






























Clearly 
Iva - vi + Ivl = Ivol 

= lu++ + u--I 
= lu++1 + lu--I, 

so adding (19) to (21) we get 

Note that we must have 

and 

so if 

then 
al + a2 +- a3 + a4 = 1 

and hence, by (18), v E {u++,u-+,u+-,u--}. This is what we wanted to prove so 
instead assume 

(23) 

We cannot have both al + bl �~� 1 and a4 + b4 1 otherwise, by (23), the right hand 
side of (22) will become larger than the left hand side. Similarly, by assumption (5), 
we cannot have both a3 + b3 �~� 1 and a2 + b2 �~� 1. This gives rise to 4 cases, we consider 
only the case a4 + b4 = 0 and a2 + b2 = 0, the other cases are proved similarly. 

Consider adding (18) and (20), when a4 + b4 = ° and a2 + b2 = 0, we get 

u++ + u-- = (al + bI)u++ + (a3 + b3)u+-. 

N ow if al + bI �~� 1 then (24) becomes 

(24) 

(25) 

We cannot have either al + bI - 1 = 0 or a3 + b3 = ° as this would imply, respectively, 
that a3 + b3 = 1 or al + bI - 1 = 1, yielding a contradiction to (23). Now the first 
component of the vector on the right hand side of (25) is nonnegative while u-- has a 
nonpositive first component, thus both first components must be 0, this implies that 
u+- and u++ both have 0 as their first component. Then no vector with a positive 
first component is expressible in the form given in lemma 9, which is impossible. 
Hence we must have al + bI = 0, so equation (24) simplifies to 

(26) 
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and (22) becomes 

lu++ + u--I = (a3 + b3) IU+-I, 
also (23) implies that a3 + b3 > 2. 

(27) 

Note that (O,O)-u-- and (O,O)+u++ are both points in S, (O,O)-u-- is positioned 
immediately anticlockwise of (0,0) and (0,0) +u++ is immediately clockwise of (0, 0). 
Using (26), we can have, 

(0,0) + u++ ((0,0) - u--) + u++ + u-­

((0,0) - u--) + (a3 + b3)u+-. 

As (0,0) - u-- and ((0,0) - u--) + (a3 + b3)u+- are both points in S it is not hard to 
see that ((0,0) - u--) + u+- and ((0,0) - u--) + 2u+- are also points in S. However, 
by (27), both of these points would lie onthe arc between (O,O)-u-"- and (O,O)+u++ 
which should only contain the point (0,0). This contradiction completes the proof. 

Lemma 15 One of the following cases must hold 

(1) Vo u+-, 

(2) Vo = u-+, 

(3) Vo = u-+ + u+-, 

(4) neither u+- nor u-+ clashes with Vo, 

(5) u++ = u+-, 

(6) u-- =u-+, 

(7) u-- = u+-or 

(8) u++ u-+. 

D 

PROOF: Suppose (4) does not hold, and suppose that u+- clashes with Va. Thus 
there exists a point (i,j) such that (i,j) + u+- and (i,j) + Va belong to S. The 
vector distance between these 2 points is Va - u+-. Then, by lemma 9, there exist 
nonnegative integers all a2, a3, a4 such that 

and 

Iva - u+-I = a1Iu++1 + a2Iu-+1 + a3Iu+-1 + a4 Iu--I· 
We can rewrite (28) as 

also, since IVa - u+-\ = \u++\ + \u--\-\u+-\, we can rewrite (29) as 

(28) 

(29) 

(30) 

Suppose a2 2: 1. Then, by assumption (5), we must have al = 0, a2 = I, a3 = ° and 
a4 = 0. Substituting these values into (30) gives case (3). Then suppose a2 = O. 
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If al ?: 1 and a4 ?: 1 then the right hand side of (31) exceeds the left hand side, so 
we must have al = 0 or a4 = O. Suppose a4 = O. Equation (30) then gives, 

(32) 

If al = 1 we get u-- = u+-, which is case (7). 

If al > 1 equation (32) becomes 

u-- = (al l)u++ + (a3 + l)u+-, (33) 

however the first component of the vector on the right hand side of (33) is nonnegative 
while u-- has a nonpositive first component, thus both first components must be 0, 
this implies that u+- and u++ both have 0 as their first component. Then no vector 
with a positive first component is expressible in the form given in lemma 9. The 
remaining possibility is al = 0. 

With al = 0, a4 = ° and a2 = ° equations (30) and (31) simplify to 

u++ + u-- = (a3 + l)u+-

and 

If a3 = 0 we have case (1). Assume instead that a3 ?: 1. 

(34) 

(35) 

Note that (0,0) - u-- and (0,0) u+-j- are, respectively, the points immediately 
preceding and following (0,0) on the perimeter. Using (34), (0,0) + u++ can be 
reexpressed as 

(0,0) + u++ ((0,0) u--) + u++ + u-­

((0,0) - u--) + (a3 + l)u+-. 

So (0,0) - u-- and ((0,0) - u--) + (a3 + l)u+- are both points in S, as are the 
following: 

Furthermore, by equation (35), these points lie on the arc between (0, 0) - u-- and 
(0,0) + u++. The only point which lies on this arc is (0,0), hence a3 = 1 and 

(0,0) - u-- + u+- = (0,0), 

ie. u-- = u+-. Therefore (34) simplifies to 

++ --u = u , 

which implies that u-- = (0,0) and u++ (0,0) which is impossible. 
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So far we have considered the possibilities u+- clashes with Vo (at the start of the 
proof) and a4 0 (before equation (32)), and shown that these possibilities lead to 
cases (1 ),(3) or (7). The alternative possibilities lead to the other cases. 0 

Note that parts (1) and (2) are special cases of part (4) in lemma 15, however these 
cases will be treated separately in later proofs. 

Lemma 16 

(a) If (i,j) (i,j) + v is the start of a chain X then X E 5N if and only if 
(i,j - 1) ¢ 5(v) (or equivalently X E 5T if and only if (i,j -1) E 5(v)). 

(b) If (i,j) (i,)') + v is the end of a chain X then X E EN if and only if 
(i,i+ 1) ¢ S(v) (or equivalently X E ET if and only if (i,j + 1) E 5(v)). 

PROOF: (a) Let (m,n) = (i,j) + v. 

First, if X E 5N then j = 0 or n = 0, which implies that (i,j -1) ¢ 5 or (m, n-1) ¢ 5, 
and hence (i,j 1) ¢ 5(v). 

Now, if (i,j -1) ¢ 5(v) then (i,j -1) ¢ 5 or (m, n-l) ¢ However (i,j) ~ (m, n) 
implies (i,j) E 5 and (m,n) E 5, so it must be the case that j 0 or n = 0, which 
implies that X E SN. 

Part (b) is proved similarly. o 

We are now nearly ready to prove the P + 3 theorem, to do this we use the structure 
in the successor table, for each of the cases described in lemma 15, to bound the right 
hand side of the inequality 

IITII ::; IIAII + IIBII , 
obtained in lemma 8. 

In each of these 8 cases we will define a set <p ~ V. Its definition will change from 
case to case but it will always have the following properties. 

1. For all v E <p and u E V\<p, u does not clash with v. 

2. For all i = 0,1, ... , P - 1 there erists j E [0, ... , Q) and v E 'P such that 
T(i,j) = (i,j) + v. 

Denne 
~ = U S(v), 

vEep 
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then the above properties imply: 

I'. (i,j) E <1> if and only if there exists v E c.p such that T(i,j) = (i,j) + v. 

2'. Rs (<1» contains all rows of T. 

Define \[I = 5\ <1>, then let R2 = Rs (\[I), and let RI be those rows of T not in R2 (thus 

IRII + IR21 = P). 

Let Al and A2 be the sets of meshes from A which are in the regions <1> and \[I 

respectively. Then let ai (i = 1,2) be the number of meshes in Ai consisting of a 
single chain. 

N ow let Bi (i = 1, 2) be the set of chains from B in the rows of R., and let f be 
the number of rows in Rz which contain no chains from B. Then, by lemma 6, 

IB21 = IRzl - j, and hence 
(36) 

Finally let t be the number of rows from Rz whose justified chains are both from 
n EN and in the region <1>. 

Lemma 17 If c.p ~ V has properties 1 and 2 then (with aI, Rl and t defined, as 
above, with respect to cp) 

PROOF: Let c.p ~ V satisfy properties 1 and 2 (and define AI, Az, B I , B 2 , R 1 , R2 , 

aI, a2, <1>, \[I, j and t, as above, with respect to c.p). 

Note that A = Al U A2 and B = Bl U B2 so lemma 8 implies 

(37) 

Now Al and BI are both in the region <1>, and, by property I', there are Ic.pl gap vectors 
for this region. Hence (37) becomes 

(38) 

We now use properties 1 and 2 of c.p to prove the following facts. 

1. Every row from R2 contains a chain from SN n EN in the region <1>. 
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2. Every chain from Bz is in the region W. 

3. Every chain from W is reflected into W. 

Consider any row r from Rz. By definition, r contains some link from the region W, 
and, by property 2', r contains some link from the region <P; hence r is partitioned 
into intervals which are alternately contained within <P and W. Let r' be one of these 
intervals in <P. By lemma 16 and property l' the first and last chains in r' are from 
SN and EN respectively. Then if the last chain in r' is not in SN n EN it is from 
ST n EN, so, by lemma 5(a), the first chain in r' must be from SN n EN. Hence either 
the first or last chain from r' is from SN n EN which implies fact 1. 

To prove fact 2 we assume, without loss of generality, that the first chain in r' is in 
SN n EN. If r' contains only one chain it is in SN n EN, and hence not in Bz. So 
assume that r' contains at least 2 chains. Under these assumptions r' is, by lemma 4, 
left justified, also by lemma 4 the last chain cannot be from SN n EN, otherwise r' 

would be right justified implying r = r' contradicting r E R z. Therefore the last 
chain in r' is from ST n EN, but is not right justified and hence not in B, all other 
chains in r' are, by lemma 5(a), either from ST n EN, which are not right justified 
and hence not chains from B, or from SN n EN, and hence not in B. Hence no chain 
from Bz is in the region <P, which implies fact 2. 

Since a link and its reflection have a common gap vector then, by property 1 of <p, 

the reflection of a link, chain or mesh from <P is also in the region <P. Which, by 
contrapositive, implies fact 3. 

There are az meshes in Az which consist of a single chain from SN n EN, the other 
IAzl - az meshes from Az each contain at least 2 chains from SN n EN' Therefore 
there are at least 

chains from SN n EN in the region ':II, these chains are, by lemma 4, justified chains. 
These chains come from rows in R z, and, by fact 1, every such row also contains 
a justified chain from S N n EN which is in the region <P. Hence there are at least 
21Az\ - az + t rows from Rz whose justified chains are both from SN n EN, at most 
f of these rows contain no chain from B z, the other 2 I Azi - az + t - f or more rows 
must, by the definition of B, each contain a chain from ST nET. 

There are al + az meshes in A consisting of single chains, these chains are, by the 
definition of A and lemma 7, symmetric chains from SN n EN. Then, by lemma 3, 
the number of symmetric chains from ST n ET is at most 4 - (al + az). 

Therefore there are at least 
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chains from ST n ET in Bz which are not symmetric. Such chains are, by fact 2, in the 
region \l! and hence, by fact 3, their reflections (which, by lemma 2, are also chains 
in 5T n ET ) are also in the region \l!. Therefore the 21Azi 4 + al + t - f or more 
non-symmetric chains from Bz are paired off, under reflection, into pairs of chains 
with the same gap vector, so by (36), 

IIBzl1 < IB21 ~ rZIA21-4;olH-fl 

p -IRll- f -IA21 + 2 - ra1+;-fl 
P + 2 -IRII-IAzl- fa1 +;+f1 

~ P + 2 -IRII-IAzl- 71. 

vVhich, with (38), gives 

as required. 

IITII ~ P + 2 - IRll + 1<p1 -
:::; P + 2 - /R1 / + 1<p1 -

P+3 Theorem 

o 

PROOF: Consider the 8 cases of lemma 15. It is sufficient to prove that the theorem 
holds for instances of cases 1,3,4,5 and 7, since, by replacing a with 1 - a and/or f3 
with 1 f3, we can transform instances of cases 2, 6 and 8 into instances of cases 1, 5 
and 7 respectively. For example if we have a set 5, which is an instance of case 2, we 
can construct a new set S' by replacing a with 1 a and replacing f3 with 1- f3 which 
has the same set of gap sizes. However the lengths of vectors in V++ and V+- will 
be by the transformation, with those from V-- and V-+ respectively. 
Hence set S' is an instance of case 1, and the assumption (5) will remain satisfied by 
S'. So if the theorem holds for instances of case 1 it also holds for instances of case 2. 

Cases 1, 5 and 7: Va = u+-, u++ = u+- or u+- = U--. 

Set <P = {u++, u--, va} , then property 1 is implied by lemmas 10, 13 and 14, and 
property 2 is implied by lemma 11. Hence, by lemma 17, we have 

(39) 

The successor table for these cases is represented by figure 2. 

If IRll > 1 then, by (39), we get IITII :::; P + 3. Then suppose IRll = 1. Clearly 
Rs (S(u++)) ~ R1 , and hence IRs (S(u++))1 = 1 which implies that 5(u++) contains 
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columns 
o Q -1 

rows 

Figure 2: Successor table for cases (1), (5) and (7) 

only 1 chain. Now, by lemmas 13 and 16, we see that S(u++) is a mesh in AI, and 
hence al ~ 1. Therefore, by (39), IITII ~ P + 3. 

Case 3: u++ + u-- = u-+ + u+-. 

Note that replacing a with 1 - a and/or f3 with 1 f3 converts an instance of case 
3 into another instance of case 3, while not affecting .ass1.1mpt}on (5). Using such 
transformations we can assume, without loss of generality, that Vo E V++. Also, by 
applying such transformations to lemma 13, no vectors clash with u+- or u-+. 

Define cp {u++, u+-, u-+, u--, vo}. Then lemmas 13 and 14 imply that cp has 
property 1, and lemma 11 implies that cp has property 2. Hence, by lemma 17, we 
get 

(40) 

A block diagram of the successor table for this case is represented in figure 3 (where 
'l! WI U W2 ). 

When IRl\ ~ 4 (40) implies IITII ~ P + 3, so we assume IRII ~ 3. Note that 
Rs (S(u+-)) ~ Rl and R. (S(u--) n S(vo)) ~ R1 ; futhermore R. (S(u+-)) and 
R. (S(u--) n S(vo)) are disjoint, so 

Now, by lemma 12, IRs (S(u--) n S(vo))1 = IRs (S(u++) n S(vo))I, and, since Vo E 
V++, IRs (S(u++) n S(vo))1 = IRs (S(u++))I, which gives 

( 41) 

Hence, by lemma 11, IRll ~ 2. Therefore there are 2 nontrivial cases to consider. 
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columns 
a Q -1 

o 

rows 

P-l~ ________ ~~~~ ____________ ~ 

Figure 3: Successor table for case (3) 

By (41) either IRs (S(u++))1 1 or IR. (S(u+-))I 
contain only one chain. Now, by lemmas 13 and 
meshes in AI, so al :2: 1, then, by (40), 

f
ll IITII s P + 4 - 2 i 

1, hence either S(u++) or S(u+-) 
S(u++) and S(u+-) are both 

F+3." 

By (41) both IRs (S(u++))1 = 1 and IR. (S(u+-))I 1, then by the argument used 
in case 3(a) we that S(u++) and S(u+-) are both meshes in Al which consist 
of a single chain, hence al :2: 2. We assume, without loss of generality, that t = 0, 
since, by (40), if this were not the case then IITII S P + 3, as required. Note that 
any row in R. ('1!z) has both justified chains from SN n EN and in the region 1>, 
so t ::::: IR. ('1!2)1, and hence '1!2 = 0. Therefore R. (S(u--)) s;:; R1 , then, since 
R. (S(u--))nR. (S(u+-)) = 0, IR .. (S(u--))I = 1. This implies that S(u--) contains 
only 1 chain. By lemmas 13 and 16 S(u--) is a mesh in Al , as are S(u++) and S(u+-), 
so al ::::: 3. Thus, by (40), IITII S P + 3. 

Case 4: Neither u+- nor u-+ cbsh with Va. 

Set cp = {u++,u--,vo} (as in case 1), so that 1> has properties 1 and 2. Therefore, 
by lemma 17, we have 

(42) 



We note that when Vo E V+- or Vo E V-+ then we have an instance of case 1 and 
case 2 respectively. Furthermore, if Vo E V-- then we can create a new problem by 
using 1 - a and 1 - f3 in place of a and f3 respectively, this transformation will yield 
another instance of case 4 with the same set of gap sizes, but Vo E V++. Therefore 
we can assume that Vo E V++. 

A block diagram of the successor table for this case IS given by figure 4 (where 
'11 = WI U '11 2 ), 

columns 
o Q -1 

o 

S(Vo) 

rows 

Figure 4: Successor table for case (4) 

If IRII ~ 2 then, by (42), IITil :::; P + 3. Then suppose IRII :::; 1. It is clear 
that Rs (S(u--) n S(vo)) ~ Rli and hence IRs (S(u--) n S(vo))1 = 1. Therefore, by 
lemma 12, IRs (S(u++) n S(vo))1 = 1, and, since Vo E V++, IRs (S(u++))1 = 1. Thus 
S(u++) contains only 1 chain. Now, by lemmas 13 and 16, S( u++) is a mesh in AI, 
so al ~ 1. Therefore, by (42), IITII ~ P + 3. 

Hence, in general, IITII :::; P + 3. o 

3. Achievability 

Clearly in the case P = 1 (ie. the 3 gap problem) the bound P + 3 is not achievable, 
however, the bound is achievable for P > 1. In the following generalised example 
we show that the bound is achievable when P ~ 3. In this we use Q = P + 1, it is 
not known if the P + 3 is achievable when P = Q. The referee pointed out that this 
example does not work when P = 2. He adds that "it can be shown that 5 gaps are 
not achievable when P = 2, Q = 3 (to have 5 gaps in this case, there would have to 
be 4 symmetric chains consisting each of a single link, but according to the proof of 
Lemma 3, there can only be 2 symmetric chains length of given parity). It is easy to 
construct an example with P = 2, Q = 4 having 5 gaps." 

Example For P ~ 3 set Q = P + 1, f3 = 1 and a 1 + E, where 0 < PE < 1. 
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We use a circle of circumference 

(P - 1)(1 + E) + P - 1 - 0, 

where 0 < E/2. Naturally this can be normalised to a circle of unit circumkr(~nce, 
however it is more convenient to use the given circumference. 

Firstly we will investigate the lengths of the subintervals induced by partitioning the 
interval 

[O,(P -1)(1 + E) + P] 

with the set 

S' {iCY. + j fJ : ° :S i < P, 0 :S j < Q} . 

Then consider the gap sizes achieved by wrapping this interval onto the perimeter of 
a circle of circumference 

(P - 1 )(1 + E) + P - 1 - o. 

S' simplifies as follows 

Define 

and 

S' {i(1+E)+j:O:Si<P,O j<P+l} 
{( i + j) + iE : 0 :S i < P, ° :S j < P + I} 
{k +iE: O:S k < 2P, max{O,k - P}:S i:S min{P -1,k}} 
{k + iE: 0 :S k < P, 0 :S i :S k} 
U + iE : P :S k < 2P, k - P :S i :S P I}. 

S~ = {k + iE : 0 :S k < P,O :S i :S k} 

S~ = {k + iE : P :S k < 2P, k P:S i :S P - I}, 

since each element of S~ is greater than or equal to P then the set of subintervals 
induced by partitioning [0, PJ with the set S~ is a subset of the set of subintervals 
obtained by partitioning the interval 

[0, (P - 1)(1 + E) + P] 

with the set S'. The lengths of the subintervals in the partitioning of [0, P] with S~ 
are E and 

{(£ + 1) - (I. + I.E) : a :S I. < P} = {I - I.E : a :S I. < P}. 

Hence S' partitions the interval 

[O,(P -1)(1 + E) + P] 

into subintervals of at least P + 1 distinct lengths. 
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We now consider wrapping the interval 

[0, (P - 1)(1 + E) + P] 

around a circle of circumference 

(P - 1)(1 + E) + P - 1 - 0, 

in doing so the ends of the interval will be overlapped by a length of 1 + o. There are 
only 2 elements in the set S~ which are in this overlapped section, these are 

2P - 2 + (P - l)E and 2P - 1 + (P l)c, 

due to the modulo equivalence of distances around the perimeter these points in the 
overlapped section are equivalent to 

o and 1 + o. 

o lies in the subinterval [0,1], creating 2 new subintervals of length 0 and 1 - 0, but 
in doing so we lose the subinterval of length 1. 1 + 0 lies in the subinterval [1,1+ E], 
creating 2 new subintervals of length E - 0 and 0, and although the subinterval of 
length E is destroyed there are other subintervals of this length, ego [2,2+ E]. SO the 
following are all subinterval lengths (given in ascending order) 

0, E 0, E, 1 - (P - l)E, 1 - (P - 2)E, ... ,1 2E,1 E and 1 - o. 

Hence there are P + 3 gap sizes. 

4. Unsolved Problems 

Notation: In this section we assume that all sets contain real numbers in the 
interval [0,1), and that every set contains O. We think of the elements of the set as 
points on the perimeter of a circle of unit circumference. The gaps of a set 5 are the 
arcs between adjacent points of 5 on the perimeter, and we define 11511 as the number 
of distinct gap sizes of S. 

Given sets Sand T we define the new set 

S V T = {{ s + t} : s E 5, t E T} , 

S V T is the wedge of Sand T. Geometrically the set S V T is obtained by extending 
the sequence T from each point in S on the perimeter. 

The 3 gap theorem can be stated as 

II{{in:} : 0 ::; i < N}II ::; 3, 

and the P + 3 theorem implies that 

II{ {in:} : 0 ::; i < P} V {{iJ3} : ° ::; i < Q}II S P + 3. 
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An obvious generalisation of these problems is to find an upper bound for 

It has been shown that (43) is no greater than 

3 K-l 

II Ni +3, 
2 i==l 

but is conjectured to be 
K-l 

Ni+CK, 

where CK is independent of , ... , N K . 

The LIJUUVVU110C problem, posed by Erdos, is to find values of a and fJ for which the 
limit 

lim sup II{{ia}: 0 ~ i < N} V {{ifJ}: 0 i < N}II 
N-+oo 

(44) 

is finite. Ron Holzman has shown that if a, fJ and 1 are linearly dependent over 
the rationals then (44) is finite, it is conjectured that this is a necessary condition. 
However there are no known instances for which (44) has been proven to be infinity. 

For the final problem let 

where aI, a2, . .. , ak and 1 are linearly independent over the rationals, then define 

n sets 
~ sn = S V S V ... V S . 

For some values of nand k (e.g. when n = 1) we can find values aI, a2, ... , ak 

for which each of the Isnl arcs on the perimeter has a unique gap size, and hence 
Ilsnll = Isnl. Howeverfor other values ofn and k Ilsnll < Isnl regardless of the choice 
of aI, a2, ... , ak; for example when k = 1 and n > 2 we have an instance of the 3 
gap theorem for which this is true. We can show that when n > 2k 

for all possible values aI, a2, ... , ak. However we are unsure if Ilsnll 
n S; 2k. 
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