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Abstract. 

The cy<:101GOIJ01C identity, that 

1 

1- az 

00 

n=l 
(_1_) M(o:,n) 

1 zn ' 

where M(a,n) = *- :L:dlnJ.L (~) ad, and J.L is the classical Mobius func
tion, has several natural analogues. Polynomials in a of degree n related 
to M( a, n) in these identities share interesting properties with M( a, n). 
Many special cases are of combinatorial interest. 

1. The Witt formula and a product expansion 

The function of the two variables a and n given by M(a,n) = ~ LJ.L (~) ad 
din 

arises naturally in many combinatorial problems. M( a, n) is a polynomial of degree 
n in a with rational coefficients which takes on integer values for integer arguments. 
It is sometimes called the necklace counting polynomial because it can be inter
preted as enumerating non-periodic circular strings of n beads that can be strung 
from beads of at most a distinct colours. It is called the Witt formula when used 
to count the number of monic irreducible polynomials of degree n over G F( a) in 
the case when a = pk for some prime p and some positive integer k. It also gives 
the dimension of the subalgebra generated by the homogeneous elements of degree 
n in the free Lie algebra over a set at a elements. Information about the parity 
of M(a,n) was obtained in [1]. References [4] and [5] offer the first combinatorial 
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proof of the cyclotomic identity. We are interested here in several identities involv
ing similar polynomials which arise in related identities. As a paradigm, we begin 
by giving a proof of the cyclotomic identity which relies on manipulations of formal 
power series. 

Theorem 1 (The Cyclotomic Identity) 

1 

1- az 

00 ( 1 ) M(a,n) 

II --- where 
1- zn M(a,n) = ~ L~ (~) ad . 

n=l 

Proof. From the identity as given, write 

00 

(1) log(l- az) = LM(a,j)log(l- zj). 
j=l 

Series expansions give 

(2) 
00 n n 00 00 ji 
L~ = LM(a,j)L

z 
n n=l j=l i=l 

The change of variable n = ij, d = j gives 

(3) fanz
n 

=fLM(a,d)dz
n

. 
n n n=l n=l din 

Equating coefficients of zn gives 

(4) 

or 

(5) 

an 
- = LM(a,d)d/n 
n 

din 

an = LdM(a,d) . 
din 

Here we could write the recurrence 

(6) M(a,n) = ~ (an - L dM(a, d)) , 
din 
d""n 

'J':lll 

din 



but Mobius inversion applies to give 

(7) 1 '" d M(a,n) = - L.t p(n/d)a . 
n 

din 

The variations we wish to consider involve signs in the factors of the product 
and the placement of the undetermined function of a and n as a coefficient rather 
than as an exponent. First, motivated by the analogy with generating functions 
for general partitions, we study the product that corresponds to the generating 
function for partitions into distinct parts. 

2. A dual expansion to the Cyclotomic Identity 

We study the nature of the exponents N( a, n) in the formal expansion 

00 

(A) 1 + az = II (1 + zn)N(a,n) 
n=l 

It is most convenient to express N(a,n) in terms of M(a,n). 

00 

Theorem 2. 1 + az = II (1 + zn)N(a,n), where for n = 2k n', n' odd, N( a, n) = 
n=l 

M( a, n) if k = 0, else N( a, 2kn') = 1/2k (2 k - 1 M( a, n') - 2k - 2 M( 0'.2, n') - ... -
M(a2k

-
1 
,n') - M(a2k ,n')). N(a,n) is a polynomial in a of degree n that assumes 

integer values for integer arguments. 

Proof. Proceeding through the steps of the Cyclotomic Identity proof, we obtain 

(2A) 

and 

(5A) ( -1 t an = L ( -1 tid dN ( a, d) . 
din 

The next step in the derivation for M( a, n) does not obtain, however, since 
(5A) is not a formula to which Mobius inversion directly applies. Some properties 
about N( a , n) may be deduced from the recurrence 

(6A) N(a,n) = ~ (L( -lt1ddN(a, d) - (-Iran) , 
din 
d#n 
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but a better approach is to modify (5A) so that Mobius inversion is useful. Write 
n = 2kn ' for n' odd. If k = 0 then (5A) reduces to (5) and N(a,n) = M(a,n), so 
assume k 2:: 1. Then (5A) says 

(_l)nan = an = (a 2k )n' 

= L(-lt/d
' dIN(a,d') + (-It/ 2d'2d'N(a,2d') + ... 

d'ln' 

+( _It/2k
-

1d
' 2k- 1 d' N( a, 2k - 1 d') + (_It/2kd

' 2 k d' N( a, 2k d') 

= L d'(N(a,d') + 2d'N(a,2d') + ... 
d'ln' 

+2k- 1d'N(a,2 k
-

1 d') - 2k d'N(a,2 k d'). 

This can be written as 

Now Mobius inversion applies to the expressions involving n', to give 

k-l 

2in'N(a,2i n l
) - 2kn 'N(a,2 kn') = p(n' /d')(a

2k
)d' 

i=O d'ln' 

n, we have 

k-l 

N(a,n) = LN(a,2 i n')/2k- i 
_ 1 p(n1 jd')(a2k

)d' 
n 

(7 A) 
i=O d'ln' 

k-l 

'" N( 2i ')/2k - 1 1 M( Zk ') = L..t a, n - 2k a, n . 
i=O 

With the last step iterated, we have the formula we wanted, expressing N( a, n) in 

terms of M( a zi ,2i n') for 0 ::; i ::; k. 

(6A), N(a,n) is a polynomial in a of n. We establish that N(a,n) 
assumes integer values for integer arguments by induction on n. First, observe 
that N(a,l) a. Now suppose that N(a,l), N(a,2), .. . , N(a,k) are integers. 

k 

Then (1 + zn)N(a,n) is a polynomial with integer coefficients, chosen to make 
n=l 

the partial product 1 + az + Oz2 + Oz3 + ... + Ozk+ other terms, where the other 
terms may have non-zero coefficients. Suppose zk+l has the integer coefficient ck+l' 



k+l 

Then N(a,k + 1) is chosen to make the coefficient of zk+l in II (1 + zn)N(a,n) to 
n=l 

be zero. Hence N(a,k + 1) = -ck+l' an integer. 

3. General product identities, and other representations for N(a,n) 

We begin with a result whose proof belies its importance. It gives a sim-
00 

pIe relationship between the factorization of A(z) in the form II (1 + zn)bn and 
n=l 

00 

00 

Theorem 3. Given the factorization A(z) = II (1 + zn)b n
, we can deduce that 

n=l 
00 

A(z) = II (1 - zn)-dn where 
n=l 

(8) 

00 00 

Conversely, if A(z) = II (1 - zn)-dn is known, then A(z) = IT (1 + zn)bn where, 

for each n, 

(9) 

Proof. 

we deduce 

n=l n=l 

k 

bn = l:= d2 i n ', where n = 2k n', k 2: 0, n' odd. 
i=O 

From 

00 00 00 

n=l n=l n=l 

00 00 00 

n=l n=l n=l 

00 

It follows that A(z) = II(l- zn)-dn
, where 

(11) 

n=l 

d2n- 1 = b2n- 1 and 

d2n = b2n - bn 

237 
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The converse follows by induction on the exponent of the highest power of 2 dividing 
n. 

Applying (9) to the Cyclotomic Identity, we obtain the following result. 

Corollary 4. 

(12) 

l-az 
1 

00 

IT (1 + zn)N(a,n), where 

n=l 

N(a,n) M(a,n), n odd 

k 
A ~ r I k f f N(a,n) = L..,.M(a,2 n ),n = 2 n ,k ~ 0, n 

r=O 

From (8) we obtain 

Corollary 5. 
n=l n=l 

(13) 

odd. 

M(a,n) = N(a,n), n odd 

M(a,n) = N(a,n) - N(a,n/2), n even. 

Note that we can rewrite the equation in Corollary 4 as 

00 

1 + az = IT (1 + zn)-N( -a,n), 
n=l 

whence we obtain another representation of N(a,n): 

k 

Corollary 6. N(a,n) = -N(-a,n) - LM(-a,2T n'), where n 
r=O 

k ~ 0, n' odd. 

Several other general theorems related to these expansions are given below. 

Theorem 7. 
00 

If A(z) = IT (1- zn)-dn then 
n=l 

<Xl 

1 _ II( n)cn 

A(-z) - n=l l+z 

Cn = dn , n odd 

k 

where 

c2n = - L d2T +1n" n 2kn', n' odd. 
r=O 



00 

Proof. If A(z) = II (1 - zn)-dn we want to describe the coefficients 
n=l 

00 

= IT(l + znyn. 
n=l 

00 

From 

so Cn = dn for n odd. 

00 00 

By Theorem 3, if B(z) II (1 - z2n)d2n then B(z) = II (1 + z2nY2n where 
n=l n=l 

k 

C2n = - L d2T+1n" n = 2kn' ,n' odd. 
r=O 

00 

A related fact is that if A(z) = II (1 - zn)-dn then 
1 

n=l n=l 
where en 
mod 4. 

-dn if n is odd, en = dn + dn/2 if n == 2 mod 4, and en = dn if n == a 

Corollary 8. 

where 

1 00 

For A(z) = -- = II(1 - zn)-M(a,n), we have 
1- az n=l 

00 

1 -j- az = II (1 + zn)N(a,n) 
n=l 

N(a,n) = M(a,n) n odd 
k 

N(a,2n) = - LM(a,2r+1 nl
) 

r=O 

This is another representation of N in terms of M. From the identity used in 
Theorem 3 we obtain 

00 

Theorem 9. If A(z) = II (1 - zn)-bn then 
n=';l 

00 

II (1 + zn)bn = A(z)/A(z2) . 
n=l 
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Applying Theorem 9 to the cyclotomic identity, we obtain 

Corollary 10. 

A dual result to Theorem 9 is also available. 

(X) 

Theorem 11. If A(z) = II (1 + zn)b n then 
n=l 

(X) 

II (1 - zn)-bn II A(z2
k

) . 

n=l k=O 

The result corresponding to Corollary 10 is 

(X) 

Corollary 12. II (1 - zn)-N(a,n) = II (1 + az
2k

). 

n=l k=O 
<Xl <Xl 

II (1 - zn)-N(a,n) = II (1 - az2k )-1 . 
n=l k=O 

We remark that Theorem 3 can be extended by viewing the factors in the 
infinite product as more general partial sums of geometric series. Thus if 

A(z) = II (1 + zn + z2n + ... + z(=-l)n)b n , 

n=l 

we have the alternate representation 

A(z) = II (1 zn)-d1n (n), 

n=l 

where d=(n) = bn if m does not divide n, and dm(n) = bn - bn / m otherwise. The 
converse is that for 

A(z) = II (1 zn)-dn
, 

n=l 

( ) 

b1n(n) 

A(z) = Q ~ zi
n 

, 

240 



where 
k 

bm(n) = L dminl 
i=O 

for n = m kn ' ,m does not divide n'. 

This approach gives, in the spirit of Theorem 9, that 

00 

A(z) = II (1 - zn)-bn 

n=l 

implies 

IT (~zjn) = :~~ 
n=l j=O ( ) 

Another approach to generalizing these identities involves working with factors 
that are more general polynomials on both sides. For example, we can write 

4. Applications to product expansions and generating functions 

P6lya and Szego [6,p 126] note two product expansions related to the exponential 
function. 

00 

(14) II (1 - zn)J.L(n)/n = e- z 

n=l 

00 

(15) II (1 - zn)¢>(n)/n = e- z / 1 - z • 

n=l 

Several related expansions are available from results in section 3. Applying Theorem 
9 to (14), we obtain 

00 

Corollary 13. II (1 + zn)J.L(n)/n = ez -
z2 

n=l 
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Theorem 9 applied to (15) gives 

00 

Corollary 14. II (1 + zn)!/>(n)/n = eZ /(1-z
2
). 

n=l 

Theorem 3 applied to (14) and (15) give 

Corollary 15. II
OO 

n b p.(2n - 1) 
eZ (1 + z ) n, where b2n .,-1 = 2 ' and for 

n-l 
n=l 

n = 2k n', n' odd, k ~ I, 

k 
p.(21'n') p.(n') p.(2n') p.(n') JL(n') J.L(n') 

bn = L ~ = -:;;;- + 2;;t = -:;;;- - 2n' = 2n' . 
1'=0 

Corollary 16. 

00 

ez/(l-z) = II (1 + zn)(k+2)!/>(n')/(2n') , n = 2kn ' , n' odd. 

n=l 

Proof In applying Theorem 7, note 

b _ ~ ¢(21'n') _ ¢(n') ~ ¢(21') 
n - 6 21'n' - n' 6 21' 

1'=0 1'=0 

= ¢~~') (1 + t ~) (k + ;If(n') 
1'=1 

Equation (8) in Theorem 3 applied to the generating function for the number 
of partitions of n into distinct parts, q(n), 

00 

n=l n=O 

gives the product representation of the generating function for partitions of n into 
00 

odd parts. Equation (9) in Theorem 3 applied to II (1 - zn)-l gives 
n=l 

Corollary 17. 

00 00 

(16) 1 + L p(n)zn = II (1 + zn)a(n) 

n=l n=l 
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where a(n) = k + 1, the number of trailing zeros in the binary expansion of 2n. 

A combinatorial proof of Corollary 17 is available as well. This approach involves 
interpreting the right hand side of (16) as the generating function for partitions of 
n into distinct parts chosen from the set 

where the subscripts indicate that different copies of the same integer are distin
guishable in the partitions that are generated. 

Another interesting identity from (9) in Theorem 3 is 

00 00 

Corollary 18. 
n=O n=O 

Corollary 18 also has a combinatorial interpretation in terms of partitions. 

Two identities involving the generating function for plane partitions are also 
available from Theorem 3. 

00 00 

Corollary 19. II (1 - zn)-n = II (1 + zn)2n-n
l

, 

n=l n=l 
where n' is the largest odd divisor of n. 

00 00 

Corollary 20. 
n=l n=l 

The last identity we mention also follows from Theorem 3. 

00 00 

Corollary 21. 
n=l n=l 

5. Power products and the cyclotomic identity Following the develop
ment in section 2, we consider the following formulas, with the goal of determining 
a suitable function of a and n to give a formal identity. 

(B) 
1 ex 00 1 

(1 - z) = 11 1 - D(a,n)zn 

00 

(C) (1 + zt = II (1 + C(a,n)zn) . 
n=l 



Expansion (B) may also be manipulated using formal power series. From 

00 

(lB) alog(l - z) = I)og(l - D(a,n)zn) 
n=l 

we obtain 

(3B) 
n=l j=li=l n=l din 

Equating coefficients of Zn, 

(5B) a = LdD(a,dt/d 

din 

or 

(6B) 

This relationship, and an argument analogous to the induction in Theorem 2, is 
enough to establish an important property of D( a, n). 

Theorem 22. D(a,n) is a polynomial in a of degree n that takes on integer 
values for integer arguments. 

In this case, though, there seems to be no hope of using Mobius inversion to gain 
information about the nature of D( a, n). A table of values of D( a, n) is provided 
for 1 ~ n ~ 16. 

Table 1. Values of D( a, n), 1 ~ n ~ 16 
D(a,l) a 
D(a,2) ~(a - ( 2

) 

D(a,3) i(a-a3
) 

D(a,4) j(2a - a 2 + 2a3 
- 3(4

) 

D(a,5) i(a ( 5
) 

D(a,6) -l2(12a - 4a2 
- 3a3 + 17a4 

- 9a5 -13(6
) 

D(a,7) #(a - ( 7
) 

D(a,8) 1;8(16a - 4a2 + 4a3 -11a4 + 24a5 
- 22a6 + 20a7 

- 27(8) 
D(a,9) 8\ (90a - a 3 + 3a5 

- 3a7 
- 8(9

) 

D( a, 10) 8~0 (80a - 16a2 
- 5a5 + 57a6 

- 50a7 + 50a8 
- 25a9 

- 91a10
) 

D(a,11) fr(a-a ll
) 

D( a, 12) 13~24 (1152a - 192a2 + 56a3 + 140a4 846a5 + 1141a6 + 78a7 
-

555a8 + 142a9 + 679a10 
- 582a 11 - 1213(12

) 


