\left\{u_{1},{u u_{2}}_{2}=\phi . \quad\right.$ The only possibility is for $x y \in R_{2}$ and hence $x y \notin R_{1} \cup R_{3}$. Recall that $b \in L_{s}(m)$. Consequently if $r<s$, then clearly $b \neq u$ and when $r=s$, then by a similar argument that used in case $a=u$, we can establish that $b \neq u$. Consequently, $R_{3}(b, n) \cap\left\{u u_{1}, u u_{2}\right\}=\phi$ and thus $R_{3}(b, n) \cap E^{\prime}=\phi$. But then

$$
R_{1}(m, b) \cup R_{3}(b, n)
$$

is an (m, n) -path of length k in $G-E^{\prime}$, a contradiction. Thus $x y \notin R_{2}$ and hence $R_{2} \cap E^{\prime}=\phi$. Now if $x y \notin R_{3}(b, n)$, then

$$
R_{2}(m, b) \cup R_{3}(b, n)
$$

is an (m, n)-path of length k in $G-E^{\prime}$, a contradiction. Hence $x y \in$ $R_{3}(b, n)$. Consequently, since $a \neq u, R_{3}(a, n) \cap E^{\prime}=\phi$. But then

$$
R_{2}(m, a) \cup R_{3}(a, n)
$$

is an (m, n)-path of length k in $G-E^{\prime}$, a contradiction. This completes the proof of the Case 2 .

Case 3 : r * $\geq r+1$
In this case, since $r^{*}+s^{*}=r+s$ we have $r+1 \leq r^{*} \leq$
$s^{*} \leq s-1$. Hence $r \leq s-2$. Now since, $x \in L_{s}(m)$ and $\left|R_{1}\right|=\left|R_{2}\right|=k$, we have $x y \notin R_{1} \cup R_{2}$. Further, $R_{3} \cap\left\{u u_{1}, u u_{2}\right\}=\phi$ since $\left|R_{3}\right|=k$, $u \in L_{r}(m), r \leq s-2$ and $s^{*} \geq r+1$. As in the previous cases we show that $R_{2} \cap E^{\prime}=\phi$.

Suppose that $u u_{1} \in R_{2}$. If m_{2} preceeds m on R_{2}, then one of the

- following subgraphs occurs :

$$
R_{2}(a, u) \cup Q_{1}(u, m) \cup R_{2}(m, b)
$$

or

$$
R_{2}\left(a, m_{2}\right) \cup Q_{2}\left(m_{2}, u\right) \cup R_{2}(u, b)
$$

As each of these contains an (a, b)-path of length at most k having no edges of $E^{\prime \prime}$, we have a contradiction. Hence m preceeds m_{2} on R_{2}. But then one of the following subgraphs occurs :

$$
R_{2}(a, u) \cup Q_{2}\left(u, m_{2}\right) \cup R_{2}\left(m_{2}, b\right)
$$

or

$$
R_{2}(a, m) \cup Q_{1}(m, u) \cup R_{2}(u, b)
$$

As each of these contains an (a, b) -path of length at most k having no edge of $E^{\prime \prime}$, we again have a contradiction. Hence $u u_{1} \notin R_{2}$. Similarly $u u_{2} \notin R_{2}$ and so $R_{2} \cap E^{\prime}=\phi$.

Now if $x y \in R_{3}(a, n)$, then $R_{2}(m, b) \cup R_{3}(b, n)$ is an (m, n)-path of length k in $G-E^{\prime}$, a contradiction. Hence $x y \notin R_{3}(a, n)$. If $x y \in$ $R_{3}(b, n)$, then

$$
R_{2}(m, a) \cup R_{3}(a, n)
$$

is an (m, n)-path of length k in $G-E^{\prime}$, again a contradiction. Consequently $R_{3} \cap E^{\prime}=\phi$. Hence $R_{2} \cup R_{3}$ contains an (m, n)-path of length k containing no edges of E^{\prime}, a contradiction. This completes the proof of the theorem.

We now consider the case $(k, t)=(4,2)$. We begin with the following lemma.

Lemma 3.1 : Let $G \in \mathscr{G}(4,2)$ and $E^{\prime}=\{u v, x y\}$ be edges of G such that $d_{G}(u, x)=d_{G-E^{\prime}}(u, x)=4$. If $m \in L_{r}(u)$ and $n \in L_{s}(u), d_{G-E^{\prime}}(m, n)>4$, then either $r=1$ or $s=1$.

Proof : The situation here is very similar to that in the proof of Theorem 3.1. Thus there exists (m, n)-paths Q_{1} and Q_{2}, in G, of length 4 with $Q_{1} \cap E^{\prime}=\{u v\}$ and $Q_{2} \cap E^{\prime}=\{x y\}$. Further, there are edges $E^{\prime \prime}=\left\{m m_{1}, n n_{1}\right\}$ with $m_{1}, n_{1} \notin Q_{1} \cup Q_{2}$. There exist vertices $a \in L_{r^{*}}(m)$ and $b \in L_{S^{*}}(m)$ with $d_{G-E^{\prime \prime}}(a, b)>4, \quad r^{*}+s^{*}=4$ and (a,b)-paths R_{1} and R_{2}, in G, of length 4 with $R_{1} \cap E^{\prime \prime}=\left\{m_{1}\right\}$ and $R_{2} \cap E^{\prime \prime}=\left\{n n_{1}\right\}$.

The subgraph $R_{1} \cup R_{2}$ is a cycle of length 8 containing the vertices m and n. Consequently $E^{\prime} \subseteq R_{1} \cup R_{2}$, since otherwise there would exist an (m, n)-path of length 4 not containing edges of E^{\prime}.

Now assume that $r \neq 1$ and $s \neq 1$. Then, by lemmas 2.5 and 2.8 , $r \geq 2, s \geq 2$, and $r+s=4$. Thus $r=s=2$. We can without any loss of generality assume that v preceeds u on Q_{1} and $r * \leq s^{*}$. We now distinguish two cases according to the location of x and y on Q_{2}.

Case 1 : x preceeds y on Q_{2}
The situation is depicted in Figure 3.6

Figure 3.6

Suppose first that $r^{*}=1$. Then $a \in L_{1}(m)$ and $b \in L_{3}(m)$. Since $n n_{1} \in R_{2}$ and $\left|R_{2}\right|=4$, bn $\in E(G)$. If $a=v$, then $R_{1} \cap E^{\prime}=\{x y\}$ since $E^{\prime} \subseteq R_{1} \cup R_{2}$ and R_{1} has length 4 and passes through m_{1}. But then $y=b$ and hence $Q_{1}(v, n) \cup\{n y\}$ is an (a, b)-path of length 4 in $G-E^{\prime \prime}$, a contradiction. Hence $a \neq v$. By Lemma 2.10, $d_{G}(a) \geq 3$. Thus there exists a vertex $a_{1} \in N_{G}(a) \backslash\left\{R_{1} \cup R_{2}\right\}$. Hence, by Lemma $2.7 d_{G}\left(a_{1}, b\right)$ $=3$. Since $d_{G-E^{\prime \prime}}(a, b)>4$, the $\left(a_{1}, b\right)$-path \hat{R} of length 3 must contain one of the edges $E^{\prime \prime}$. The only possibility is for $a_{1} \in L_{2}(m), \quad n n_{1} \in \hat{R}$ and thus $x y \notin \hat{R}$. But then $\left\{m a, a a_{1}\right\} \cup \hat{R}\left(a_{1}, n\right\}$ is an (m, n)-path of length 4 in $G-E^{\prime}$, a contradiction. This proves that $r^{*} \neq 1$.

Next we suppose that $r^{*}=2$. Then $a, b \in L_{2}(m)$. Suppose $a=u$. Since $Q_{1}(u, m) \cup Q_{2}(m, x)$ is a (u, x)-path of length 4 in $G-E^{\prime \prime}, b \neq x$. But then $x y \notin R_{1} \cup R_{2}$ otherwise $\left|R_{1}\right|$ or $\left|R_{2}\right|$ is greater then 4 , a contradiction. Hence $a \neq u$. By the same argument we establish that a, b, u and x are distinct vertices. Since $\left|R_{1}\right|=\left|K_{2}\right|=4$, neither R_{1} nor R_{2} contains $x y$. But then $E^{\prime} \not \ddagger R_{1} \cup R_{2}$, a contradiction. This completes the proof of Case 1.

Case 2 : y preceeds x on Q_{2}
The situation is depicted in Figure 3.7

Figure 3.7

Clearly, if $a=u(a=x)$, then $b \neq x(b \neq u)$. Since $m_{1} \in R_{1},\left|R_{1}\right|=$ 4. $n n_{1} \in R_{2}$ and $\left|R_{2}\right|=4$ we must have $\left|R_{1} \cap E^{\prime}\right| \leq 1$ and $\left|R_{2} \cap E^{\prime}\right| \leq 1$. Further, if $\left|R_{1} \cap E^{\prime}\right|=1$, then $R_{2} \cap E^{\prime}=\phi$. Hence $E^{\prime} \not \ddagger R_{1} \cup R_{2}$, a contradiction. This completes the proof of the lemma.

Theorem $3.2: ~ \mathscr{(4 , t)}=\phi$ for $t \geq 2$.

Proof: In view of Lemma 2.2 we need only prove that $\mathcal{(} 4,2)=\phi$. Assume to the contrary that $\mathscr{G}(4,2) \neq \phi$ and let $G \in \mathscr{Y}(4,2)$.

Letting u and x be vertices of G with $d_{G}(u, x)=4$ and following the same line of argument as in the proof of Theorem 3.1 we define edge-disjoint (u, x)-paths P_{1} and P_{2} of length 4 with $u v \in P_{1}$ and $u w \in$ P_{2}. Further, we define

$$
E^{\prime}=\{u v, x y\}
$$

where $y \notin P_{2}$. Observe that $d_{G-E^{\prime}}(u, x)=4$. Hence, by Lemma 3.1 there exists vertices $m \in L_{1}(u)$ and $n \in L_{3}(u)$ with $d_{G-E^{\prime}}(m, n)>4$. We take $E^{\prime \prime}, a, b, Q_{1}, Q_{2}, R_{1}$ and R_{2} as in the proof of Lemma 3.1. Further, we assume without any loss of generality that $r^{*} \leq s^{*}$. We distinguish three cases according to the location of v and u on Q_{1} and x and y on Q_{2}.

Case 1 : v preceeds u on Q_{1} and x preceeds y on Q_{2} Then $y=n$ and $m=v$. Figure 3.8 depicts the situation.

Figure 3.8

Observe that $x y \notin R_{1}$, since $m_{1} \in R_{1}$ and $\left|R_{1}\right|=4$. Similarly uv $\notin R_{2}$. As in the proof of Lemma 3.1, $E^{\prime} \subseteq R_{1} \cup R_{2}$. Consequently $u v \in R_{1}$ and $x y \in R_{2}$.

First suppose that $r^{*}=1$. Then $a=u$ or m_{1} since $u v \in R_{1}$ and $\left|R_{1}\right|=4$. Further bn $\in E(G)$ since $n n_{1} \in R_{2}$ and $\left|R_{2}\right|=4$. If $a=u$, then $b \neq x$ and a must preceed m on R_{1}. But then $R_{1}(m, b) \cup\{b n\}$ is an (m, n)-path of length 4 in $G-E^{\prime}$, a contradiction. Therefore a $\neq u$. Hence $a=m_{1}$. Similarly $b=n_{1}$. Now every (a, b) -path T of length 4 ,
in G, must contain exactly one edge of $E^{\prime \prime}$. Further, if $m_{1} m \in T\left(n_{1} n \in\right.$ $T)$, then $m u \in T(x y \in T)$, for otherwise $T(m, b) \cup\{b n\}\left(\left\{m_{1}\right\} \cup T\left(m_{1}, n\right)\right)$ is an (m, n)-path of length 4 in $G-E^{\prime}$, a contradiction. Now $d_{G-E^{\prime}}(a, b)$ $>4, a \in L_{2}(u)$ and $b \in L_{2}(u)$, contradicting Lemma 3.1. Hence $r^{*} \neq 1$.

The only possibility is $r^{*}=s^{*}=2$. Recall that $u v \in R_{1}$ and $x y$ $\in R_{2}$. Without any loss of generality we may take $R_{1}=\left(a, u, m, m_{1}, b\right)$. Because $d_{G}(u, x)=4, R_{2}=\left(b, x, y, n_{1}, a\right)$. Since $d_{G}(a) \geq 3$, there is a vertex $\alpha \notin R_{1} \cup R_{2}$ that is adjacent to a. By Lemma 2.7, $d_{G}(\alpha, b)=3$. Hence because of the property of (a, b)-paths mentioned above $\alpha \in L_{1}(m)$ or $L_{3}(m)$. Now $\alpha \notin L_{1}(m)$, since otherwise $\{m \alpha, \alpha a\} \cup R_{2}(a, n)$ is an (m, n) -path of length 4 in $G-E^{\prime}$. Hence $\alpha \in L_{3}(m)$. But then (α, n, n_{1}, b) is an (α, b)-path of length 3 in G, implying that n_{1} is joined to both a and b, a contradiction. This completes the proof for Case 1 .

Case 2 : vpreceeds u on Q_{1} and y preceeds x on Q_{2}
Then $v=m$ and $y \in L_{2}(m)$. Figure 3.9 depicts the situation.

Figure 3.9

Observe that uv $\notin R_{2}$, since $n n_{1} \in R_{2}$ and $\left|R_{2}\right|=4$. Hence, since $E^{\prime} \subseteq$ $R_{1} \cup R_{2}$, $u v \in R_{1}$.

Now suppose that $r^{*}=1$. Then $a=u$ or m_{1}, since $u v \in R_{1}$ and $\left|R_{1}\right|=4$. As in Case 1 above $a \neq u$. Consequently $a=m_{1}$. Since $d_{G}(a) \geq 3$, there is a vertex $\beta \notin R_{1} \cup R_{2}$ that is adjacent to a. By Lemma 2.7, $d_{G}(\beta, b)=3$. Let S be $a(\beta, b)$-path of length 3 . Since $d_{G-E^{\prime \prime}}(a, b)>4, S$ must contain $m m_{1}$ or $n n_{1}$. Therefore, since $b \in L_{3}(m)$, $\beta \in L_{2}(m)$. Now, since $S=\left(\beta, n_{1}, n, b\right),\left(m, m_{1}, \beta, n_{1}, n\right)$ is an (m, n) -path of length 4 in $G-\mathrm{E}^{\prime}$, a contradiction. Hence $\mathrm{r}^{*} \neq 1$.

The only possibility is for $r^{*}=s^{*}=2$. Since $x y \in R_{2}$ one of a or b must be y. Suppose without any loss of generality, $b=y$. Then $R_{2}=\left(y, x, n, n_{1}, a\right)$. If $a m_{1} \in E(G)$, then $\left\{m m_{1}, m_{1} a\right\} \cup R_{2}(a, n)$ is an (m, n) -path of length 4 in $G-E^{\prime}$, a contradiction. Hence $a m_{1} \notin E(G)$ and thus $R_{1}=\left(a, u, m, m_{1}, b\right)$. Now applying the same argument as in the corresponding case in Case 1 will yield the desired contradiction.

Case 3 : u preceeds v on Q_{1} and y preceeds x on Q_{2}
The situation is depicted in Figure 3.10.

Figure 3.10

Suppose that $r^{*}=1$. Then $a \in L_{1}(m)$ and $b \in L_{3}(m)$. Since $n n_{1} \in$ R_{2} and $\left|R_{2}\right|=4$, bn $\in E(G)$. If $a \neq u$ and m_{1}, then $u v \notin R_{1} \cup R_{2}$, since $\left|R_{1}\right|=\left|R_{2}\right|=4$. Consequently $E^{\prime} \nsubseteq R_{1} \cup R_{2}$, a contradiction. Hence $a=u$ or m_{1}. Now using a similar argument as in Case 1 above establishes $\mathrm{r}^{*} \neq 1$.

The only possibility is $r^{*}=s^{*}=2$. Then $a, b \in L_{2}(m)$. Suppose $a=v$. Since $Q_{1}(v, m) \cup Q_{2}(m, y)$ is a (v, y)-path of length 4 in $G-E^{\prime \prime}$, $b \neq y$. But then $x y \notin R_{1} \cup R_{2}$, otherwise $\left|R_{1}\right|$ or $\left|R_{2}\right|$ is greater than 4, a contradiction. Hence $a \neq v$. By the same argument we establish that a, b, v and y are distinct vertices. Since $\left|R_{1}\right|=\left|R_{2}\right|=4$, neither R_{1} nor R_{2} contains $x y$. Consequently $E^{\prime} \not \not \ddagger R_{1} \cup R_{2}$, a contradiction. This completes the proof of the theorem.

The method of proof used in Lemma 3.1 and Theorem 3.2 can be applied to the case $k=5$ with very little change. In fact, conclusion of the Lemma 3.1 is valid for $k=5$. We do not detail the case analysis here but simply state the result. However, the methods do not extend beyond $k=5$ and so the cases $k \geq 6, t=2$ remain unresolved.

Theorem 3.3: $\mathscr{\mathcal { G }}(5, \mathrm{t})=\phi$ for $\mathrm{t} \geq 2$.

ACKNOWLEDGEMENT

The authors express their thanks to the referee for a number of useful suggestions. This work has been supported by ARC grant A48932119.

REFERENCES

[1] J.A. Bondy and U.S.R. Murty, Graph Theory with applications, The MacMillan Press, London, (1977).
[2] L. Caccetta and R. Häggkvist, On Diameter Critical Graphs, Discrete math., 28 (1979), 223-229.
[3] Z. Füredi, The Maximum Number of Edges in a Minimal graph of Diameter 2, J. graph Theory, 16 (1992), 81 - 98.
[4] F. Gliviak, On Certain Classes of Graphs of Diameter Two without Superfluous Edges, Acta F.R.N. Univ. Comen - Mathematica, 21 (1968), 39-48.
[5] F. Gliviak, On Certain Edge-Critical Graphs of Given Diameter, Mat. Cas., 25 (1975), 249-263.
[6] F. Gliviak and J. Plesnik, On The Existence of Certain Overgraphs of Given Graphs, Acta F.R.N. Univ. Comen - Mathematica, 23(1969), 113-119.
[7] P. Kys, Diameter k-Critical Graphs, Universitas Comeniana Acta Mathematica Universitatis Comenianae, 38 (1981), 63-85.
[8] J. Plesnik, Critical Graphs of Given Diameter, Acta F.R.N. Univ. Comen - Mathematica, 30 (1975), 71 - 93.

