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Let P be the of coil(C) which starts at v~. This 

terminates at 

f :: (k 

r 
+ a(P.-1 ) k + ex? s + a.,2. s + ... s) (mod n)t 

where the numbers of s, .... (/I 't B t 

s, s, sand s terms are Il, 

whilst the numbers of B and terms are and the 

numbers of k and k terms are 1 .. Theref'ore, 

s+ s+ 

s+ 

n) .. 

Since r ~ 1 and fl:: is odd, we have 

Therefore, Ot are all even numbers 

modulo m and pot 2 r . , are all 

odd numbers modulo m. Therefore, 

s+ s+ S :: S + + 

+ .... + 1 ) (1 _ 

and B ill: as + + ...... 

(.3 
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From ().4), ().5) and ().6) we have 

f :: (13 (a -1 ) (1 + Of. + a.2 + .... + cf-1 ) + k ( 1 - a.) (1 + ct. + 

a.2 + ..... + a.2 r -1 » + (1 _ c:) iis (1 + Q'. + a.2 + ••• 

+a.P--1 ) (1 - ex. + cJ - • ... + ctlA--1 ) (mod n). ( ) .. 1 ) 

By the definition of metacirculant graphs t we have cx.P-k:: 

-k (mod n) ~ (oc.t\1)k =: 0 (mod n) .. Therefore. we have 

p. 2 22 2 r - 1 
0;; (a.-1)'iik(ct +1)(1+a:-)(1+Q.; ) ••• (1 +cx. ) 

r 
;; (ex. -1 ) iik (1 + oc. + oc.2 + ".. + cl -1) (1 - ct. + 

2 [J.-1) ( ) ct ......... + ex. mod n • ().8) 

From ().1) and ().8) it follows that 

r 
f ; f + 0 ; {- (et -1 ) [k (1 + ct + (j.2 + ..... + a.2 -1) - s ( ,- + 

(X; + r::J..2 + ..... +oc.~-1)]1 + {(ct.-1 )n(t - a+ a.,2 - ...... 

r 
+ cx.l-l- 1 ) [k (1 + ex. + ex.2 + ..... + 0(,2 -1) - s (1 + ct + 

a2 + " .. " + d,lA-- 1 )]} :: (cx.-1) d (mod n) t 

2r_t 2 
where d ::: [k (1 + <X + + ...... + ct ) - s (1 + Of. + a; + co .... + 

<::ttL- 1 )] [ii'1 - Ct + «2 ...... +a.ll - 1 ) - 1] " 

It is not difficult to see that the automorphism pa.-1 

has order t := n/ ii :::; ~(n/(ii ). Since G is connoted 11 by 

Lemma ), 

-s(1 +c:t+ 

tn) :: 1. where h is [k( 1 + (1.+ + ...... + 

+ ...... +oc.rt- 1 )] reduced modulo n .. Hence, 

gcd(h,t) := 1 .. 
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It is also clear that 

gcd( [ii( 1 - Q. + a.2 - .... + Q.l!-1 ) ... 1J t if) ::: 1. (3.10) 

Furthermore, we have cx.2i :: «Q,+1_1)2)i:: (cx,+1)Xi +1 and 

a,2i+1 ::: C(..
2icx. ::: «0.+1 )xi + 1) «a.+1) - 1) := (<x +1 )Yi .... 1 t where 

xi and Y i are integers .. Consequently t (1 .... a.+ ci ........ + 

cx,tt- 1 ) ::: (cr.+1)x + f for some integer x. Thus II 

[ii( 1-<l+<i- ..... +<X,1l .... 1 )-1] lIB ii(~+1 )X+(p-ii-1).. (3.11) 

By Lemma 4, n/ (ii ii) is a divisor of (a+ 1 ) .. lrom this, 

(3.11) and assumption (i) of our lemma it is easy to see 

that 

(3.13) 

Thus. gcd(d,t) := 1 because (3.9) and (3.13) hold. By Lem-

rna 1, G has a Hamilton in this case .. 

(B) Assume now that assumption (ii) is satisfied. 

the definition of metacirculant graphs, we 

have a.P-k iii -k ~ (a,1!- + 1 1i& 0 (mod n).. Therefo-

re, 

On the other hand, since 

(U-1 , .,.., [ are all even modulo m.. There-

fore, from (3.5) and (3.14) we have 
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r r () r 
s + 0.2 s + 0.2 • 2 s + .,,,.. + a. p. -1 2 s z - (1 - ct + Ci;2 -

r 
..... + a.tJ. .... 1 ) [k ( l' + ex. + ex.2 + ...... + cx,2 -1) .... s (1 + (X, + 

Ci,2 + .... " + ctll- 1)] (mod n) .. 

Since G is conneeted t Lemma ), gcd(h ::: 1, where h is 

)] reduced 

modulo n. Furthermore. (ii), ~ ::: 1. Therefo-

ret from (3 .. 1 we have 

(:3 16) 

Let t where 

s) .. Let z be + s+ 

s + ..... + s) reduced modulo n .. since 

( :3 • 1 6) ho 1 de , 

) ..... 

are ot G .. Moreover ) () ) ::: ~ and 

) U ) • 

Now we relabel the vertices of G as follows Fi-

gure 2) .. Choose a direction of .. Because the chosen di-

reetion for every vertex of we can talk about the 

vertex .. 'fhe vertex of is relabel-

led ) vertex of which is acent to 

is relabelled of and the vertex 
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of 02 adjacent to T3 have been relabelled by Ux and T
X

' 

respectively. Then the vertex v~: following v; in 01 is 

relabelled by ux+1 and the vertex of 02 adjacent to v~: is 

relabelled by vx+1. 

2 

We show now that the relabelled graph G i8 a genera-

lized Petersen • Let e and ~ be the automorphisma of 

G defined by p(v;) i (i) i+1 for vi :: Vj+1 and 't v j =: va.j every j 
r 

E V(G). Then "i:: ea~2 is also an automorphism of G .. For 
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every v~ E V( G), we have 
r 

~(v~) :::: ea~2 (v;) :: ea 

In 

) :: 

j) 

,. ., 0 ,. .. 

a) 

This means that on the chosen direction of 

ei ther "i maps every vertex of to the vertex 

it in or ~ maps every vertex the prece-

it in • Without 10s8 of we may assume 

that 1 maps every vertex of it 

in Therefore, in relabelled 

and ) II1II • From this it follows that 

the relabelled Petersen 

On the other hand, G is vertex-transitive. Therefore t 

either ;: ±1 ) or :::: 10 and f:::: 2 In 

both caaes, G has a Hamilton . Lemma 5 is 

LEMMA 6 .. Let G :::: , •• " II be a connec-

ted cubic auch that m ia even, 

than 2 and not divisible 4, :: {6, :: { S 3 
with 0 ~ s < n t :::: :: ...... :II: :: {6 and :: with 

o ~ k < n .. Then G has a Hamilton if n is even .. 
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PROOF. The proof of the main resul t in [11] (Theo-

rem 5) for the case of an even n can be repeated here to 

prove our Lemma 6 if some minor changes in this proof (in 

connection with the assumption on m which here is even, 

greater than 2 and not divisible by 4) are made. The rea­

der is invited to do all these in details to complete the 

proof of Lemma 6. 

4. PROOFS OF THEOREMS 

PROOF OF THEOREM 1. Let G = MC(m,n,~tSO.S1' ••• 'S~) be 

a connected cubic (m,n)-metacirculant graph, other than 

the Petersen • If m is odd or m is divisible by 4 or 

m = 2, then G has a Hamilton cycle [8, 11t 4J. If m is 

even, greater than 2 and not divisible by 4 but So * ~t 
then by [8J G has a Hamilton cycle. Thus, we may assume 

from now on that m is even, greater than 2 and not divisi-

ble 4 and So = ¢. Since G is cubic, it is not difficult 

to see that in this case Si = f s} with o ~ s < n for some 

i E {1,2,.."'P.-1}_ Sj ::: ¢ for all i;tjE~1t 2, ... , f-1} 

and S~ ::: {k} with 0 ~ k < n. By Lemma 2t G is isomorphic 

to G" or G ,." , where G' and G" are as in Lemma 2.. Since G is 

connected, G' and a" are also connected. 

(A) Assume first that assumption (i) of Theorem 1 is 

satisfied .. If G is isomorphic to G', then G has a Hamilton 

cycle because by Lemma 6 G' has a Hamilton cycle. If G is 

isomorphic to G" , then 1 et ii and Xi be defined as in Lem-
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ma 5. Since n is even, the number Ii is also even. Therefo­

re, P.ii'-1 is odd. Hence, d:: gcd(n/(ii~ ), p.ii - 1) is odd. 

Suppose that d > 1 and let p be a prime divisor of d. Then 

p is odd. Since d is a divisor of n/(ii~), p is also a 

prime divisor of n. By assumption (i), p is also a divisor 

of m. Being odd, in fact, p is a divisor of~. On the 

other hand, p is a divisor of p-ii-1. Thus, p divides 1. 

This contradiction shows that d = 1. By Lemma 5(i), G"has 

a Hamilton cycle. Therefore, G has a Hamilton cycle. 

(B) Assume now that n = 2apb \I where p is an odd prime, 

a > 0 and b ~ o. If G is isomorphic to G "', then again by 

Lemma 6 G' has a Hamilton cycle. Therefore, G has a Hamil­

ton cycle. If G is isomorphic to G ,then let n and Ii be 

defined as in Lemma 5. Since n is even, ~ must be odd. 

Therefore, ii is even and ~ is odd. From this it follows 

that rn-1 is odd and Ii :: pc with 0 ~ c ~ b. If c :: Ot then 

G"has a Hamilton cycle by Lemma 5(ii). If c > 0 and p is 

a divisor of n/(ii~), then p is also a divisor of (~+1) by 

Lemma 4. We have (1 - 0(,+ ~2 ....... +~P.-1) :: b+1)x + p- for 

some integer x. Therefore, p is also a divisor of ~. By 

Theorem 1(i) above, G has a Hamilton cycle in this subca­

se. If c > 0 and p is not a divisor of n/(ii~) 9 then 

n/(iii) == 2d with 0 ~ d ~ a. Since P.Ii-1 is odd, we have in 

this subcase gcd(n/(ii~) II p-n-1) == 1 and G" again has a Ha­

milton cycle by Lemma 5(i). Thus, in any cases. G has a 
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Hamilton cycle. Therefore, G has a Hamilton cycle. 

Theorem 1 is proved. 

PROOF OF THEOREM "It has been in [1] (Theo-

rem 2) that every on ~ is an -metacir-

culant Therefore ~ the conclusions (i) - (iii) fol-

low from the results obtained in 

(iv) is the result mentioned after the formulation of 

Theorem 1. ) and follow from Theorem 1. 

Theorem is 
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