ONE-POINT EXTENSIONS OF FINITE INVERSIVE PLANES

Tim Penttila
Department of Mathematics
University of Western Australia
Nedlands, W.A. 6009
Australia

Dedicated to the memory of Alan Rahilly, 1947-1992

Abstract

A one-point extension of an egglike inversive plane of order n exists if, and only if, n is 2 or 3 . Hence there are no $4-(18,6,1)$ designs and no $4-(66,10,1)$ designs.

An inversive plane of order n is a one-point extension of an affine plane of order n, that is, a $3-\left(n^{2}+1, n+1,1\right)$ design.

An ovoid of $P G(3, q), q>2$, is a set of $q^{2}+1$ points, no three collinear. An ovoid of $P G(3,2)$ is a set of 5 points, no four coplanar. Every plane of $P G(3, q)$ meets an ovoid in either 1 or $q+1$ points. The incidence structure whose points are those of an ovoid in $P G(3, q)$, whose blocks are the plane sections of size $q+1$ of the ovoid, and whose incidence is given by set membership, is an inversive plane of order q. An inversive plane of this form is called egglike.

Theorem 1 [3, 6.2.14] An inversive plane of even order is egglike. In consequence, its order is a power of two.

A one-point extension of an inversive plane of order n is a $4-\left(n^{2}+2, n+2,1\right)$ design.

Lemma If a 4-($\left.n^{2}+2, n+2,1\right)$ design exists, then $n=2,3,4,8$ or 13 .
Proof: By the standard divisibility conditions [5,p.7] for designs, $n+2$ divides $n\left(n^{2}+1\right)\left(n^{2}+2\right)$. Hence $n+2$ divides 60 . It follows that n is $2,3,4,8,10,13,18,28$ or 58 . By Theorem $1, n$ is $2,3,4,8$ or 13 .

Remarks

1. A 4-($6,4,1$) design exists and is unique; it is complete. It is a one-point extension of the (egglike) inversive plane of order 2.
2. A $4-(11,5,1)$ design exists and is unique $[5, \S 4.4]$; it has automorphism group the Mathieu group M_{11} of degree 11. It is a one-point extension of the (egglike) inversive plane of order 3 .

Theorem 2 If a $4-\left(n^{2}+2, n+2,1\right)$ design exists, and the residual structure of some point P is egglike, then n is 2 or 3 .

Proof: A block B of the $4-\left(n^{2}+2, n+2,1\right)$ design not on P consists of $n+2$ points of the egglike inversive plane of order n, no 4 concircular. It follows that B is a set of $n+2$ points of $P G(3, q)$, no 4 coplanar. By [4, Theorems 21.2.4 and $21.3 .8]$, it follows that $n+2 \leq \operatorname{Max}(5, n)$, so that n is 2 or 3 .
Corollary $1[6]$ There are no $4-(18,6,1)$ designs.
Proof: Suppose there is a $4-(18,6,1)$ design. The residual structure at any point is an inversive plane of order 4 must be egglike, by Theorem 1. But this contradicts Theorem 2.

Corollary 2 [2] There are no $4-(66,10,1)$ designs.
Proof: An argument similar to that which proved Corollary 1 suffices.
It follows from the above that the only order for which the existence of an inversive plane is undecided is 13 , and that, if a $4-(171,15,1)$ design exists, then the residual structure at any point is an inversive plane of order 13 which is not egglike.

Finally, note that in [1, 2.4] it was shown in another way that, if an inversive plane has a one-point extension, then it has order 2,3 or 13 .

REFERENCES

[1] P. J. Cameron, Extensions of designs: variations on a theme, in: P. J. Cameron, ed., Combinatorial surveys: proceedings of the sixth British Combinatorial Conference (Academic Press, London, 1977).
[2] R. H. F. Denniston, Non-existence of the Steiner system $S(4,10,66)$, Utilitas Math. 13 (1978) 303-309.
[3] P. Dembowski, Finite Geometries (Springer-Verlag, Berlin, 1968).
[4] J. W. P. Hirschfeld, Finite projective spaces of three dimensions (Oxford University Press, Oxford, 1985).
[5] D. R. Hughes and F. C. Piper, Design theory (Cambridge University Press, Cambridge, 1985).
[6] E. Witt, Über Steinersche Systeme, Abh. Math. Sem. Univ. Hamburg 12 (1938), 265-275.

