
































Let P be the path of coil(C) which starts at v3. This
path terminates at vg with

, r r r r
£z (k-at'™@ g gh=22Tg L | 2027 _peRt
r hod r r
alt+2 k+a2 s+027% g4 ces + cc((":'1)2's)(mod n),

r r r
where the numbers of -of'"2 g, 2275 | R

r r
2 ol? s,

«?’s, . o202 g ofH-1)27 Z

g and s terme are n,

s 9 e

whilst the numbers of s and -or.“s terms are (n-1) and the

r
numbers of k and o'*? k terms are 1. Therefore,

r r r
£z (oLfLe;---ewk»rocb‘”2 kK)+n(s+0% s+ a2 ? 8+

oo+ OLQ'L-”zra) -nt's +0Lp*2rs +ot,§'l+2‘2rs +
- +a.p'°2rs)(mod n). (3.4)

3ince r 3 1 and P: m/2 is odd, we have ged( 2r ,t).) =1,
Therefore, 0, 2%, 2.2%, ..., (9—1)2" are all even numbers
modulo m and H, y~+2r, p.+2‘2r, sony 9-2-21‘, t&—er are all

0dd numbers modulo m. Therefore,

r Ir r
s+ s+al? s+..’+a(t"'1)2 s = 8+als+

0L43+...+<x25*"28=s(1+oL+oc2+...+ocP"1)(1-
T O el B (3.5)
H 2T p-2f 3
and ocs+ocyL+ B84 coo+Q B =08+0 8+ ...,
v sz as(1s ot o+ ... S 2 Y P
ey (3.6)

222




From (3.4), (3.5) and (3.6) we have

2

£z (s8la-1)(1+x+c bt N s k(-0 (1 + s

r
Y -1))+(1-0t)'ﬁs(1+ot.+oc2+ vee

+0LV"'1)(1-a+ot.2-...+oc9’1)(mod n). (3.7)

By the definition of metacirculant graphs, we have oaHk =

-k (mod n) & (OLP'-H)k £ 0 (mod n). Therefore, we have

2 r-1
05 (-aklls1) (1+6@) (1462 ) vee (1402 )

r
p (or.—-1)'ﬁk(1+oc+oc2+ ceetd? TH(1 -+

of = ou. +ocp'1)(mod n). (3.8)

From (3.7) and (3.8) it follows that
2 2%-1
£5£+0 5 {~-@-1)[k(1+a+a+...+0 ) -s(1+

at o+ oo+ 4 {@-DT(T -t o - ...

r
-n-oz.tl"1)(l((?“-«-c(,-s-<:(,2-|»...+oL2 “yos(1+a+

o+ ..o+ N]} = @-1)d (mod n),

r
where d = [k(1+oc+0(.2+ B B I S

OLP"")] [3(1 -Dl,+ol.2— e +q,y"1) - 1} .

It is not difficult to see that the automorphism pq'1

has order t = n/n = h(n/(mD)). Since G is conncted, by
r

Lemma 3, ged(h,n) = 1, where h is [k(1 + Ao eee e )

-s(1 +ot.+o(_2 + oo <}~oc?"'1 )] reduced modulo n. Hence,

ged(h,t) = 1, (3.9)
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It is also clear that

gcd([ﬁ(1-o¢+a2-...+0LP'_1)-1],§) = 1. (3.10)
Purthermore, we have o2t - ((0544—1)‘2)i = (©+1 )xi+1 and
P+t iy = ((+1 I)xg + N (l+1) =1) = (cx+1)yi -1, where

x; and y; are integers. Consequently, (1- o+ Beies

a1y 2 @+t)x 4+ p for some integer x. Thus,
[§(1-(X+d.2-...+0,tl~1)“1] = nl@+1)x+(pn-1). (3.11)

By Lemma 4, n/(in) is a divisor of (+1).  From this,
(3.11) end assumption (i) of our lemma it is easy to see
that
- 2 1
ged([n(1-a+af=.o4af1)=1],¢) = 1. (3.13)

Thus, ged(d,t) = 1 because (3.9) and (3.13) hold. By Lem-

ma 1, G has a Hamilton cycle in this case.

(B) Assume now that assumption (ii) is satisfied,
i.e., a=1. By the definition of metacirculant graphs, we
have af'k # ~k (mod n) & (at'+1)k = 0 (mod n). Therefo-
re,

2 r—1
= k(s 1) (e a2 (14 ) c(T40? )

()
L]

e

r
~k(1 40+l + ...+O(.2 -1)(1 ~a+of -
eee v+ Ty (mod n). (3.14)

On the other hand, since gcd(zr,tx,) = 1, the numbers 0, 2%,
2-2%, ..., (tL-1 y2¥ are all even integers modulo m., There~

fore, from (3.5) and (3.14), we have
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2

r r r

ga+0 8+Q 8+ .

”.+$L1Hkﬁ+a+d?+n.+a Hos(1eas

@+ .ee 4o 1)) (mod m). (3.15)
Sinece G is connected, by Lemma 3, ged(h,n) = 1, where h is

r -
[k(1+oc+c(.2+...+oc2 yes(lsasol+...+al™)] reduced

modulo n. Furthermore, by assumption (ii), B = 1. Therefo-

re, from (3.15) we have

T
gcd((a+o&2rs+ocz'2 3+“_.,,O¢P' -1)2" 8),n) =

(3.16)
r
Let Q(vj) ‘:.'j' 142 Ji+2: 2% o ...viJ'(f‘ -1)2" , where
j+m 8 j+oci(s+oc 8)
2 (p=2)2* 2r
j-j+oc(a+on B4 oco+ O 8)., Let z be (g+ca” 84+
T
P2 e 01,1't -1)2" 8) reduced modulo n. Then, since

(3.16) holds,
= Q(v°)Q(V°)Q(V§z)-"Q(Vzn-1)z) and
¢, = Q(v))alv) IRTICATS PORE-IC) SUPEO
are cycles of G. Moreover, V(C1) n V(Cz) = @ and V(G) =
v(c,) U v(c,).

Now we relabel the vertices of G as follows (see Fi-
gure 2). Choose a direction of 01. Pecause the chosen di-
rection, for every vertex v% of 01 we can talk about the
vertex following v‘} in 01. The vertex vg of (}'1 is relabel-
led by u,. The (unique) vertex of C, which is adjacent to

vg ig relabelled by Ve Suppose v?j' of 01 and the vertex
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of 02 adjacent to vgf have been relabelled by u, and Ve

respectively. Then the vertex v;', following v% in C, 1is

1

e

relabelled by Uy and the vertex of 02 adjacent to v;‘, is

relabelled by Vest®

—_—
o

Vo> U, u,
fz\i V4
C . €20 LG
K/‘}H Vx

u —vi. Ug < "%
x4+ 1 ’
Figure 2

We show now that the relabelled graph G is a genera-

lized Petersen graph. Let e and T be the automorphisms of

G defined by p(vg‘) = v§+1 and t(vg) = vi}’ for every v‘}

r
€ V(G). Then V = stcz is also an automorphism of G. For
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every v? € V(G), we have
r r . AT
'?(V?j') = 98’52 (Vg) = Qa(vi+§r ) = V1+2 2r N
(a° J) (8+a€ J)
In particular,

r r r
Y0 = vE, W(vE ) 2 PR

(s+0® 8)

so e e
r 9

This means that depending on the chosen direction of 01,
either ¥ maps every vertex of C1 to the vertex following
it in C1 or ¥ mapskevery vertex of C1 to the vertex prece-
ding it in C1f Without loss of generality we may assume
that ¥ maps every veriex of 01 to the vertex following it
in C,. Therefore, in the relabelled greph G, Y(ui) = Uy 4
and V(vy) = Vy,1- From this it follows immediately that
the relabelled graph G is a generalized Petersen graph
GP(mn/2,1).

On the other hand, G is vertex-tramsitive. Therefore,
either £ = %1 (mod mn/2) or mn/2 = 10 and { =2 [7]. 1In
both cases, G has a Hamilton cycle [6]. Lemma 5 is comple-

tely proved.

LEMMA 6. Let G = MC(m,n,q,So,s1,...,SH) be a connec~-
ted cubic (m,n)-metacireculant graph such that m is even,
greater than 2 and not divisible by 4, So = @, 31 = { s}
with 0 { 8 < n, sa=33=...=sv_1=¢andsyagk} with

0< k¥ ¢n., Then G hae a Hamilton cycle if n is even.
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PROOF. The proof of the main result in [11] (Theo-
rem 5) for the case of an even n can be repeated here to
pfove our Lemma 6 if some minor changes in this proof (in
connection with the assumption on m which here is even,
greater than 2 and not divisible by 4) are made. The rea-
der is invited to do all these in details to complete the

proof of Lemma 6.

4. PROOFS OF THEOREMS

PROOF OF THEOREM 1. Let G = MC(m,n,d"So,S1,...,SH) be
a connected cubic (m,n)-metacirculant graph, other than
the Petersen graph. If m is odd or m is divisible by 4 or
m = 2, then G has a Hamilton cycle [8, 11, 4]. If m is
even, greater than 2 and not divisible by 4 but SO $# 9,
then by [8] G hae a Hamilton cycle. Thus, we may assume
from now on that m is even, greater than 2 and net divigi-
ble by 4 and SO = P. Since G is cubie, it ig not difficult
to see that in this case S; = {8} with 0 ¢ 8 ¢ n for some
1€ {1,2,...,u-11, S;=@foralligje i1, 2, ..., p-1}
and SP = {k} with 0 ¢ k ¢ n. By Lemma 2, G is isomorphic
to G” or G, where G'and G” are as in Lemma 2. Since G is

connected, G~ and G” are also connected.

(A) Assume first that assumption (i) of Theorem 1 is
satisfied. If G is isomorphic to G', then G has a Hamilton
cycle because by Lemma 6 G° has a Hamilton cycle. If @ is

isomorphic to G, then let T and = be defined as in Lem-
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ma 5. Since n is even, the number n is also even. Therefo-
re, pn-1 is odd. Hence, d = ged(n/(na ), pa-1) is odd.
Suppose that d > 1 and let p be & prime divisor of d. Then
p is odd. Since d is a divisor of n/(in), p is also &
prime divisor of n. By assumption (i), p is also a divisor
of m. Being odd, in fact, p is a divisor of P On the
other hand, p is a divisor of H'ﬁ-1. Thus, p divides 1.
This contradiction shows that d = 1. By Lemma 5(i), G¢” has

a Hamilton cycle. Therefore, G has a Hamilton cycle.

(B) Assume now that n = 2apb, where p is an odd prime,
a >0and b > 0. If G is isomorphic to G°, then again by
Lemma 6 G~ has a Hamilton cycle. Therefore, G has a Hamil-
ton cycle. If G is isomorphic to G , then let N and o be
defined as in Lemma 5. Since n 1is even, o must be odd.
Therefore, n is even and T is odd. From this it follows
that pfi-1 is odd and B=p°with 0 ¢c ¢ b. If ¢ = O, then
G” has a Hamilton cycle by Lemma 5(ii). If ¢ > O and p is
a divisor of n/(in ), then p is also a divisor of (x+1) by
Lemmae 4. We have (1-a+al=..osat™) = +1)x+ p for
some integer x. Therefore, p is also a divisor of W. By
Theorem 1(i) above, G* has a Hemilton cycle in this subeca-
se, If ¢ > O and p is not a divisor of n/(nn ), then
0/(F5) = 2% with 0 ¢ 4 < a. Since pf-1 is odd, we have in
this subcase ged(n/(an ), pn-1) = 1 and G” again has a Ha-

milton cycle by Lemms 5(i). Thus, in any cases, G has a
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Hamilton cycle. Therefore, G has a Hamilton cycle,

Theorem 1 is completely proved.

PROOF OF THEOREM 2. It has been proved in [1] (Theo-
rem 2) that every Cayley graph on %; is an (m,n)-metacir-
culant graph. Therefore, the conclusions (i) - (iii) fol-
low from the results obtained in [8, 11, 4], respective~
ly. (iv) is the result mentioned after the formulation of
Theorem 1. Finally, (v) and (vi) follow from Theorem 1.

Theorem 2 is proved.
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