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ABSTRACT. Following the program for finite translation planes to construct such 
planes from collineation groups in the translation complement a search for non
Miquelian Laguerre planes of odd order is initiated. In this note finite Laguerre 
planes of order p2 , P a prime, are investigated. If such a Laguerre plane .c admits a 
circle-transitive elation group and an automorphism group of order p2 in the elation 
complement, then it is proved that .c is Miquelian. 

1. Introduction 

A Laguerre plane C = (P, lC, II) consists of a set of points P, a set of at least 
two circles lC (considered as subsets of P) and an equivalence relation II on P 
(parallelism) such that three pairwise non-parallel points can be joined uniquely by 
a circle, such that the circles which touch a fixed circle K at p E K partition P \ \pl 
(here Ipi denotes the parallel class of p), such that each parallel class meets each 
circle in a unique point (parallel projection), and such that each circle contains at 
least three points. If P is finite, any two circles have the same number n + 1 of 
points, and n is called the order of C. There are n 2 + n points, n 3 circles, and n + 1 
parallel classes in a Laguerre plane of order n, and every parallel class contains 
n points. The Miquelian Laguerre plane of order q (q being a prime power) is 
obtained as the geometry of non-trivial plane sections of a quadratic cone in the 
3-dimensional projective space over GF(q). All known finite Laguerre planes of odd 
order are Miquelian. 

For a point rEP the internal incidence structure consists of all points of P not 
parallel to r and, as lines, of all circles passing through r (without the point r) and 
all parallel classes not passing through r. This is an affine plane, the derived affine 
plane Ar at r. If C has order n, then Ar also has order n. A circle K not passing 
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through the point of derivation r induces an oval in the projective closure of the 
derived affine plane Ar by (K\ I r /) U {w}, where w denotes the infinite point of 
lines that come from parallel classes. Moreover, the infinite line is a tangent to this 
oval. . 

An automorphism of a Laguerre plane C is a bijection of the point set that 
maps circles onto circles. All automorphisms of C form a group r with respect to 
composition, called the automorphism group of C. As every automorphism maps 
parallel points onto parallel points, the collection of all automorphisms that map 
each point onto a parallel point forms a normal subgroup 6.., called the kernel of r, 
which is just the kernel of the action of r on the set of parallel classes. In [12] finite 
Laguerre planes which admit a kernel 6.. that is transitive on K were investigated. 
In this case each derived affine plane is a dual translation plane. From this a 
description of such Laguerre planes in terms of two matrix-valued maps G and 
H was developed (see Proposition 2.1). In particular, !:::.. contains a distinguished 
normal subgroup !:::..el called the elation group of C; it consists of all members of !:::.. 
that fix no circle, together with the identity. The elation group of a finite Laguerre 
plane plays a role analogous to the translation group of finite projective planes. We 
call such a Laguerre plane an elation Laguerre plane. 

In this note we follow the program for finite translation planes to construct new 
planes from information about a suitable group in the translation complement of 
the collineation group and to classify all arising planes. For further information and 
references see [2]. We begin with the case of elation Laguerre planes of order p2, P a 
prime, as one could expect that a elation Laguerre plane of order ph contains such 
a subplane. More precisely, we apply the structure theorem of [12] to determine 
elation Laguerre planes of order p2, P a prime, that admit an automorphism group 
of order p2 in the complement of the elation group !:::..e. Similar to the case of 
translation planes of order p2 (see [8, §7]) we prove 

THEOREM. A finite elation Laguerre plane of order p2, P a prime, tbat admits 
an automorpbism group of order p2 in tbe elation complement, is Miquelian. 

Note that even without the additional assumptions on the elation group a La
guerre plane of order 4 or 9 is Miquelian; see [4] and [13] respectively. Furthermore, 
since a translation plane of prime order is Desarguesian, a finite elation Laguerre 
plane of prime order is Miquelian (cf. Proposition 2.3). 

2. Preliminaries 

We begin with a representation of finite elation Laguerre planes as given in [12, 
Theorem 3]. 



Proposition 2.1. Each derived affine plane of a finite elation Laguerre plane C = 
(P, K, II) is a dual translation plane and £ can be represented in the following 
form. There is a finite field IF = .GF(q), q a prime power, a positive integer m, a 
symbol 00 rf. IF, and a matrix-valued map D : IFm U {oo} ---I- M(3m,m;JF) (where 
M(3m, m; IF) denotes the set of all 3m x m matrices over the field IF) such that the 
point set is 

the set of circles is 
/C = {Ke IcE IF 3m

} 

where a circle Ke is described as 

Ke = {(z, c· D(z)) E P I z E IF m U {oo}}; 

two points (z, w) and (u, v) are parallel if and only if z u. The elation group ~e 
consists of all maps 

(z, w) r-+ (z, W + c· D(z)), 

for c E JF3m; also 
w)f-+ r·w) 

is an IF'" = IF \ {OJ. 
More where t denotes the matrix and I 

and 0 denote the m x m matrix and the m m zero matrix r""1n,prt1~T,pJ'v 
The matrix D(z), z E IF m

, can be written as (H(z) G(z) witb suitable m x m 
matrices H(z) and G(z), wbere G describes matrix (or spread set) of a 
translation of order qm to the dualisation of tbe derived affine 
plane at tbe infinite point (00,0)) and H describes an oval in tbe projective closure 
of A(co,o) by {(z, c· H(z)) I z E IFm} U {w} for all c E IF m, c i= o. 

K can be made into a 3m-dimensional vector space in a natural way by identifying 
c E IF 3m witb the circle or equivalently, by transfering tbe vector space structure 
of ~e via tbe bijection -+ JC : 8 r-+ 8(Ko) where 0 is tbe zero vector in IF 3m. 
Since is a normal subgroup of r, the group r operates on ~e by 
conjugation. Via the preceding identifications this action agrees with the geometric 
actionofr on i.e./(Ke) = K'Y(e)' Hq ph for then the stabilizer of 
Ko is faithfully and GF(p)-linearly represented on the vector space GF(p?mh ~ /C. 

Geometrically, a finite elation Laguerre plane of order qTn as described in Propo
sition 2.1 is equivalent to a (qm + 1 )-set of (m - 1 )-dimensional subspaces in the 
(3m -I)-dimensional projective space over GF(q), see [12, Thm 4] and also [3] for 
odd q and related generalized quadrangles. 

In the situation of the Theorem of Section 1 m = 2 and G, H are 6 x 2, 2 x 2, 
and 2 X 2 matrices over G F(p) respectively. From results on translation planes of 
order p2 we already know the form of G (up to isomorphisms). According to [8, §7], 
we have 



Proposition 2.2. A finite translation plane of order p2, P a prime, that admits a 
collineation group of order p2 in the translation complement is Desarguesian or is 
isomorphic to a Betten-Walker plane. In the latter case p == -1 (mod 6), and 

G(z) = (y ~ x2 -tx3
) ,z = (x,y). 

As z = (x, y) varies through all G F(p) x G F(p) the G( z) form a matrix spread of 
the translation plane. 

According to the celebrated theorem of Segre [10] an oval in a finite Desarguesian 
projective plane of odd order is a conic. As a consequence, Chen and Kaerlein proved 
in [4] by simply counting the conics having a given tangent at a given point: 

Proposition 2.3. A finite Laguerre plane of odd order with at least one Desar
guesian derived affine plane is Miquelian. 

To prove the Theorem of §1 we exclude the case that a dual Betten-Walker plane 
occurs as a derived affine plane of C. As an automorphism fixing a point induces 
a collineation of the derived affine plane at that point, it is crucial to know the 
collineation groups of the Betten-Walker planes (see [1] or [14, Thm 4.10]). 

To obtain the form we need for those Laguerre planes we are interested in we 
dualize the Betten-Walker plane such that the infinite line becomes the infinite point 
wand vice versa. This yields 

Proposition 2.4. Let p be an odd prime such that p -1 (mod 6) and let IF = 
GF(p). The dual (affine) Betten-Walker plane of order p2 has point set IF4 and 
lines have the form 

La,b = {(z,a' G(z) + b) I z E IF2}, 

where a, b range over IF2 and G(z) is as in Proposition 2.2, or the form 

for all c E IF2 (vertical lines). The collineation group rBW of this plane is the 
semi direct product of the dual translation group 

{( z, w) f-T (z, w + cz + d) I c, d E IF 2 } , 

and the stabilizer of the line Lo,o. Furthermore, 

1 = {(x, y, u, v) f-T (x + s, y + sx + 2'82 + t, u, v + su) 18, t E IF} 



is an abelian Sylow p-group of the stabilizer of Lo,o in r BW. In particular, a group 
of order p2 in the stabilizer of Lo,o is conjugate to A. A member A E A acts on the 
set of non-vertical lines like the 4 X 4 matrix 

-8 

1 
o 

-t 

for s, t E IF, i.e. the coefficient vector (a, b) E lF 2 X lF 2 = lF4 of La,b is mapped to 
(a, b) . Gs,t. 

Note that Gs,t differs slightly from the matrix corresponding to a collineation in 
the stabilizer of the point (0,0) in the Betten-Walker plane as given in [1]. 

3. A Representation of Subgroups in the Elation Complement 

The following two lemmata deal with subgroups in the elation complement of a 
elation Laguerre We state them in a more general form than we need it for 
the purpose of this paper. 

Lemma 3.1. Let £, be finite elation of order ,q ph for 
some prime p, and let L: r be a p-group of automorpbisms of ,£ in tbe elation 
complement, i.e. L: n = {id}. Tben Lj fixes a parallel class 7r. Moreover, there is 
a subgroup L:' :E that fixes the circle = K(o,o,o) (bere we use the notation as in 
Proposition 2.1) and also the parallel class 7r. Hence:E' fixes the point x 7r n KOI 
and :E' induces a p-group of collineations of the derived affine plane A = Ax at x 
of the same order as :E. 

Proof. Let L: be a p-group of automorphisms of £, such that L: n /:::"e = {id}. Since 
there are qm + 1 parallel classes in £, and because :E has only orbits of length a 
power of p, there must be some parallel class 7r be fixed by L:. 

Let a E L:. Since.6.e is sharply transitive on K, there is precisely one Ou E .6. e 

such that oufY(Ko) = Ko. Let 

L:' = {Dual a E Lj}. 

It is easily verified that L:' is a subgroup of r in the elation complement and that 

is an isomorphism from L: onto L:/. Since L:;' fixes the parallel class 7r and the circle 
K o, it must also fix x = 7r n Ko. D 

An immediate consequence of the foregoing Lemma and of Propositions 2.2 and 
2.3 is the following 



Corollary 3.2. A finite elation Laguerre plane of order p2, P ¢. -1 (mod 6) that 
admits an automorphism group of order p2 in the elation complement is Miquelian. 

We say that a group :E in the stabilizer of the circle K 0 is in the linear elation 
complement of a finite elation Laguerre plane £, of order q2, q a prime power, 
if it is in the elation complement, and if the action of :E on the elation group 
.6. e ~ GF(q)6 by conjugation is linear over GF(q). In the coordinatization of £, as 
given in Proposition 2.1 this is equivalent to :E acting on K S2 GF(q)6 as a group 
of 6 x 6 matrices over GF(q). 

Lemma 3.3. Assume that :E is a p-group in the linear elation complement of a 
finite elation Laguerre plane £, of order q2, q a power ofp, such that I: fixes the circle 
1<0 and the infinite point (00,0). Then £, can be coordinatized as in Proposition 
2.isuch that each element of the group :E can be described by a 6 x 6 matrix of the 
form 

where 

A=(~ ~) 
for some a GF(q), B is a suitable 2 X 4 matrix, and C is a 4 x 4 matrix 
that describes the corresponding action on the set of non-vertical lines of the de
rived affine plane at (00,0). Moreover,:E fixes at least the i-dimensional subspace 
{ ( 00, (0, z)) lEG F( q)} on the infinite parallel class I 0) I elemen twise. That 
is, a circle Kc passing through such a fixed point is mapped to a circle KC+d where 
d has the form (0, d21 d3 ), d2, d3 E GF(q)2. If:E has order greater than q, then 
I (00,0) I is fixed elementwise by a subgroup of order at least p. 

Proof. Let]F GF(q). In the coordinatization of £, as given in Proposition 2.1 
a circle through the infinite point (00,C1) has coordinate vector (C1,C2,C3) with 
Cl, C2,C3 E ]F2. As :E fixes (00,0), it permutes the circles through this point. This 
shows that {(O, (;2, (3) I (;2, (;3 E JF 2} is an invariant subspace in JF6. Hence, each 

member of :E has the form (~ ~) where A, B, Care 2 x 2, 2 x 4, and 4 x 4 

matrices respectively. 

The map p : :E -+ GL(2, q) which maps (J' E I: corresponding to (~ ~) to the 

matrix A is a homomorphism from I: to the general linear group GL(2, q). Thus p(I:) 
is a p-subgroup of GL(2, q). Consequently, p(:E) is contained in a Sylow p-subgroup 

of GL(2, q). Hence p(I:) is conjugate to some subgroup of S = {( ~ ~) I z E JF} by 

the second Sylow theorem, cf. [5, Thm 4.2.2]. (GL(2, q) has order q. (q_l)2. (q+ 1) 
and S S2 JF has order q, therefore S is a Sylow p-subgroup of GL(2, q).) This shows 
that, in a suitable coordinatization, p(I:) is a subgroup of S. It then readily follows 
that {(oo,(O,z))1 z E GF(q)} is fixed elementwise. 

0"'1 



Let V2 = {(O, X2, ••• ,X6) E lF 6 I Xi ElF}. The corresponding subspace of K 
is fixed by each (J" E~. More precisely, a circle Kc with coefficient vector c = 
(0, C2, . •• ,C6) E V2 is mapped to a circle whose coefficient vector has the same 
entries in the first and second posftions, i.e. a(c) = c+ (0, 0, d3 , ••• ,d6 ) for suitable 
di E]F. As the circle Kc passes through the infinite point (00, (0, C2)), this point 
must be fixed by (J". If ~ has order greater than q, then p must have a non-trivial 
kernel because GL(2, q) has order q. (q -1)2 . (q + 1). Obviously, a member of the 
kernel fixes I (00,0) I pointwise. This proves the statement about fixed points of 'E 
on I (00,0) I. D 

3.4. General Hypotheses. 
For the remainder of this note .c = (P, K, II) always denotes a finite elation 

Laguerre plane of order p2, P a prime, and let IF = GF(p). Let ~e be the elation 
group of .c and let 'E ::; r be a group of automorphisms of .c of order p2 in the 
elation complement such that 'E fixes the circle Ko and the infinite point (00,0). 

By Proposition 2.1 the action of ~ on ~e and on K is linear over G F(p), that is, 
~ is even in the linear elation complement. We assume that .c is coordinatized as 
in Lemma 3.3. In view of Corollary 3.2 we further assume that the derived affine 
plane at the point (00,0) is a dual Betten-Walker plane, and thus p -1 (mod 6). 
Note that the condition p == -1 (mod 6) implies tliat -3 is not a square in IF (cf. 
[6, Thm 96]) and that the map IF -+ IF : X I-t x 3 is a permutation of IF. 

Since ~ induces a group of collineations of the derived affine plane at (00,0), the 
group A in Proposition 2.4 and 'E are conjugate. We finally assume that 'E acts on 
the set of circles through (00,0) like the group A ~ ]F2 on the set of non-vertical 
lines of the dual Betten-Walker'plane. 

For the investigation of the possible action of ~ on K we specialize Lemma 3.3 
to our situation. 

Proposition 3.5. Under the general hypotheses 3.4 the g~oup 'E consists of all 
matrices of the form 

(
AOs,t Bs,t) 

Gs,t 

for s, t E IF where 

As,t= (~ alsia2t) 

for some all a2 E IF, Bs,t is a suitable 2 x 4 matrix,and Gs,t is the 4 x 4 matrix as 
in Proposition 2.4., 'E acts on the point set as 

( ) { 
(x+s,y+sx+Js2+t,u,v+su), for (x,y) ElF 2 

X, y, u, V I-t 
(00, u, al u + a2v), for (x, y) = 00. 

In particular, 'E fixes at least the i-dimensional subspace {( 00, (0, z))\ Z E GF(q)} 
on the infinite parallel class I (00,0) I elementwise. Also, 1 (00,0) I is fixed by a 
subgroup of'E of order at least p pointwise. 



Proof. This is an immediate consequence of Lemma 3.3 and Proposition 2.4. The 

matrix A in (~ ~) corresponding to (J E E has the form (~ ~ ) . As (J is 

parametrized by s, t, we obtain a homomorphism]F2 -+ IF which can be written 
as (s, t) f-+ al s + a2 t. The assertion on fixed points on I (CX), 0) I follows from the 
formula for the action of E on I (00, 0) I, as al U + a2 v = v determines a 1- or 
2-dimensional subspace of ]F2, or from Lemma 3.3. 0 

By the preceding proposition we know the action of E on the finite points and 
also on the infinite parallel class. Since E acts transitively on the set of finite parallel 
classes this allows us to derive equations for circles and thus to determine all the 
circles explicitly in the next two sections. 

If al = 0, a2 = 1, then E fixes every infinite point (00, w), w E ]F2. We shall see 
in Proposition 4.5 that this case cannot occur. 

4. Equations of Circles Through an Infinite Point Fixed by E 

We keep the notation of the preceding section and we assume the general hy
potheses 3.4. We first use circles passing through an infinite point fixed by E to 
obtain equations for such circles by using the transitive action of E on the set of 
finite parallel classes. Similarly, in a second step (see section 5) we derive equations 
for the other circles from the matrix representation given in Proposition 3.5. For 
later use we note 

Lemma 4.1. Let a2, ... ,a5 E ]F and let a : ]F -+ ]F be a map such that 

a(x + y) =a(x) + a(y) 

3 + a2 XY + a3(x2y + xy2) + a4(x3y + "2X2y2 + xy3) 

+ a5(x4y + 2x3y2 + 2x2y3 + xy4) 

for all x, y E]F. If p > 5 or if a5 = 0 for p = 5, then there exists al E ]F such that 

for all x E IF, where ia5 is interpreted as 0 if p = 5. 

Proof. Let f3(x) = a(x) - ta2x2 - ta3x3 - ia4x4 - ia5x5 if p > 5 and fJ(x) = 
a( x) - ta2x2 - ta3x3 - ia4x4 if p = 5. It readily follows that 

f3(x + y) = f3(x) + f3(y). 

Thus fJ( x) = al x for some al E ]F. o 
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4.2. In the sequel we describe a circle by a function f = (u, v) : ]F2 -+ ]F2 as 

Kf = {(z,f(z)) I zE lF 2
} U {(oo,wf)} 

= {(x,y,u(x,yj,v(x,y)) I x,y ElF} U {(oo,wf)} 

(there shall be no confusion betweeen Kf and Kc as it is always clear whether the 
index denotes a function of IF 2 or a vector in IF 6 ). Let 

(1) 
. lF2 ]F2 . ( ) ( 2 1 3) gl. -+ . x,y 1-+ y-x '-3"x , 

g2 : lF 2 -+ ]F2 : (x, y) 1-+ (x, y), 

i.e. gl, g2 describe respectively the first and second rows of the 2 x 2 matrix G of 
Section 2. Furthermore, we identify c E lF 2 with the constant map (x, y) 1-+ c. When 
f and 9 both describe circles, then r f + 9 describes a circle too for all r E IF. The 
coefficient vector of Krf+g is the sum of r times the coefficient vector of Kf and the 
coefficient vector of K 9. In particular, the coefficient vector of Kd191 +d 2 92+(d3,d4 ) is 
(0,0,d1 ,d2 ,ds ,d4 ). If (oo,wf) is fixed by (j E then Lemma 3.3 shows that Kf 
is mapped to a circle of the form K f+d 1 91 +d292+(d3,d4 ) for some db d2 , d3 , d4 E IF. 
If c E IF 6 is the coefficient vector of K f then er( K f) must have coefficient vector 
c + d with d = (0,0, d1 , d2 , ds , d4 ) E lF 6

, which translates into a describing function 
as above. 

We now investigate circles through infinite points that are fixed by Ii. Since the 
subgroup 

w = {7/;t I t E IF} 

where 
7/;t : (x, y, u, v) 1-+ (x, y + t, u, v) 

(that is, the subgroup of :E with s = 0) plays a special role, we consider this subgroup 
separately. 

Proposition 4.3. H f describes a circle sucb tbat f(O,O) = (0,0) and (00, W f) is 
a fixed point of 'It, tben f = (u, v) bas tbe following form: 

1 
u(x,y) = u(x,O) + a(2 y2 - x2y) + bxy + cy 

1 1 
vex, y) = vex, 0) - 3"axSy + 2by2 + dy 

for some a, b, c, d E ]F. 

Proof. 7/;-t maps the circle Kf to Kf+at91+ bt92+ Ct for suitable at, bt E ]F, Ct E lF 2
• 

Using the action of 7/;-t on points as given above and substituting y + t for y, we 
obtain 

(2) 
f(x, y + t) = (f + atg1 + bt g2 + Ct)(x, y) 

2 1 s 
= f( x, y) + at . (y - x ,- 3" x ) + bt . (x, y) + Ct 
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for all x, y, t E IF. Putting y = 0 in (2) yields 

() 
2 1 3 

f (x, t) = f x, a + at . ( - x ,-3 x ) + bt . (x, 0) + Ct· 

For x = a in the above equation we find 

Ct = f(O, t), 

and thus 

(3) 
1 

f(x, y) = f(x, 0) + f(O, y) + ay . (_x2
, -3X3) + by . (x, 0). 

We set x = 0 in (2); this gives us 

(4) f(O, y + t) = f(O, y) + f(O, t) + (atY, bty). 

The left-hand side being symmetrical in y and t implies 

therefore 

(5) 

for a = aI, b 

at = at, 

bt = bt, 

bI E IF. Substituting (5) into (4) we find 

u(O, y + t) = u(O, y) + u(O, t) + aty, 

v(O, y + t) = v(O, y) + v(O, t) + bty, 

and from Lemma 4.1 we infer 

(6) 

1 2 
u(O, y) = "2ay + cy, 

1 
v(O, y) = 2by2 + dy, 

for some c, d E IF. Substituting (5) and (6) into (3) we finally obtain the stated form 
of u and v. D 



Proposition 4.4. If f describes a circle such that f(O,O) = (0,0) and (00, W f) is 
a nxed point of~, then f = (u, v) has the following form: 

u(x, y) = b(xy - '~x3) + c(y - x2) + dx + ax 

1 1 1 1 
vex, y) = b( 2y2 - 4X4) - S'cx3 + dy + 2 ax2 + (:Jx 

for some b, c, d, a, (3 E IF. 

Proof. As 'II :::; ~, we already know the form of u(x, y) and vex, y) from Proposition 
4.3 up to u(x,O) and v(x,O). Similar to the proof of that proposition we now use 
the subgroup 

q, = {<Psi S E IF} 

where 

(
12 

CPs: (x,y,u,v) 1---+ x + s,y + sx + 2S ,u,v + su) 

(that is, the subgroup of:E with t = 0) to find u(x, 0) and vex, 0). For later use (see 
Proposition 5.2) let 

2 1 1 
h2 : IF2 -t IF2 : (x, y) 1---+ (xy - S'x3, "2y2 - 4x4) 

and assume that there is an a' E IF such that the automorphism <P-s maps the circle 
Kf to Kf-alsh2+asgl+b.92+(Cs,d.) for suitable as,bs,cs,ds E IF (for the proof of the 
proposition we only need a' = 0). Using the action of <P-s on points as given above 
and substituting x + s for x and y + sx + ts2 for y, we obtain 

u(x + s, y + sx + ~s2) =u(x, y) - a's(xy - ~x3) + as(Y - x2) + bsx + Cs 

(7) 
1 1 

vex + s, y + sx + "2S2) =v(x, y) + su(x + s, y + sx + "2S2) 

- a' s(~y2 - ~x4) - ~a x3 + b y + d 2 4 3 s s s' 

For x = y = 0 we find 

1 2 
Cs = u(s, 2s ), 

( 1 2) 1 2) ds = v s'"2s - sue s'"2s . 

(8) 

We first consider the equation for u. Using the form of u(x, y) in Proposition 4.3 
and substituting (8) into (7) yields 

1 
u(x + s, 0) - u(x, 0) - u(s, 0) =((a - a')sx + 2as2 - bs + as)Y 

(9) 

0'"7 



Since the left-hand side is independent of y we infer 

(10) 
a= ai, 

1 , 2 
as = - -a s + bs. 

2 

The right-hand side in (9) then becomes 

Furthermore, the left-:-hand side is symmetrical in x and s. Equating the above 
expression with the one obtained by interchanging x and s and then substituting 
x = 1 gives us 

(11) ( 1 1 ') 1 2 1 I 3 b = b1 + -b - -a s - -bs + -a s 
8 2 6 2 6 . 

Now (9) becomes 

u(x + s, 0) =u(x,O) + u(s, 0) 
1 1 5 3 + (b1 + -b - -a' - c)sx - 2b(sx2 + s2x) + -a'(sx3 + _s2X2 + S3 X). 
2 6 3 2 

Hence by Lemma 4.1 

) 1 1 I, )2235'4 u(x 0 = (a + d)x + -(b1 + -b - -a - c x - -bx + -a x 
, 2 2 6 3 12 

for some a E IF, (with d as in Proposition 4.3). By using PropA.3, we finally have 

(12) 

152 
u(x, y) =a' (2 y2 - x

2
y + 12 x4) + b(xy - Sx3) 

+ c(y - x 2) + ~(bl + ~b - ~a' + c)x2 + (a + d)x. 

We now consider the equation for v. Substituting (8), (10), (11), and (12) into (7) 
we obtain 

(13) 

1 1 
vex + s, 0) - vex, 0) - v(s, 0) =(b1 + 2b - '6al + c)sy 

+ a'(sx4 + 2S2X3 + 2S3X2 + S4 x ) 

3 
- b(sx3 + _S2X2 + s3 X) 

2 
1 1'21212 + (b1 + 2b - '6 a )(s x + 2 sX ) - 2 cSX 

+ asx. 



Since the left-hand side is independent of y we infer 

and (13) becomes 

, 1 1 
bl + -b - -at + c = ° 26' 

vex + s, 0) =v(x,O) + v(s, 0) 

As mentioned before we need only at = ° for the proof of the proposition; in 
Proposition 5.2 we will have p > 5. So Lemma 4.1 can be applied in any case. Thus 

12 1 3 1 4 1 '5 vex 0) = j3x + -ax - -cx - -bx + -a x 
, 2 3 4 5 

for some f3 E JF. From Proposition 4.3 we finally obtain 

(14) I 1 5 1 3 (1 2 1 4) 1 3 1 2 vex y) = a (-x - -x y) + b -y - -x - -cx + dy + -ax + f3x. 
, 5 3 2 4 3 2 

This proves the stated form of u and v (because at = ° in this case). o 

To distinguish between JF 2 = JF X ill' and the set of squares of JF we denote the 
latter set by JF2. 

Proposition 4.5. a = f3 = ° in Proposition 4.4. In particular, tbere is only a 
I-dimensional subspace of infinite points fixed by:E. 

Proof. Since f - cgl - dg2 describes a circle if f does so, we may assume that 
c = d = 0. Let 

h . lF 2 -+ JF2 . (x y) 1-+ (xy - ~X3 !y2 - !x4 ) and 
2 • ., 3 '2 4 ' 

(15) . 2 2 ( 1 2 k1 : IF -+ JF : (x, y) 1-+ x, 2'x ), 

k2 : JF2 -+ JF2 : (x,y) 1-+ (O,x). 

With this notation Proposition 4.4 implies that f = bh2 +ak1 + f3k2 is the describing 
function of a circle. If b = 0, then the circle Kakl +{3k2 intersects K(o,o) = {(z, 0)1 z E 

JF2 U {oo}} in at least the points (O,y,O,O) for arbitrary y E ill'. Thus a = j3 = ° in 
this case. 

We now assume that b =J. 0. Since Krf is also a circle if Kf is one, we may even 
assume that b = 1. We consider the intersection of the circles Kh2+akl+{3k2 and 
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]{(o,!r2) for suitable r E IF. To find the points of intersection we solve the system 
of equations 

(16) 

2 3 
xy - -x + ax = 0 

3 
12 1 4 1 2 12 
-y - -x + -ax + f3x = -r 
2 4 2 2 

in x and y. The first equation yields 

2 2 
X = 0 or y = 3"x - a .. 

The first alternative gives us the two solutions (0, ±r) if r =I- O. The second alter
native leads to the equation 

Note that there can be at most two distinct solutions of (16) because such a solution 
corresponds to a point of intersection of two different circles in the Laguerre plane. 
Hence, the above equation must have no solution or precisely one solution if r of 0 
or r = 0 respectively, since the corresponding circles pass through different infinite 
points. 

We begin with the case f3 of O. Since x r--t x3 is a permutation of IF, we can write 
f3 as f3 = 14 e for some ~ E IF*; we set r a - te. If a of te, then the equations 
(16) have the three solutions (0, ±r), and (~, ~~2 - a). Similarly, if a = ke, we 
find the three solutions (0, 0), (~, ~e), and (k~(p2 - 2p - 2), ke(2p - 5)) where 
p = {YIO E IF. (Note that x r--t x 3 is a permutation of IF and that ~ of k~(p2 - 2p - 2) 
as p of 2,3.) 

We now assume that f3 = 0 and a of O. If -6a E IF2, i.e. -6a = pi for some 
PI E IF, we set r = a and we obtain the four solutions (0, ±a), and (±pI, -5a). If 
finally -6a r;. IF2' then 2a = p~ for some P2 E IF (note that -3 r;. IF2)' For r = ta 
we have the four solutions (0, ±r), (±p2, r). 

In any case we have at least three solutions of the system (16). As this is not 
possible in a Laguerre plane, the parameters a and f3 must be both O. Thus there 
enter only three parameters in the describing function f. Up to functions that 
describe a line only multiples of the special function h2 occur. So the subspace of 
infinite points fixed by :E must be I-dimensional. 0 

In a Laguerre plane the circle ]{ h2 must induce an oval 

in the dual Betten-Walker plane over IF (= derived projective plane at (00,0)). This 
allows us to exclude some of the possible primes p. 



Proposition 4.6. If O2 describes an oval in the dual Betten-Walker plane over IF, 
then -1 and -2 are non-squares in IF and p == -1 (mod 24). 

Proof. The intersection of O2 with the horizontal line 
1 

{( x, y, 0, - 36) I x, Y E IF} 

gives the system of equations 
2 

xy - _x3 = a 
3 

1 2 1 4 1 
2Y - 4x 

36 
in x and y. The first equation yields 

The first alternative gives us 

(17) 

the second case leads to 

(18) 

x=o 

x =0, 

2 2 
or y = '3x 

which gives us the two solutions Then (17) cannot contribute a solution, 
hence tf- lF2 or equivalently is non-square in IF. Similarly, if -1 = i 2 for 
some i E IF, then (18) yields the two additional solutions (±i, -~) which is not 
possible. This shows that -2 and -3 (see 3.4) are non-squares in IF. From [6, 
Theorems 82, 96] it readily follows that p == -1 (mod 0 

Corollary 4.7. A finite elation Laguerre plane of order ,p t= -1 (mod 24) that 
admits an automorphism group of order p2 in the elation complement is Miquelian. 

Remark 4.8. Obviously, vertical lines intersect O2 in at most two points. Using 
the group :E and other simplifications, it suffices to consider only the intersections 
of O2 with the horizontal lines {(x, y, t, ia) I x, y E IF} for a E IF instead of all 
non-vertical lines. Then O2 describes an oval in the dual Betten-Walker plane over 
IF = GF(p), p == -1 (mod 24), if and only if each polynomial 

X 6 
- 8X3 + 9aX2 

- 2 

has at most two distinct roots in F for all a E IF. It is easy to see that this polynomial 
has no multiple roots except when a = 1. In this case X 6 

- 8X3 + 9X2 
- 2 = 

(X - 1)3(X3 + 3X2 + 6X + 2) and the cubic factor has precisely one root in IF. 
A computer search for roots of the above polynomials in IF = GF(p), where 

p == -1 (mod 24) and p < 10000, always found at least three distinct roots in IF for 
some a. We therefore conjecture that O2 never describes an oval in a dual Betten
Walker plane of odd order. If this were true our Theorem would be already proved 
at this stage. 



5. Equations of Circles Through a General Infinite Point 

In this section we determine the form all circles of the possible Laguerre plane. 
We keep the notation of the preceding sections. In particular, we assume the general 
hypotheses 3.4, and lF2 denotes the set of squares of IF = GF(p). We follow a similar 
approach as in section 4. By Proposition 4.5 the group E cannot fix each infinite 
point so there must be subgroups A ~ of order p such that 3 fixes each infinite 
point and A acts equivalently to 

on I (00,0) lF 2 • In the coordinatization of the infinite parallel class 1 (00,0) 
as given in Proposition 2.1 this means that A E A maps a circle K f through an 
infinite point (00, W f) not fixed by A onto a circle K f+zh

2
+agl +bg2+c for suitable 

z, a, b E IF, c E (h2 and gi as in (15) and (1)); d. 4.2, and note that Kh2 has 
coefficient vector (0,1,0,0,0,0). Once we have found :3 we can take any subgroup 
that intersects :3 trivially for A. In the proposition below we show that :3 must be 
the group W as defined after 4.2. 

Proposition 5.1. :3 = W. 

Proof. Assume that :3 =1= w; then we may choose W as the subgroup A. As now W 

acts equivalently to {( ~ ~) 1 z E IF} on 1 (00,0) I, the automorphism 'IjJ-t maps 

the circle K f to Kf+rth2+atgl+btgz+f(O,t) for suitable r,at,bt ElF, r =1= 0, where we 
assume that f(O,O) (0,0). Using the action of 'IjJ-t on points and substituting 
y + t for y we obtain 

(19) 

for all x, y, t E IF. Putting y = ° yields 

Substituting x = ° in (19) gives us 

(21) 
1 2 

f(O, y + t) = f(O, y) + f(O, t) + (atY, 2rty + bty). 

The left-hand side being symmetrical in y and t implies 



thus 

at = at, 
(22) . 1 

bt = 2rt2 + bt, 

where a = aI, b = b1 - ~r E IF. In the sequel we only consider the function u. 
Substituting (22) into (21) we find 

u(O, y + t) = u(O, y) + u(O, t) + aty. 

From Lemma 4.1 we infer 
1 

u(O, y) = 2ay2 + cy 

for some c E IF. Then (20) gives us 

(23) 

1 2 1 
u(x, y) u(x,O) + 2ay2 + cy - Srx3y - ax2y + 2rxy2 + bxy 

1 
= 2(rx + a)y2 + R(x)y + Sex) 

where R(x) is a polynomial function of degree 3 in x and Sex) is some function 
depending on x. 

We now use the group 3. Since:E ~ IF2, each non-trivial subgroup of :E is 
described by a line. So there is some fJ E IF such that 3 consists of all automorphisms 
~8' s E IF, of the form 

( 
1 2 

(x,y,u,V) H- x + S,Y + sx + 2S + 1]S,U,V + su). 

As 3 fixes every infinite point, ~~S maps the circle Kf to Kf+(X.gl+f3.g2+f(s,~s2+17S) 
for suitable as, f3s E F, see 4.2. Using the action of ~-s on points and substituting 
x + s for x and y + sx + ~s2 + 1]S for y we obtain 

Substituting (23) into this equation we find for the coefficient of y2 

1 1 
2(r(x + s) + a) = 2(rx + a). 

Hence 
r=O 

contrary to the action of W being equivalent to {( ~ ~) I Z E IF}. This shows that 

~=W. D 



Proposition 5.2. Assume that w fixes each infinite point and let 1 = (u, v) de
scribe a circle. Then u and v have the following forin : 

for some a, b, c, d, el, ez E IF. 

Proof. Without loss of generality we may assume that 1(0,0) = (0,0). From the 
proof of Proposition 4.4 (see (12) and (14), note that p > 5) we already know 

u(x,y) = a(~yZ - xZy + 152x4 ) + b(xy - ~x3) + c(y - xZ) + dx + ax 

15 1 3 12 1 4 1 3 12 
vex y)=a(-x --x y)+b(-y --x )--cx +dy+-ax +{3x 

, 5 3 24 3· 2 

for suitable a, b, c, d, a, {3 E IF (here we write again a instead of a l
). Since 1 - bh2 -

cgl - dgz describes a circle if 1 does so, we may assume that b = c = d = O. 
Analogously to the proof of Proposition 4.5 we obtain a = f3 = 0 if a = 0, and as 
there we may assume that a = 1 if a =I O. Let 

(24) 
1 5 1 1 h . lF z ~ lF z : (x y) 1--+ (_y2 _ x2y + -x4 _x5 _ _ x 3 y) 

1 . '2 12 '5 3 . 

We consider the intersection of the circles Kh 1 +cxk1+j3k2 and K<tr2,o) for suitable 
r E IF, where kl and k2 are as in (15). To find the points of intersection we solve 
the system of equations 

(25) 

in x and y. The second equation yields 

1 2 1 4 1 
x = 0 or 3"x y = s-x + 2ax + {3. 

The first alternative results in the two solutions (0, ±r) if r #- O. After multiplying 
the first equation in (25) by x4 the second alternative leads to the equation 

(26) 

Note that there can be at most two distinct solutions of (25) as we intersect different 
circles in the Laguerre plane. Hence the above equation must have no solution or 
precisely one solution if r =I 0 or r = 0 respectively. 



We begin with the case a =f:. O. Since the map x 1-+ x 3 is a permutation of IF, we 
can write a as a l2e for some ~ E IF*. If f3 =f:. Noe, let r ~ - ¥o-e; then the 

equations (25) have the three sol)itions (O,±r), and (~,r + e2
). If f3 = No~4, we 

distinguish between the cases 157 (j!. lF2 and 157E lF2. In the first case let r = 3
12 PI ~2 

where PI E IF such that P1 2 = -3·157 (note that -3 rf- lF2 ); then we find the three 
solutions (0, ±r), and (-2~, In the second case let r = f4p2e where P2 E IF 
such that P2 2 = 6 157 (note that 6 E lF2 by Proposition 4.6); we then obtain the 
three solutions (O,±r), and (~~, ~e). 

We now assume that a 0 and f3 =f:. 0 and we set r = 0 in (25). Then (26) 
becomes a quadratic equation in X4 

+ 360f3x4 
- 1350,82 = O. 

Since 6 E lF2 and -1 (j!. lF2' there is an ry E IF, ry2 = 6 such that p = 15( -12 + 5ry)(3 E 
lF2 (note that 15(-12+5ry)f3 . 15(-12-5ry)(3 -6(15f3? (j!.lF2). Furthermore, 
we may choose ( E IF such that p = (4, (Because -1 rf- lF2 and P E f2 one of the 
two roots of X 2 - P is a square in IF.) Then we obtain the three solutions (0,0), 
((,(1 + iry)(2), and (-(,(1 + ~.ry)(2). 

In any case we have at least three solutions of the system (25). As this is not 
possible in a Laguerre plane, the parameters a and f3 must be both O. D 

In a Laguerre plane the circle J{h 1 must induce an oval 

in the dual Betten-Walker plane over IF (= derived projective plane at (00,0)). As 
in Proposition 4.6 this allows us to obtain further restrictions on the possible primes 
p. Using the Hasse-Weil theorem for equations over GF(p), to which D.G. Glynn 
called my attention, we will eventually exclude the occurence of a dual Betten
Walker plane as derived projective plane altogether. 

Lemma 5.3. If 0 1 describes an oval in the dual Betten-Walker 'plane over IF = 
GF(p), p -1 (mod 24), then 

(27) g(X) = X4 + 6X3 + 21X2 + 26X + 21 

must map IF into IF 2, i. e. g( x) is a square for all x E IF. 
In particular, 7 is a square in IF and p 2: 47. 

Proof. We consider the intersection of 0 1 with a line of the form 

1 1 2 1 1 1 
{( x y --x + -b + - --y + -) I x Y E f} 

, '3 2 4' 3 5 ' 



for some b E IF (the line corresponding to the circle J{ _ h 2 + ( ! b 2 +:\-, t) ). N ow we 
obtain the system of equations 

(28) 

The second equation yields 

In the first case we find two solutions (1,1 ± b). After multiplying the first equation 
in (28) by (x2 + X + 1)2 the second alternative leads to 

(29) 
(x - 1)4(x4 + 6x3 + 21x2 + 26x + 21) = -150b2(x2 + X + I?, 

3 
y(x2 + X + 1) = '5(x

4 + x 3 + x 2 + X + 1). 

Note that x 2 + x + 1 =J 0 for all x E IF; so any solution of the first equation in (29) 
leads to a point of intersection. Since b can be chosen arbitrarily, the first equation 
in (27) cannot have a solution. Thus 

for all x E IF (note that g(l) = 75 = (-1)· (-3).52 E IF2)' 
Therefore g(O) = 21 = 3·7, and thus 7 must be a square in IF. Using the law of 

quadratic reciprocity (see [6, §6.12]), one finds that p must be congruent to -1, -2, 
or 3 modulo 7. But then p == -1, -25, or 47 (mod 168). In particular, p 2: 47. D 

Proposition 5.4. 0 1 is no oval in the dual Betten-Walker plane over GF(p), 
p == -1 (mod 24). 

Proof. We show that there must be some x E IF such that g(x) ~ IF2 , where g(X) 
denotes the polynomial in (27). We study the polynomial 

G(X, Y) = y2 - g(X) 

in two indeterminates X and Y. Suppose that G(X, Y) is reducible over the alge
braic closure if of IF. A factorization must have the form (Y - h(X)). (Y + h(X)) for 
some polynomial h(X) E iF[X]. Thus g(X) = h(X)2 and heX) is of degree 2, i.e. 
without loss of generality h(X) = X 2 + aX + b for some a, b E iF. A comparison of 
the coefficients of X 3 and X 2 in g(X) and h(X)2 respectively yields a = 3, b = 6. 
But then h(X)2 = g(X) + lOX + 15 and g(X) = h(X)2 if and only if p = 5. Since 
p 2: 47 by Lemma 5.3, it follows that G(X, Y) is absolutely irreducible. 



According to the Hasse-Wei! Theorem for equations over GF(p) (see [7, Thm 
10.2.1] for a projective version, compare also [9]) the number of solutions of the 
equation G(X, Y) = 0 is at most p + 1 + 2,.jP where, denotes the genus of G. 
Since the degree of G(X, Y) is 4, one obtains that, ::; 3, d. [7, §10.2]. 

We now assume that g(x) E lF2 for all x E IF. Since g(X) has at most four 
roots in IF and because g(X) has no multiple roots, this assumption implies that 
the equation G(X, Y) = 0 has at least 2p - 4 solutions. Hence 4::; p + 1 + 6.jP, 
and so p < 46 contrary to p ~ 47 by Lemma 5.3. This proves that there is some 
x E IF such that g( x) ¢ IF2 • Consequently, 0 1 is not an oval. D 

Proposition 5.4 and Corollary 4.7 now prove the Theorem of Section 1. 

Remark 5.5. Let lE be a field of characteristic =I 2,3,5. For z = (x,y) E lE 2 let 
D(z) be the 6 x 2 matrix 

and define 

D(z) = 

~y2 _ x2y + 152x4 

xy ~x3 

Y - x 2 

X 

1 
o 

~X5 _ ~x3y 
~y2 _ ±x4 

-tx3 

Y 
o 
1 

(
1 0 0 0 0 O)t 

DC 00) = 0 1 0 0 0 0 

Let £(lE) denote the following incidence structure: The point set is P = (JE 2 U 
{oo}) lE 2 , the set of circles is K(lE) = {Kc ICE lE 6 } where Kc = Hz, c· D(z)) E 
P I Z lE2 U {oo}}. Two points (z, w) and (u, v) are parallel if and only if z = u. 
That £(lE) is constructed analogously to the elation Laguerre plane as given in 
Proposition 2.1. Then the full collineation group of the dual Betten-Walker plane 
is induced the stabilizer of the infinite point (00,0). 

As shown in [11, §8] one obtains indeed a Laguerre plane for lE being the field 
of reals. Furthermore, it readily follows that one also obtains a Laguerre plane for 
the field of all real algebraic numbers. Since £(lE'), lE' a finite subfield of lE, is a 
Laguerre plane if £(lE) is one, the main theorem shows that £(lE) can only be a 
Laguerre plane if lE has characteristic O. 
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