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Abstract. In this paper we give a complete solution of the 

problem of path designs P(v,3,l) and P(v,4,1) having an oval. 

1. Introduction. 

Let G and K be graphs with G simple; that is, G is a subgraph 

of Kv' the complete undirected graph on v vertices. A G-design of 

K is a pair (V,B), where V is the vertex set of K and B is an 

edge-disjoint decomposition of K into copies of the graph G. 

Usually we say that b is a block of the G-design if bEB, and B is 

called the block-set. 

Let L be a set of edges of the complete graph K. A partial 

G-design is the decomposition of K-L into copies of the graph G. 

The edge set L is called the leave of the partial G-design. 

A path design P(V,k,A) [2] is a Pk-design of AKv ' where Pk is 

the simple path with k-l edges (k vertices). 

The condition Av(v-l)=O (mod 2(k-l)), v~k is obviously 

necessary for the existence of a P(V,k,A). This condition is 
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proved to be sufficient by M. Tarsi [9]. Therefore a P(v,3,1) 

exists if and only if v=O or 1 (mod 4), and a P(v,4,1) exists if 

and only if v=O or 1 (mod 3). 

A balanced G-design [2,3] is a G-design such that each vertex 

belongs to exactly r copies of G. Obviously not every G-design is 

balanced. A (balanced) G-design of Kv is also called a (balanced) 

G-design of order v. A handcuffed design H(v,k,>..) is a balanced 

path design. 

Let (V/B) be a path design P(v,k,>..) I with pOint set V and 

block set B. A block bEB is called secant or tangent or exterior 

LO a subset 0 of V if IbnDI=2 or 1 or 0 respectively. 

An arc in (V, B) is a subset 0 of points of V no three of 

which are on a block. Thus any block is either secant or tangent 

or exterior to O. 

An oval in (V,B) is an arc 0 of V such that each point of 0 

is on exactly one tangent. 

Ovals were mainly investigated in projective planes. Recently 

a large body of research studies ovals in Steiner triple systems 

[1,5,6,7,10,11,12,13]. S. Milici [8] gives a complete solution of 

the existence problem of handcuffed designs H (v, 3,1) having an 

oval. 

Obviously the same problem arises for path designs P(v,k,l). 

In this paper we determine the possible cardinalities of an oval 0 

in a P(v,k,l) for k=3,4. In all these cases we construct a path 

design with an oval. 

2. P(v,3,1) with ovals. 

For every v=O or 1 (mod 4), v~13, let R(v,3) be the set of 

the integers w satisfying one of the following conditions: 

2v-1 1) 2~w~~ if w is even; 



2) -5+v'25+8v 2v-1 2 SW~~ if w is odd and v-w=O or 1 (mod 4); 

3) -5+v'3'3+8V 2v-1. f 2 <w~~ l w is odd and v-w=2 or 3 (mod 4). 

Put R(4,3}= R(S,3}= {2}, R(8,3)= {2,3,4}, R(9,3)= {2,3,4,S} and 

R(12,3)= {2,3,4,S,6,7}. 

Theorem 1. Let n be an oval in a P(v,3,1) (V,B), then 

I n I eR ( v , 3 ) . 

Proof. Let I n I =w. Let t be the number of tangent blocks 

meeting 0 in a vertex which is in the last or first position. 

Clearly t:sw and the number of exterior blocks is n=~ [(v;w) -tJ . 

Since the number of secants is at least (~), we obtain 

n+w+(~)~IBI. Since tsw and IBI=~(~) we obtain w:s~ if v~13 and 

2 v - 3 . f 13 . dd r. h h . t ws---3- l v< . Now suppose w lS 0 . Let XEV-~l, t en t ere lS a 

least one edge {x,y} with YEO appearing either in a secant meeting 

x in an exterior position or in a tangent block. So we obtain 

v-w:s(~)+t+2(W-t). As t~O for v-w=O or 1 (mod 4), and t~l for v-w=2 

or 3 (mod 4) it is easy to complete the proof. • 

Theorem 2. For every v=O or 1 (mod 4), there exists a 

P(v,3,1) containing an oval n of cardinality w if and only if 

weR(v,3). 

Proof. Let weR(v,3). Suppose at first either w=2 (mod 4), 

or w=l (mod 4) and v=O (mod 4), or w=3 (mod 4) and v=l (mod 4). If 

2v-3 (w) ws~, then (v-w)w~ 2 and it is possible to choose opportunely 

the elements X,YEn and a,beV-n to form w-1 tangents {a,x,b}, one 

tangent {x,a/b}, (~) secants {x,y,a} and [W(V-W)-(~)-2W+l] secants 

{x,a,y}, so that the remaining edges form a connected graph G. If 



2v-l 
w=~, then form the secants {x,y,a} and the tangents {x,a,b} by 

choosing the edges {a,b} in such a way that the remaining edges of 

the complete graph on V-Q form a connected graph G. 

Now let either w=o (mod 4), or w=l (mod 4) and v=l (mod 4), 

or w=3 (mod 4) and v=O (mod 4). It is easy to form the tangents 

{a,x,b} and the secants {x,y,a} and, if it is necessary, {x,a,y} 

in such a way that the remaining edges of the complete graph on 

V-Q form a connected graph G. 

Since the number of the edges of the connected graph G is 

even, we can decompose G into paths of length 2 (see [4]) to form 

the exterior blocks. 

Theorem 1 completes the proof. • 

3, P(v,4,1) with ovals. 

For every v=O or 1 (mod 3»4, let R(v,4) be the set of all 

integers w verifying the inequalities 2~w~r(v,4)=-------__ ~------

Theorem 3. Let (V/B) be a P(v,4,l) containing an oval Q of 

cardinality w. Then wER(v,4). 

Proof. Count the secants that cover the edges in the oval 

and the tangents. This number is less than or equal to IBI. • 

Corollary 1. There is not a P(4,4,1) containing an oval. 

Lemma 1. For every v=O or 1 (mod 3»4 there is a P(v,4,1) 

(V,B) containing an oval Q of cardinality 2. 

Proof. Let Q={x,y}. For v=6, put V=Qu{l,2,3,4} and 



B={xy41,2x13,ly24,1234,y3x4}. For v=7, put V=Qu{I,2,3,4,5} and 

B={x4SI,2yI3,xy41,1234,3S24,2x3y,lxSy}. 

Let (S/T1) be a P(v,4,1) containing the ovalO, and let 

S=Ou{l,2, ... ,v-2}. Put V=SU{0't,002,003}, T2={X00
1

oo2y, x002oo3y, x003oo1y} 

d . th T . . v-2 . v-2). . 1 2 v-2}. f . an e1 er 3={001 1OO2(1.+-2-) I 001(1.+~ 0031 : 1.= , , .. "-2- 1 v 1S 

. . v-S . v-S. . 1 2 v-S} even, or T3={0011.OO2(1+-2-), 00
1
(1.+-2-)0031 1= I ""'-2- U 

{(V-4)001(V-2)002' (V-3)002(V-4)003' (V-2)003(V-3)00) if v is odd. Let 

B=T
1
uT

2
uT

3
, It is easy to see that (V,B) 

containing the ovalO. • 

is a P(v+3,4,1) 

and 

Put 

1 

0 if either (v=O (mod 3) and w=O or 1 (mod 3» 
or (v=l (mod 3) and w=O (mod 3» 

a(v,w)= 1 if v=O (mod 3) and w=2 (mod 3) 

2 if v=l (mod 3) and w=l or 2 (mod 3) 

v-2 

{

a(v,w) if w*--2-
x(v,w)= rW - 2al. v-2 

a(v,w)+3
1
--6-- 1 

1.f w=-2-

Lemma 2. 
v-I 

For every v=O or 1 (mod 3»4 and w<-2-' there is a 

partial P(v-w,4,1) whose leave contains w+x(v,w) edges. 

Proof. v-2 Suppose at first w~--2- and v=O (mod 3). If w=O or 2 

(mod 3), then there is a P(v-w,4,1) (S,T). Deleting respectively 

from T either w w+l 
blocks, obtain the proof. Suppose 1 or 

~ 
we 

w=1+3k, then v-w=2 (mod 3) . Let Sl={1,2,3,4,S}, 

T
1
={1234,4513,4253} and L={24}. Clearly (Sl ,T

l
) is a partial 

P(S,4,l) whose leave is L. Let (S2,T2) be a partial P(v-w-3,4,1) 

whose leave is an edge. Using the construction given in Lemma 1 

embed (S2,T
2

) in a partial P(v-w,4,l) (S,T) having an edge as 

leave. Deleting from T exactly k blocks we complete the proof. If 
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v-2 
w~~ and v=l (mod 3) I then we can prove the lemma in a similar 

way. 

v-2 For w=~ construct a partial P(v-w,4,1) as above, then 

'

w- 20:1 delete exactly 1--6--1 blocks. • 

Similarly to Lemma 2, it is possible to prove the following 

lemma. 

Lemma 3. For every v=O or 1 (mod 3) >4 
v-I and ~=sw=sr(vf4), 

there is a partial P(v-w,4,1) whose leave contains w(2w-v+2) 

edges. 

Lemma 4. For every v=O or 1 (mod 3)~7 and for every w such 

that -v~--=sw=sr(v,4), there is a P(v,4,l) (V,B) containing an ovalO 

of cardinality w. 

Proof. Let (S,T) be the partial path design constructed in 

Lemma 3. Say L is its leave. Let 0={xO,x1, ... ,X
W

_ 1} be a w-set 

such that OnS=0. Our purpose is to embed (S,T) in a P(v,4,1) 

(SvO,B) such that 0 is an oval and T£B is the set of the exterior 

blocks. v-I If ~<w then construct, for every j=1,2, ... ,2w-v+l, the 

following set of ordered pairs of elements of Of Pj={(XiX j +i ) 

, 0 II} S ' 2 1 w-l l' t l' S l= , , ... ,w- . lnce w-v+ <-2-' for 

every i
1

, {O,l, ... w-l}. Using all the edges {bc}EL and (if 

~<W) all the ordered ' ( ) P . 1 2 2 +1 't is easy L. palrs xy E j' J = , , ••• , w-v , l 

to form the paths {xibc} and the secants {xybc} without 

introducing any repeated edge. Let El be the set of the w(2w-v+2) 

edges between the points in the oval and those outside the oval 

contained in these paths and secants. Obviously every xiEO is in 

exactly 2w-v+2 edges of El Since w=sr(v,4), it is easy to see that 



v-w~2w-v+4. Then for every path {xibc} it is possible to find an 

element aeS such that {aXi}eE1 and ae{b,c}. Then {axibc}eB is the 

tangent to 0 in the point xi' Let E2 be the set of the wedges 

{axi }. Let r be the set of the edges of the complete graph on n 

not appearing in the above secants. For every {xy}er form the 

quadruple {dxyt} with d,teS such that {dx},{yt}eE
1
vE2. If d~t then 

put {dxyt} in B. If d=t then let {axbc} be the tangent to 0 in the 

point x. Clearly it is a~d and b:;t;d. If c~d then replace {axbc} 

with {dxbc} and put {axyd} in B. If c=d, then replace 

{axbc}={axbd} with {axdb} and put {bxyd} in B. • 

Lemma 5. For every v=O or 1 (mod 3)~7 and for every w such 

v-I that 3:$w<~, there is a P(v,4,1) (V,B) containing an ovalO of 

cardinality w. 

Proof. Let (S,T) be the partial P(v-w,4,1) constructed in 

Lemma 2. j=O, 1, ... ,w+X-l} is its leave. Let 

0={XO,X1, ... ,X
W

_
1

} be a w-set such that 0IlS=0. Our purpose is to 

embed (S,T) in a P(v,4,1) (SvO,B) such that 0 is an oval and T~B 

is the set of the exterior blocks. All we need to do is define the 

tangents and the secants. In the following we'll sketch how to 

form these blocks. 

Step 1. Form the paths {xibiG i }, i=O,l, ... ,w-l. Let E1={{xibi } 

i=O,l, ... ,w-l}. 

Step 2. If X=O then put E2=0 and go to step 3. If X>O then form 

the blocks {x. y. b.c.}, j=w,w+l, ... ,w+X-1, in such a way that: 
J-w J-w J J 

(b.c.}eL; y. is an element of 0 such that {yo b.}eE and I{y. 
J J J -w J -w J 1 J -w 

: j=w,w+l, ... ,w+x-l}l=x. For j=w,w+l, ... ,w+x-l put {Xj_wYj_wbjcj} 

in B. Let E2={{Yj_wbj} : j=w,w+l, ... ,w+X-l}. 

Step 3. Let (if x=O then and 
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°l={Xx,xX+l' ... ,xw_ 1}· 

We need to construct a set 0 of (not necessarily different) 

ordered pairs (xy), x*y, of elements of ° satisfying the following 

conditions: 101_W(V-~W-l)+X ; for every (Xy)EO the first element x 

has weight 1 and the second element y has weight 2; the sum of all 

the weights of any fixed element of 0i is v-2w-i. 

In order to form the set 0, we have to consider the following 

two cases: 

1) If v-2w-1 is odd then form the pairs of 0 in such a way 

that: every element of 01 appears an odd number of times (at least 

1) in the first position Xi the number of elements of 00 in the 

first position is either 0 or even. Since <w(v-2w-l)+X then we w-x 3 ' 

can form these pairs. 

2) If v-2w-l is even then we can proceed as in the above case 

exchanging 00 with °
1

, Since v is odd and V?; 7 , 

x<W(V-~W-l)+X. So it is possible to form these pairs. 

it is 

Since every element of ° meets at most two edges of E
1
vE

2
, it 

is possible to construct w(v-2w-1) +X blocks 
3 

{xayb}eB such that 

a,beS, (xy)eD and no any edge of E
l
vE

2 
appears in one of these 

blocks. Let E3 be the set of the w(v-2w-l) +X edges between the 

points in the oval and those outside the oval contained in these 

blocks. 

Step 4. For every path {xbc} constructed in step 1 form the block 

{axbc} in such a way that aeS, a*c and {ax}eE
1
vE

2
vE

3
• Note that 

any element of 0i' i=O,l, meets exactly one edge E
l

, at most one 

edge of E2 and at most v-2w-i edges of E
3

• Since v-2w-i+2<v-w, 

then it is possible to find an element aeS useful to form these 

tangents. Let E4 be the set of all the edges {ax}. 

Step 5. Let E be the set of all the edges between the points in ° 

and those outside 0, and let r be the set of the edges of the 
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complete graph on n not appearing in the blocks of Step 2. For 

every {XY}Er form the quadruple {axyb} with a,bES such that 

{ax},{yb}EE\(.6E.). It is easy to see that the quadruples {axyb} 
l=l l 

cover all the edges of E\(.6 E.). If a:t;b then put {axyb} in B. If 
l=l l 

a=b then take the tangent to 0 in the point x constructed in step 

4, say {cxdt}. Clearly it is c:t;a and d*a. If t:t;a then replace 

{cxdt} with {axdt} and put {cxya} in B. If t=a, then replace 

{cxdt}={cxda} with {cxad} and put {dxya} in B. • 

By Theorem 3 and Lemmas 1, 4 and 5 we obtain the following 

theorem. 

Theorem 4. For every v=O or 1 (mod 3) >4 I there exists a 

P(v,4,1) containing an ovalO of cardinality w if and only if 

wER(v,4) . 

Remark. It is easy to see that the ovals 0 constructed in 

Lemma 4 satisfy the following property: 

(5) Let b be a secant block meeting 0 in the points x and y, then 

the path b contains the edge {xy}. 

The same property (s) holds also for the ovals in a P(v,3,1) 

constructed in Theorem 2 and having cardinality either ~ (for 

2v-3 v=5 or 8 (mod 12)) or ~ (for v=O or 9 (mod 12)) 

Obviously, the property (s) is satisfied by every oval in a 

projective plane or, more generally, in a design. Thus one could 

be interested into looking for the ovals in a P (v, k I l), k~3 , 

satisfying the property (5). Let 0 be such an oval, and let IOI=w. 

Since the tangents and the secants cover all the edges between the 

points in 0 and those outside Of it is easy to see that either 

w+ (;) :sw(v-w) :s2w+ (;) if k=3, or w+ (;) :sw(v-w) :s2w+2 (;) if k~4. These 
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inequalities imply that either 

2v-1 2v-3 
-r~w~-r 

or 

if k=3 

(1 ) 

if k2:4. 

Moreover, similarly to Theorem 3, we can prove that 

W~r(v k) 1-k+/4(k-1)V
2
-4(k-1)V+(k-1)2 v-I kif , 2(k-1) . Since ~~r(v, ) on y or 

k=3 or 4, we obtain the folowing result: 

A P(v,k,l) containing an oval Q of cardinality wand 

satisying the property (s) exists if and only if k=3 or 4, and w 

verifies the necessary conditions (1). 
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