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Abstract 

We prove the following theorem: if 0: and f3 are real numbers, P and Q are 
positive integers then the set {{io: + jf3} : i 0, .. . ,P - Iii = 0, ... , Q - I} 
partitions the unit interval into subintervals having at most P + 3 distinct 
widths. This result has applications in the theory of Beatty sequences and 
implies a 2-dimensional version of Slater's Theorem. 

1. Introduction 

H. Steinhaus conjectured the following result. 

The Three Gap Theorem Let a: be real and N a positive integer. The points 

{{io:}: i = O, ... ,N -I} 

(where, as usual {x} denotes the fractional part of x) partition the unit interval into 
N subintervals which have at most 3 distinct widths. 

In 1958 this was proved independently by S. Swierczkowski [15] and by P. Erdos and 
V.T. Sos [12],[13]. It is often called the Steinhaus theorem or Steinhaus Conjecture. 
A useful way of viewing the result is to think of a circle of unit circumference with 
points placed around the perimeter at distances 0, 0:, ... , (N - 1)0: from an arbitrary 
origin on the perimeter. Then the distances between adjacent points take at most 3 
distinct values. 

The result has close connections with the theory of continued fractions, Beatty se
quences and Diophantine approximation. Other proofs have been published since 
1958; see, for instance, [10] and its list of references. 

In 1972 R.L. Graham [2],[7] conjectured the following variation of the Steinhaus prob
lem. 

The 3d Distance Theorem Let a: and f3I' ... ,(3d be real numbers and N 1, . .. ,Nd be 
positive integers. The points {{ ika: + 13k} : ik = 0, ... ,Nk - 1; k = 1, ... ,d} partition 
the unit interval into subintervals having at most 3d distinct widths. 
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A long and difficult proof of this result was obtained by F .R.K. Chung and R.L. Gra
ham [1] in 1976. A very neat proof was found by F.M. Liang [8] three years later. In 
section 2 we will use ideas from Liang's proof to prove the following two dimensional 
version of the Steinhaus Theorem. 

The P+3 Theorem Let a, f3 be real numbers and P, Q be positive integers. The 
points 

{{ia + jf3} : i = 0, ... , P -1, j = 0, ... , Q - I} 

partition the unit interval into P Q subintervals having at most P + 3 distinct widths. 

Note that if either P = lor Q = 1 this theorem follows from the Three Gap Theorem. 
We will assume from now on that P > 1 and Q > 1. 

As with the Three Gap and 3d Distance Theorems it is helpful to think of the points 
as being placed on a circle of unit circumference at a distance of ia + jf3 from some 
origin. 

This result was conjectured by Ron Holzman and the second author in 1991 in con
nection with work on intersecting Beatty sequences. Holzman showed that the result 
held with P + 3 replaced by P + 22, Geelen and Simpson [5],[6J showed it held with 
P + 6 and, later, with P + 4. Holzman also showed that the bound P + 3 cannot be 
improved for P > 1. vVe will demonstrate this in section 3. 

The connection with Beatty sequences was investigated by Fraenkel and Holzman [4]. 
We briefly describe some of the results of their paper. 

A Beatty sequence S(a,f3) is a sequence {lna + f3J : n E Zo}. Such sequences have 
a large literature (see for instance [14] and [3] and their lists of references) and are 
connected with interesting unsolved problems. Their characteristic sequences are 
called Sturmian sequences or Sturmian words and have applications in computer 
science [9]. Fraenkel and Holzman showed that the following result would follow from 
the P + 3 Theorem. 

Intersecting Beatty Sequences Theorem Let S(a,{3) and S(RjP,,) be two 
beatty sequences with R, P being positive integers, (R, P) = 1. Let no < nl < n2, ... 
be the sequence of integers in the intersection of the two sequences. Then the set of 
values ni+l - ni has cardinality at most P + 3. 

Since we will prove the P + 3 theorem this result has the status of a theorem. 

Fraenkel and Holzman also considered the following problem. Let a be real and 
r,.5 be positive integers with (r, s) = 1, and consider the sequence 8( a, r j s) = 
{ ( {na} , { n; }) : n E Zo} . This is a sequence of points in the unit square. Suppose 

that 0:; Xl < Xz ~ 1, 0 ~ YI < Y2 ~ 1 and let R = R(Xl,X2,Yl,Y2) be the rectangle 
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in the unit square defined by 

Then let nl < n2 < .,. be the indices of those members of G( 0:, r Is) which lie in R. 
Finally let 

P( e, R) = I {i E Z : Yl < ~ ::; Y2 } I-

Fraenkel and Holzman showed that the P + 3 Theorem implies the following. 

The Two-dimensional Slater Problem With the notation just described the set 
of values niH - ni has cardinality at most pee, R) + 3. 

The original (one-dimensional) Slater Theorem [11] concerned the sequence {{ io:} : 
n E Zo} and a subinterval of the unit interval. 

2. The P+3 Problem 

Notation: Define the set 

s = {{io: + j,B} : i = 0, ... , P - 1,j = 0, ... , Q - 1}. 

Let the point (i,j), where 0 ::; i < P and 0 ::; j < Q, label the element {io: + jf3} 
from S. We often think of points as positioned on the perimeter of a circle of unit 
circumference, at a clockwise distance of {io: + j,B} from an arbitrary starting point. 

We assume that there are no coincident points in S. This assumption is made with no 
loss of generality, since if S contained coincident points an arbitrarily small change in 
0: and ,B would separate the points and not reduce the number of gap sizes. 

We define vectors (8,,), where -P < 8 < P and -Q < , < Q, to be the vector 
differences between points (e.g. the vector distance between the points (i, j) and 
(m,n) is (m - i,n - j)). Although vectors and points share common notation, the 
distinction will usually be clear from the context. We allow points and vectors to be 
used together under rules of vector addition: 

(m,n) - (i,j) = (m - i,n - j). 

We define the length of a vector (8, "'() to be 

The distance between points (i, j) and (m, n) is defined 

I(m,n) - (i,j)l· 
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This distance is in fact the clockwise distance along the perimeter from (i, n to (m, n). 

Note that if (i,j) is an element of S then so is 

(P - 1 - i, Q - 1 - j)j 

we write 
R(i,j) = (P - 1 - i, Q - 1 - j), 

and say R(i,j) is the reflection of (i,j). It is easy to see that for any point (i,j) 
we have, 

R(R(i,j)) = (i,j), 

hence reflection induces a pairing of the points in S. Now consider the positions 
of a point (i,j) and its reflection on the perimeter, the distance from R(i,j) to 
(P - 1, Q 1) is 

I(P -l,Q -1) - R(i,j)1 = I(P -l,Q -1) - (P -1- i,Q -1- j)1 
= l(i,j)1 
= I(i,j) - (0,0)1, 

which is clearly the same as the distance from (0,0) to (i,j), as shown by figure 1. 
Hence the points are symmetrically disposed about the perimeter of the circle. 

(P -1, Q -1) 

Figure 1: Reflections of points 

For each point (i, j) let T( i, j) to be the element of S\ {( i, j)} which minimises 
IT(i,j) - (i,j)l. Thus T(i,j) is the point immediately clockwise of (i,j) on the 
perimeter. The set of values T(i,j) form a matrix which we call the successor 
table of S. T has rows 

[T(i,O), T(i,l), ... ,T(i,Q -1)] 

and columns 

[ 

T(O,j) 1 
T(l,j) 

T(P ~ 1,j) . 
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We write (i,j).2.. (m,n) to denote T(i,j) = (m,n), (i,j).2.. (m,n) is called a 
link, and the vector (m, n) - (i, j) is called a gap vector, the width or gap size 
of a link is the length of its gap vector. If C is a set of links then we define II C II as 
the number of distinct gap sizes in C. We let T be the set of all links, and hence are 
required to prove that IlTIi :::; P + 3. 

The next lemma says that if two points a:J:e adjacent then their reflections are adjacent; 
this is intuitively obvious. 

Lemma 1 if (i,j) ~ (m,n) then R(m,n) .2.. R(i,j). 

PROOF: This follows easily from the symmetry in the distribution of the points in 
S and their reflections. 0 

Clearly a link and its reflection have the same gap vector (and hence the same width). 

Notation: We define a chain to be a sequence of consecutive links in a row of T 
sharing a common gap vector, 

(i,j) .2.. (m,n), (i,j + 1) ~ (m, n + 1), ... , (i,j + k) .2.. (m,n + k). (1) 

Clearly every link is in some chain, so the set of chains forms a partition of the links. 

If (i,j) ~ (m,n) but it is not the case that (i,j -1) .2.. (m,n 1) then the link 

(i, j) .2.. (m, n) is called the start of a chain. If (i, j) (m, n) is the start of a 
chain then either: 

• j = 0 or n = 0, hence we cannot have (i,j -1) ~ (m,n - 1). Let SN be 
the set of chains with this type of start, such chains are said to have natural 
starts. 

• j > 0 and n > 0 but there exists a point (p, q) =I- (m, n - 1) such that 

(i, j - 1) .2.. (p, q). Let ST denote the set of chains with this type of start, 
such chains are said to have terminated starts. 

Similarly, if (i, j) .2.. (m, n) but it is not the case that (i, j + 1) .2.. (m, n + 1) then 

we call (i, j) .2.. (m, n) the end of a chain. If (i, j) .2.. (m, n) is the end of a chain 
then either: 

• j = Q -lor n = Q -1. Let EN be the set of chains with this type of end, such 
chains are said to have natural ends. 

• j < Q - 1 and n < Q - 1 but there exists a point (p, q) =I- (m, n + 1) such 

that (i,j + 1) .2.. (p,q). Let ET be the set of chains with this type of end, such 
chains are said to have terminated ends. 
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We define the reflection of the chain (1) to be 

R(m,n+k) 2... R(i,j+k),R(m,n+k-1) ~ R(i,j+k-1), ... ,R(m,n) ~ R(i,j); 

clearly the reflection of a chain is also a chain. 

Lemma 2 Reflection induces a bijection from SN onto EN and from ST onto ET. 

PROOF: Suppose (i,j) ~ (m,n) is the start of a chain, its reflection is 

(P - 1 - m, Q - 1 - n) ~ (P - 1 - i, Q - 1 - j), 

clearly j = 0 if and only if Q -1- j = Q -1 and n = 0 if and only if Q -1- n = Q 1; 
So (i,j) 2... (m, n) is the start of a chain in SN if and only if its reflection is the end 
of a chain in EN' 

The reflection of any chain in ST cannot be a member of EN, and hence is a member 
of ET . 0 

Given a set C of chains let R(C) be the set of chain reflections; then lemma 2 implies 
that 

.. R(SN n EN) = SN n EN, 

.. R(SN nET) = ST n EN, 

• R(ST n EN) = SN n ET and 

• R( ST n E T) = ST n ET . 

Note that the second and third items are saying the same thing since R.(R.(X)) = x, 
where X is a point, link or chain. 

Since R.(SN n EN) = SN n EN and R.(ST nET) = ST nET then it is possible for a 
chain from SN n EN or ST n ET to be the reflection of itself Such chains are said to 
be symmetric. 

Lemma 3 There are at most 4 symmetric chains. 

PROOF: We say the midpoint of a link is the midpoint of the arc it represents; so 

the midpoint of (i,j) ~ (m,n) is either the mean of the ends, ie 

{ 
(ia + )/3) + (ma + nf3 )} = {(i + m)a (j + n)f3} 

2 2 + 2 ' 
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or diametrically opposite the mean 

{
(i+m)a (j+n)(3 ~} 

2 + 2 +2' 

If we have a symmetric chain 

(i,j) (m,n),(i,j + 1) ~ (m,n+ 1), ... ,(i,j + k) ~ (m,n+ k) 

then, clearly, i P 1 - m and j = Q - 1 - n - k. Thus each link in the chain has 
the form 

(i,j + £) ~ (P - 1- i, Q 1 - j k + l), 
where £ E [0, ... ,k]; when l = l~J the midpoint of the link is either 

or 

{
(p-l)a (Q 

2 + 
1 

2 

{
(p-l)a (Q-I-5)(3 I} 

2 + 2 +"2' 
where 5 = k - 2£, thus 5 is either 0 or 1 if k is even or odd respectively. Therefore 
there are 4 values which are candidates to be the midpoint of such a 1inkj since no 
two links can have the same midpoint there are at most 4 such 1inks and hence at 
most 4 symmetric chains. 0 

Every row of T is a sequence of chains, we call the first chain in a row a left justified 

chain, the start of a left justified chain clearly has the form (i, 0) ~ (m, n), thus all 
left justified chains are members of S N. Similarly we call the last chain in a row 

right justified, the end of a right justified chain has the form (i, Q - 1) ~ (m, n), 
hence such chains are members of EN' 

Lemma 4 Every chain from SN n EN is either left or right justified. 

PROOF: Consider a chain 

(i,j) (m,n),(i,j + 1) 2.. (m,n + 1) ... (i,j + k) ~ (m,n+ k), 

from S N n EN, either j = 0 or n = 0, and either j + k = Q - 1 or n + k = Q - 1. If the 
chain is not left justified then we have n = 0 and j > n, this implies that j + k > n + k 
and hence j + k = Q - 1; thus the chain is right justified. 0 

Lemma 5 

(a) If X E ST is in a row r of T then every chain preceding X in r is either from 
ST n EN or is a left justified from SN n EN. 
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(b) If X E ET is in a row r of T then every chain following X in r is either from 
5N n ET or is a right justified from 5N n EN. 

PROOF: (a) Let (i,j) ~ (m,n) be the start of x, and let (i,j -1) ~ (p,q -1) 
be the end of the chain preceding X in r. Since X E 5T then (m, n - 1) E 5, and hence 
(i,j 1) must be closer to (p,q-1) than (m,n 1) which implies that, if (p,q) E 5, 

(i,j) is closer to (p,q) than (m,n), contradicting (i,j) ~ (m,n). So (p,q) rf- 5, 
which implies that q = Q, and hence the chain preceding X in r is from EN. 

If this chain is in 5N n EN then, by lemma 4, it is left justified and we are done. 
Otherwise it is from 5T n EN, in which case we can repeat the argument until we get 
back to the first chain. 

Part (b) is proved similarly. o 

Notation: Let B be the set of all chains of the following types: 

• chains in 5T nET, 

• left justified chains in 5 N n ET and 

• right justified chains in 5T n EN' 

Lemma 6 Each row of the successor table contains at most one chain from B, and 
hence IIBII ~ P. 

PROOF: By lemma 5( a) if X E 5T is in a row r of T then every chain preceding X 
in r is either from 5T n EN, but not right justified and hence not from B, or from 
5N n EN, and hence not from B. Similarly if X E ET is in a row r of T then no chain 
following X in r is· from B. 

The result is immediate upon consideration of the 3 different types of chains in B. 
o 

Notation: We call a consecutive sequence of links in a column of T with a common 
gap vector a cross chain, 

(i,j) ~ (m,n) 
(i + 1,j) ~ (m + 1,n) 

(i + k,j) ~ (m + k,n). 

Most of the concepts which apply to chains also apply to cross chains. 
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A mesh is a sequence of chains inconsecutive rows of T with the following properties: 

(a) for any two consecutive chains in the mesh there must exist a cross chain which 
intersects both and 

(b) the sequence of chains cannot be extended while maintaining property (a). 

Note that every link in the mesh has the same gap vector. 

The reflection of a mesh is the sequence of the reflections of chains in the mesh, 
clearly, the reflection of a mesh is also a mesh. We say a mesh is symmetric if it is 
its own reflection. 

Lemma 7 Every chain in SN n EN is in a symmetric mesh. 

PROOF: Suppose we have a chain from 5N n EN 

(i,j) ~ (m,n), (i,j + 1) ~ (m,n + 1), ... (i,j + k) ~ (m,n + k), 

either j = 0 or n = 0 and either j + k = Q - 1 or n + k = Q - 1. Suppose j = 0 then 
j ::; n, so j + k ::; n + kj then n + k = Q - 1 and our chain is 

(i,O) ~ (m,n),(i,l) ~ (m,n+ l), ... ,(i,Q -1- n) ~ (m,Q -1). (2) 

Every link in this chain has a gap vector (m - i, n). 

Consider any link (a,b) ~ ((a,b) + (m - i,n), clearly 0 ::; b::; Q - 1 - n, and 

hence there is a link ( i, b) ~ (m, b + n) from (2) which is in the same column as 

(a, b) ~ (a + m - i,b + n). We wish to show that (a,b) (a + m - i,b + n) and 

( i, b) ~ (m, b + n) are in the same cross chain. Suppose not, and assume) without 
loss of generality, that a < i. Clearly the following are all pairs of points in 5 

(8,b),(8+m-i,b+n), a::;8::; i. 

Since (a, b) ~ (a + m - i, b + n) and (i, b) ~ (m, b + n) are not in the same cross 
chain then for some, E [a + 1, ... , i-I] there must exist a point (p, q) which lies 
between (" b) and (, + m - i, b + n). Now unless 

p-([-a)<O (3) 

we will have (p -, + a, q) E 5, so (p -, + a, q) would lie between (a, b) and (a + m

i, b + n), contradicting ( a, b) ~ (a + m - i, b + n). Also unless 

p+(i-,»P-1 (4) 
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we will have (p+i-" q) E S, then (p+i-" q) would lie between (i, b) and (m, b+n), 
contradicting ( i, b) ~ (m, b + n). Therefore we can assume that (3) and (4) hold. 
Combining (3) and (4) yields 

p+(i-,»P-1+p-b a), 

this simplifies to 
i-a> P -1, 

which is not possible. Hence ( a, b) ~ (a + m - i, b + n) and ( i, b) ~ (m, b + n) are 
in the same cross chain. 

This proves that any link whose gap vector is (m - i, n) is in the same cross chain as 
some link from (2). So there is only 1 mesh which contains links whose gap vector is 
(m - i, n), and hence this mesh is symmetric. 

If j i:. a then n = 0 and the proof follows similarly. o 

Notation: Let A be the set of meshes containing only chains from SN n EN; by 
lemma 7 these meshes are symmetric. 

Lemma 8 The number of gap sizes induced by S is at most 

IITII ~ IIAII + liB II· 

PROOF: The ch~lins are partitioned into 4 sets 

We will show that any chain which is neither a chain in B nor a chain from a mesh 
in A has the same gap size as some chain in B. This is vacuously satisfied for chains 
in ST nET since ST n ET ~ B. 

If X is a chain from SN n ET which is not in B then X is not left justified, so let 

(i,J) (m,O) be the start of X. The end of R(X) is clearly the reflection of the 
start of X, which is 

(P - 1 - m, Q - 1) ~ (P -1 - i, Q - 1- j), 

hence R(X) is right justified. Furthermore, by lemma 2, R(X) E ST n EN, thus 
R(X) E B. 

Similarly we can show that the reflection of a chain from (ST n EN) \B is a left justified 
chain from SN nET (and is hence a member of B). 

Now consider any chain X E SN n EN which is not from a mesh in A. Then, by the 
definition of A, X belongs to a mesh which contains some chain not in SN n EN (ie. a 
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chain from SN nET, ST n EN or ST nET)i hence X is the same width as some chain 
in B. 0 

Notation: Let V be the set of all vectors, that is, 

V = {(5,,) : -P < 5 < P, -Q <, < Q}. 

Then define the following subsets 

V++ ={(5,,):0:::;5<P,0:::;,<Q}, 
V+- = {( 5,,) : 0 :::; 5 < P, -Q < , :::; O} , 
V-+ = {(5,,): -P < 5::; 0,0:::;, < Q} and 
V-- ={(5,,):-P<5:::;0,-Q<,:::;0}. 

The union of these sets is V. Now let u++ E V++ be a vector defined so that 

lu++1 = min Ivl 
vEV++\{(O,O)} , 

we define u+-, u-+ and u-- similarly. 

Lemma 9 For all v E V there exist nonnegative integers Cl, C2, C3, C4 such that 

and 

Ivl = Cl lu++1 + c2Iu-+ 1+ c3Iu+-1 + C4Iu--I· 
PROOF: By induction on Ivl. 

The initial case where v = (0,0) is trivial. Assume that the statement holds for all u 
such that lui < Ivl. Now assume, without loss of generality, that v E V-:-+. 

Now, clearly, (v - u++) E V and I(v - u++)1 < Ivl so, by the induction hypothesis, 
there exist nonnegative integers aI, a2, a3, a4 such that 

Hence 
v = (al + l)u++ + a2u-+ + a3u+- + a4u--. 

Also, by the induction hypothesis, we have 

and, since Ivl > Iv - u++\ then Iv - u++1 = Ivl-lu++I, so 

as required. o 
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Notation: For each v E V we define the subset 

S(v) = ((i,j): (i,j) E S,(i,j) + v E S}, 

that is S( v) is the set of points (i, j) for which there exists another point (i, j) + v at 
a distance Ivl in the clockwise direction around the perimeter. 

Note for all v E V++ that (0,0) E S( v), and T(O, 0) - (0,0) E V++ so by the definition 
of u++ we get T(O,O) = (0,0) + u++. Similarly it can be shown that 

Lemma 10 

T(P - 1,0) = (P - 1,0) + u-+, 
T(O,Q -1) = (O,Q -1) +u+- and 

T(P - 1, Q - 1) = (P - 1, Q 1) + u--. 

(a) S(u++) n S(u--) = 0, and 

(b) S(u-+) n S(u+-) = 0. 

PROOF: We assume, without loss of generality, that lu++ I > lu--I. Now suppose 
that (i,j) E S(u++) n S(u--). Hence (i,j) + u-- and (i,j) + u++ are both points, 
and the distance from (i,j) + u-- to (i,j) + u++ is 

I(i,j) + u++ - ((i,j) + u--)I = lu++ - u--I, 
= lu++I- lu--I 
< lu++I· 

Now u++ - u-- is the vector difference between the points, so u++ - u-- E Vi 
further, by considering the signs of the components, we have u++ - u-- E V++. This 
is impossible since u++ was defined as having minimum length over all vectors in 
V++ \ {(O,O)}. This contradiction proves part (a) of the lemma. Part (b) is proved 
similarly. 0 

We now show that the set of gap sizes of S is unchanged if we replace 0: with 1 - 0:. 
Consider the set 

{{i(l 0:) +fB}: a ~ i < P,O ~j < Q} 
= {{(P - 1 - i')(l - 0:) + j,B} : 0 :s; i' < P, 0 ~ j < Q} 
= {{ i' 0: + j,B (P - 1)0:} : 0 ~ i' < P, a 5:. j < Q} , 

which is the set of points S rotated anticlockwise by a distance (P - 1)0: on the 
perimeter. Clearly this shifting will not affect gap sizes. However, if we set 0:' = 1- 0:, 
we find that the link 

(i,j) 2" (m,n), 
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whose gap vector is (m - i,n - j), changes under this transformation to 

(P -l-i,j) ~ (P -l-m,n), 

whose gap vector is (-(m - i), n - j). This will mean that the vector lengths in 
V++ will interchange with those from V-+ and the vector lengths from V+- will 
interchange with those from V-- when we use cl in place of a. This allows us to 
assume, without loss of generality, that 

(5) 

since if this were not the case then we could replace a with 1 - a, forming a new set 
S, with the same set of gap sizes, which satisfies (5). 

By a similar analysis we can show that by replacing {3 with 1 - f3 the vector lengths 
in V++ and V-+ are interchanged with those in V+- and V-- respectively. 

Now set Va u++ + u--. 

Lemma 11 

(a.) (P - 1, Q - 1) - u++ E S(vo) n S(u++), and 

(b) (0,0) - u-- E S( vo) n S( u--). 

PROOF: (a) Clearly (P - 1, Q - 1) - u++ E S. Further 

((P - 1, Q - 1) - u++) + Vo = (P - 1, Q - 1) + u--, 

which belongs to S, so (P - 1, Q - 1) - u++ E S(vo). Also 

((P - 1, Q - 1) - u++) + u++ = (P 1, Q - 1) 

so (P - 1, Q - 1) - u++ E S(u++). Thus (P - 1, Q - 1) u++ E S(u++) n S(vo) as 
required. 

Part (b) is proved similarly. 0 

We will often think of a set of points U ~ S as indices which mark positions in the 
successor table T, we then define the row span of U, denoted R~ (U), as the set of 
rows of T which contain 1 or more positions marked by U. 

Lemma 12 
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PROOF: vVe will prove the stronger result that 

(P - 1 - i, Q - 1 - j) - u++ E S(vo) n S(u++) 

if and only if 

If (P 1 i, Q 1- j) - u++ E S(vo) n S(u++) then, by the definition of S(vo) and 
S( u++), the following points are members of S 

(P - 1 - i, Q - 1 j) - u++, 

((P - 1 - i, Q - 1 - j) - u++) + Vo and 

((P - 1 - i, Q - 1 - j) - u++) + u++. 

The reflections of (6), (7) and (8) are, respectively, 

((i,j) - u--) + Vo, 

(i,j) - u-- and 

((i,j) - u--) + u--, 

(6) 
(7) 
(8) 

(9) 
(10) 

(ll) 

which are also members of S. The existence of points (10) and (11) imply that 
(i,j) u-- E S(u--); similarly (10) and (9) imply (i,j) - u-- E S(vo); which in 
turn implies (i, j) - u-- E S( vo) n S( u--), as required. 

The reverse implication is proved similarly. o 

We say a nonzero vector v clashes with another vector u if Ivl < lui and S(u)nS(v) =I-
0, that is, there is some point (i,j) in S(u) which is closer to the point (i,j) +v than 
it is to (i,j) + u. 

Lemma 13 There are no vectors which clash with u++ or 11--. 

PROOF: Suppose v clashes with u++ then, for some point (i,j) we have (i,j) + v 
and (i,j) + u++ belonging to S. The vector distance from (i,j) + v to (i,j) + u++ is 
u++ -u. By lemma 9, there exist nonnegative integers aI, a2, a3, a4 and b1 , b2, b3, b4 
such that 

v 

Ivl 

and 

u++ - v 

alu++ + a2u-+ + a3u+- + a4u--

a1Iu++1 + a2Iu-+1 + a3Iu+-1 + a4 Iu--1 

b1,u++ + b2u-+ + b3u+- + b4u--

b1 lu++1 + b2 Iu-+1 + b3 Iu+-1 + b4Iu--I· 
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(13) 

(14) 

(15) 



Note that lu++ - vi = lu++I- lvi, so adding (13) and (15) yields 

Clearly we cannot have al + b1 > 1. Suppose al + b1 1. Then a2 + b2 = 0, a3 + b3 = ° 
and a4 + b4 ° so that v = u++ or v = (0,0) in neither case does v clash with u++. 

Therefore al + b1 = 0. 

We cannot have both a3 + b3 ?: 1 and az + b2 ?: 1 otherwise, by the assumption (5), 
the right hand side of (16) would exceed the left hand side. We will consider the case 
az + bz 0, the case a3 + b3 = ° is proved similarly. 

Adding equations (12) and (14), with al + b1 = ° and az + b2 = 0, gives 

If we also have a3 + b3 = ° it is easily seen that u++ (0,0), contradicting its 
definition. If a4 + b4 = ° then, by equation (17), we arive at 

which, by the definitions of u++ and u+-, implies that a3 + b3 = 1. Therefore we have 
al = 0, az 0, a3 = 0 or 1 and a4 = 0, hence v (0,0) or v = u++, and again v 
does not clash with u++. The final case is a3 + b3 1 and a4 + b4 ?: 1. The second 
component of the vector on the right hand side of (17) is nonpositive, while u++ has 
a nonnegative second component; then the second component of both vectors must 
be O. This implies that u-- and u+- must both have ° as their second component. 
However, this means that no vector with a negative second component is expressible 
in the form given in lemma 9. This contradiction implies that no vectors clash with 
u++. 

We can prove that no vectors clash with u-- in a similar way. o 

Lemma 14 If a vector v clashes with Vo then v E {u++,u--,u-+,u+-}. 

PROOF: For any point (i,j) E S(v) n S(vo), the vector distance from (i,j) + v to 
(i,j) + Vo is Vo v. Then, by lemma 9, there exist nonnegative integers aI, a2, a3, a4 
and b1 , bz, b3 , b4 such that 

v 

Ivl 

and 

Vo v 

alu++ + a2u-+ + a3u+- + a4u--

a1\u++\ + a2\u-+\ + a3 \u+-\ + a 4 \u--\ 

b1u++ + b2u-+ + b3u+- + b4u--

b1\u++\ + b2 \u-+\ + b3 \u+-1 + b4Iu--I· 
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(18) 

(19) 

(20) 

(21) 



Clearly 
Iva - vi + Ivl = Ivol 

= lu++ + u--I 
= lu++1 + lu--I, 

so adding (19) to (21) we get 

Note that we must have 

and 

so if 

then 
al + a2 +- a3 + a4 = 1 

and hence, by (18), v E {u++,u-+,u+-,u--}. This is what we wanted to prove so 
instead assume 

(23) 

We cannot have both al + bl ~ 1 and a4 + b4 1 otherwise, by (23), the right hand 
side of (22) will become larger than the left hand side. Similarly, by assumption (5), 
we cannot have both a3 + b3 ~ 1 and a2 + b2 ~ 1. This gives rise to 4 cases, we consider 
only the case a4 + b4 = 0 and a2 + b2 = 0, the other cases are proved similarly. 

Consider adding (18) and (20), when a4 + b4 = ° and a2 + b2 = 0, we get 

u++ + u-- = (al + bI)u++ + (a3 + b3 )u+-. 

N ow if al + bI ~ 1 then (24) becomes 

(24) 

(25) 

We cannot have either al + bI - 1 = 0 or a3 + b3 = ° as this would imply, respectively, 
that a3 + b3 = 1 or al + bI - 1 = 1, yielding a contradiction to (23). Now the first 
component of the vector on the right hand side of (25) is nonnegative while u-- has a 
nonpositive first component, thus both first components must be 0, this implies that 
u+- and u++ both have 0 as their first component. Then no vector with a positive 
first component is expressible in the form given in lemma 9, which is impossible. 
Hence we must have al + bI = 0, so equation (24) simplifies to 

(26) 
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and (22) becomes 

lu++ + u--I = (a3 + b3) IU+-I, 
also (23) implies that a3 + b3 > 2. 

(27) 

Note that (O,O)-u-- and (O,O)+u++ are both points in S, (O,O)-u-- is positioned 
immediately anticlockwise of (0,0) and (0,0) +u++ is immediately clockwise of (0, 0). 
Using (26), we can have, 

(0,0) + u++ ((0,0) - u--) + u++ + u-

((0,0) - u--) + (a3 + b3)u+-. 

As (0,0) - u-- and ((0,0) - u--) + (a3 + b3)u+- are both points in S it is not hard to 
see that ((0,0) - u--) + u+- and ((0,0) - u--) + 2u+- are also points in S. However, 
by (27), both of these points would lie onthe arc between (O,O)-u-"- and (O,O)+u++ 
which should only contain the point (0,0). This contradiction completes the proof. 

Lemma 15 One of the following cases must hold 

(1) Vo u+-, 

(2) Vo = u-+, 

(3) Vo = u-+ + u+-, 

(4) neither u+- nor u-+ clashes with Vo, 

(5) u++ = u+-, 

(6) u-- =u-+, 

(7) u-- = u+-or 

(8) u++ u-+. 

D 

PROOF: Suppose (4) does not hold, and suppose that u+- clashes with Va. Thus 
there exists a point (i,j) such that (i,j) + u+- and (i,j) + Va belong to S. The 
vector distance between these 2 points is Va - u+-. Then, by lemma 9, there exist 
nonnegative integers all a2, a3, a4 such that 

and 

Iva - u+-I = a1Iu++1 + a2Iu-+1 + a3Iu+-1 + a4 Iu--I· 
We can rewrite (28) as 

also, since IVa - u+-\ = \u++\ + \u--\-\u+-\, we can rewrite (29) as 

(28) 

(29) 

(30) 

Suppose a2 2: 1. Then, by assumption (5), we must have al = 0, a2 = I, a3 = ° and 
a4 = 0. Substituting these values into (30) gives case (3). Then suppose a2 = O. 
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If al ?: 1 and a4 ?: 1 then the right hand side of (31) exceeds the left hand side, so 
we must have al = 0 or a4 = O. Suppose a4 = O. Equation (30) then gives, 

(32) 

If al = 1 we get u-- = u+-, which is case (7). 

If al > 1 equation (32) becomes 

u-- = (al l)u++ + (a3 + l)u+-, (33) 

however the first component of the vector on the right hand side of (33) is nonnegative 
while u-- has a nonpositive first component, thus both first components must be 0, 
this implies that u+- and u++ both have 0 as their first component. Then no vector 
with a positive first component is expressible in the form given in lemma 9. The 
remaining possibility is al = 0. 

With al = 0, a4 = ° and a2 = ° equations (30) and (31) simplify to 

u++ + u-- = (a3 + l)u+-

and 

If a3 = 0 we have case (1). Assume instead that a3 ?: 1. 

(34) 

(35) 

Note that (0,0) - u-- and (0,0) u+-j- are, respectively, the points immediately 
preceding and following (0,0) on the perimeter. Using (34), (0,0) + u++ can be 
reexpressed as 

(0,0) + u++ ((0,0) u--) + u++ + u-

((0,0) - u--) + (a3 + l)u+-. 

So (0,0) - u-- and ((0,0) - u--) + (a3 + l)u+- are both points in S, as are the 
following: 

Furthermore, by equation (35), these points lie on the arc between (0, 0) - u-- and 
(0,0) + u++. The only point which lies on this arc is (0,0), hence a3 = 1 and 

(0,0) - u-- + u+- = (0,0), 

ie. u-- = u+-. Therefore (34) simplifies to 

++ --u = u , 

which implies that u-- = (0,0) and u++ (0,0) which is impossible. 
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So far we have considered the possibilities u+- clashes with Vo (at the start of the 
proof) and a4 0 (before equation (32)), and shown that these possibilities lead to 
cases (1 ),(3) or (7). The alternative possibilities lead to the other cases. 0 

Note that parts (1) and (2) are special cases of part (4) in lemma 15, however these 
cases will be treated separately in later proofs. 

Lemma 16 

(a) If (i,j) (i,j) + v is the start of a chain X then X E 5N if and only if 
(i,j - 1) ¢ 5(v) (or equivalently X E 5T if and only if (i,j -1) E 5(v)). 

(b) If (i,j) (i,)') + v is the end of a chain X then X E EN if and only if 
(i,i+ 1) ¢ S(v) (or equivalently X E ET if and only if (i,j + 1) E 5(v)). 

PROOF: (a) Let (m,n) = (i,j) + v. 

First, if X E 5N then j = 0 or n = 0, which implies that (i,j -1) ¢ 5 or (m, n-1) ¢ 5, 
and hence (i,j 1) ¢ 5(v). 

Now, if (i,j -1) ¢ 5(v) then (i,j -1) ¢ 5 or (m, n-l) ¢ However (i,j) ~ (m, n) 
implies (i,j) E 5 and (m,n) E 5, so it must be the case that j 0 or n = 0, which 
implies that X E SN. 

Part (b) is proved similarly. o 

We are now nearly ready to prove the P + 3 theorem, to do this we use the structure 
in the successor table, for each of the cases described in lemma 15, to bound the right 
hand side of the inequality 

IITII ::; IIAII + IIBII , 
obtained in lemma 8. 

In each of these 8 cases we will define a set <p ~ V. Its definition will change from 
case to case but it will always have the following properties. 

1. For all v E <p and u E V\<p, u does not clash with v. 

2. For all i = 0,1, ... , P - 1 there erists j E [0, ... , Q) and v E 'P such that 
T(i,j) = (i,j) + v. 

Denne 
~ = U S(v), 

vEep 
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then the above properties imply: 

I'. (i,j) E <1> if and only if there exists v E c.p such that T(i,j) = (i,j) + v. 

2'. Rs (<1» contains all rows of T. 

Define \[I = 5\ <1>, then let R2 = Rs (\[I), and let RI be those rows of T not in R2 (thus 

IRII + IR21 = P). 

Let Al and A2 be the sets of meshes from A which are in the regions <1> and \[I 

respectively. Then let ai (i = 1,2) be the number of meshes in Ai consisting of a 
single chain. 

N ow let Bi (i = 1, 2) be the set of chains from B in the rows of R., and let f be 
the number of rows in Rz which contain no chains from B. Then, by lemma 6, 

IB21 = IRzl - j, and hence 
(36) 

Finally let t be the number of rows from Rz whose justified chains are both from 
n EN and in the region <1>. 

Lemma 17 If c.p ~ V has properties 1 and 2 then (with aI, Rl and t defined, as 
above, with respect to cp) 

PROOF: Let c.p ~ V satisfy properties 1 and 2 (and define AI, Az, B I , B 2 , R 1 , R2 , 

aI, a2, <1>, \[I, j and t, as above, with respect to c.p). 

Note that A = Al U A2 and B = Bl U B2 so lemma 8 implies 

(37) 

Now Al and BI are both in the region <1>, and, by property I', there are Ic.pl gap vectors 
for this region. Hence (37) becomes 

(38) 

We now use properties 1 and 2 of c.p to prove the following facts. 

1. Every row from R2 contains a chain from SN n EN in the region <1>. 
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2. Every chain from Bz is in the region W. 

3. Every chain from W is reflected into W. 

Consider any row r from Rz. By definition, r contains some link from the region W, 
and, by property 2', r contains some link from the region <P; hence r is partitioned 
into intervals which are alternately contained within <P and W. Let r' be one of these 
intervals in <P. By lemma 16 and property l' the first and last chains in r' are from 
SN and EN respectively. Then if the last chain in r' is not in SN n EN it is from 
ST n EN, so, by lemma 5(a), the first chain in r' must be from SN n EN. Hence either 
the first or last chain from r' is from SN n EN which implies fact 1. 

To prove fact 2 we assume, without loss of generality, that the first chain in r' is in 
SN n EN. If r' contains only one chain it is in SN n EN, and hence not in Bz. So 
assume that r' contains at least 2 chains. Under these assumptions r' is, by lemma 4, 
left justified, also by lemma 4 the last chain cannot be from SN n EN, otherwise r' 

would be right justified implying r = r' contradicting r E R z. Therefore the last 
chain in r' is from ST n EN, but is not right justified and hence not in B, all other 
chains in r' are, by lemma 5(a), either from ST n EN, which are not right justified 
and hence not chains from B, or from SN n EN, and hence not in B. Hence no chain 
from Bz is in the region <P, which implies fact 2. 

Since a link and its reflection have a common gap vector then, by property 1 of <p, 

the reflection of a link, chain or mesh from <P is also in the region <P. Which, by 
contrapositive, implies fact 3. 

There are az meshes in Az which consist of a single chain from SN n EN, the other 
IAzl - az meshes from Az each contain at least 2 chains from SN n EN' Therefore 
there are at least 

chains from SN n EN in the region ':II, these chains are, by lemma 4, justified chains. 
These chains come from rows in R z, and, by fact 1, every such row also contains 
a justified chain from S N n EN which is in the region <P. Hence there are at least 
21Az\ - az + t rows from Rz whose justified chains are both from SN n EN, at most 
f of these rows contain no chain from B z, the other 2 I Azi - az + t - f or more rows 
must, by the definition of B, each contain a chain from ST nET. 

There are al + az meshes in A consisting of single chains, these chains are, by the 
definition of A and lemma 7, symmetric chains from SN n EN. Then, by lemma 3, 
the number of symmetric chains from ST n ET is at most 4 - (al + az). 

Therefore there are at least 
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chains from ST n ET in Bz which are not symmetric. Such chains are, by fact 2, in the 
region \l! and hence, by fact 3, their reflections (which, by lemma 2, are also chains 
in 5T n ET ) are also in the region \l!. Therefore the 21Azi 4 + al + t - f or more 
non-symmetric chains from Bz are paired off, under reflection, into pairs of chains 
with the same gap vector, so by (36), 

IIBzl1 < IB21 ~ rZIA21-4;olH-fl 

p -IRll- f -IA21 + 2 - ra1+;-fl 
P + 2 -IRII-IAzl- fa1 +;+f1 

~ P + 2 -IRII-IAzl- 71. 

vVhich, with (38), gives 

as required. 

IITII ~ P + 2 - IRll + 1<p1 -
:::; P + 2 - /R1 / + 1<p1 -

P+3 Theorem 

o 

PROOF: Consider the 8 cases of lemma 15. It is sufficient to prove that the theorem 
holds for instances of cases 1,3,4,5 and 7, since, by replacing a with 1 - a and/or f3 
with 1 f3, we can transform instances of cases 2, 6 and 8 into instances of cases 1, 5 
and 7 respectively. For example if we have a set 5, which is an instance of case 2, we 
can construct a new set S' by replacing a with 1 a and replacing f3 with 1- f3 which 
has the same set of gap sizes. However the lengths of vectors in V++ and V+- will 
be by the transformation, with those from V-- and V-+ respectively. 
Hence set S' is an instance of case 1, and the assumption (5) will remain satisfied by 
S'. So if the theorem holds for instances of case 1 it also holds for instances of case 2. 

Cases 1, 5 and 7: Va = u+-, u++ = u+- or u+- = U--. 

Set <P = {u++, u--, va} , then property 1 is implied by lemmas 10, 13 and 14, and 
property 2 is implied by lemma 11. Hence, by lemma 17, we have 

(39) 

The successor table for these cases is represented by figure 2. 

If IRll > 1 then, by (39), we get IITII :::; P + 3. Then suppose IRll = 1. Clearly 
Rs (S(u++)) ~ R1 , and hence IRs (S(u++))1 = 1 which implies that 5(u++) contains 
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columns 
o Q -1 

rows 

Figure 2: Successor table for cases (1), (5) and (7) 

only 1 chain. Now, by lemmas 13 and 16, we see that S(u++) is a mesh in AI, and 
hence al ~ 1. Therefore, by (39), IITII ~ P + 3. 

Case 3: u++ + u-- = u-+ + u+-. 

Note that replacing a with 1 - a and/or f3 with 1 f3 converts an instance of case 
3 into another instance of case 3, while not affecting .ass1.1mpt}on (5). Using such 
transformations we can assume, without loss of generality, that Vo E V++. Also, by 
applying such transformations to lemma 13, no vectors clash with u+- or u-+. 

Define cp {u++, u+-, u-+, u--, vo}. Then lemmas 13 and 14 imply that cp has 
property 1, and lemma 11 implies that cp has property 2. Hence, by lemma 17, we 
get 

(40) 

A block diagram of the successor table for this case is represented in figure 3 (where 
'l! WI U W2 ). 

When IRl\ ~ 4 (40) implies IITII ~ P + 3, so we assume IRII ~ 3. Note that 
Rs (S(u+-)) ~ Rl and R. (S(u--) n S(vo)) ~ R1 ; futhermore R. (S(u+-)) and 
R. (S(u--) n S(vo)) are disjoint, so 

Now, by lemma 12, IRs (S(u--) n S(vo))1 = IRs (S(u++) n S(vo))I, and, since Vo E 
V++, IRs (S(u++) n S(vo))1 = IRs (S(u++))I, which gives 

( 41) 

Hence, by lemma 11, IRll ~ 2. Therefore there are 2 nontrivial cases to consider. 
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columns 
a Q -1 

o 

rows 

P-l~ ________ ~~~~ ____________ ~ 

Figure 3: Successor table for case (3) 

By (41) either IRs (S(u++))1 1 or IR. (S(u+-))I 
contain only one chain. Now, by lemmas 13 and 
meshes in AI, so al :2: 1, then, by (40), 

f
ll IITII s P + 4 - 2 i 

1, hence either S(u++) or S(u+-) 
S(u++) and S(u+-) are both 

F+3." 

By (41) both IRs (S(u++))1 = 1 and IR. (S(u+-))I 1, then by the argument used 
in case 3(a) we that S(u++) and S(u+-) are both meshes in Al which consist 
of a single chain, hence al :2: 2. We assume, without loss of generality, that t = 0, 
since, by (40), if this were not the case then IITII S P + 3, as required. Note that 
any row in R. ('1!z) has both justified chains from SN n EN and in the region 1>, 
so t ::::: IR. ('1!2)1, and hence '1!2 = 0. Therefore R. (S(u--)) s;:; R1 , then, since 
R. (S(u--))nR. (S(u+-)) = 0, IR .. (S(u--))I = 1. This implies that S(u--) contains 
only 1 chain. By lemmas 13 and 16 S(u--) is a mesh in Al , as are S(u++) and S(u+-), 
so al ::::: 3. Thus, by (40), IITII S P + 3. 

Case 4: Neither u+- nor u-+ cbsh with Va. 

Set cp = {u++,u--,vo} (as in case 1), so that 1> has properties 1 and 2. Therefore, 
by lemma 17, we have 

(42) 



We note that when Vo E V+- or Vo E V-+ then we have an instance of case 1 and 
case 2 respectively. Furthermore, if Vo E V-- then we can create a new problem by 
using 1 - a and 1 - f3 in place of a and f3 respectively, this transformation will yield 
another instance of case 4 with the same set of gap sizes, but Vo E V++. Therefore 
we can assume that Vo E V++. 

A block diagram of the successor table for this case IS given by figure 4 (where 
'11 = WI U '11 2 ), 

columns 
o Q -1 

o 

S(Vo) 

rows 

Figure 4: Successor table for case (4) 

If IRII ~ 2 then, by (42), IITil :::; P + 3. Then suppose IRII :::; 1. It is clear 
that Rs (S(u--) n S(vo)) ~ Rli and hence IRs (S(u--) n S(vo))1 = 1. Therefore, by 
lemma 12, IRs (S(u++) n S(vo))1 = 1, and, since Vo E V++, IRs (S(u++))1 = 1. Thus 
S(u++) contains only 1 chain. Now, by lemmas 13 and 16, S( u++) is a mesh in AI, 
so al ~ 1. Therefore, by (42), IITII ~ P + 3. 

Hence, in general, IITII :::; P + 3. o 

3. Achievability 

Clearly in the case P = 1 (ie. the 3 gap problem) the bound P + 3 is not achievable, 
however, the bound is achievable for P > 1. In the following generalised example 
we show that the bound is achievable when P ~ 3. In this we use Q = P + 1, it is 
not known if the P + 3 is achievable when P = Q. The referee pointed out that this 
example does not work when P = 2. He adds that "it can be shown that 5 gaps are 
not achievable when P = 2, Q = 3 (to have 5 gaps in this case, there would have to 
be 4 symmetric chains consisting each of a single link, but according to the proof of 
Lemma 3, there can only be 2 symmetric chains length of given parity). It is easy to 
construct an example with P = 2, Q = 4 having 5 gaps." 

Example For P ~ 3 set Q = P + 1, f3 = 1 and a 1 + E, where 0 < PE < 1. 
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We use a circle of circumference 

(P - 1)(1 + E) + P - 1 - 0, 

where 0 < E/2. Naturally this can be normalised to a circle of unit circumkr(~nce, 
however it is more convenient to use the given circumference. 

Firstly we will investigate the lengths of the subintervals induced by partitioning the 
interval 

[O,(P -1)(1 + E) + P] 

with the set 

S' {iCY. + j fJ : ° :S i < P, 0 :S j < Q} . 

Then consider the gap sizes achieved by wrapping this interval onto the perimeter of 
a circle of circumference 

(P - 1 )(1 + E) + P - 1 - o. 

S' simplifies as follows 

Define 

and 

S' {i(1+E)+j:O:Si<P,O j<P+l} 
{( i + j) + iE : 0 :S i < P, ° :S j < P + I} 
{k +iE: O:S k < 2P, max{O,k - P}:S i:S min{P -1,k}} 
{k + iE: 0 :S k < P, 0 :S i :S k} 
U + iE : P :S k < 2P, k - P :S i :S P I}. 

S~ = {k + iE : 0 :S k < P,O :S i :S k} 

S~ = {k + iE : P :S k < 2P, k P:S i :S P - I}, 

since each element of S~ is greater than or equal to P then the set of subintervals 
induced by partitioning [0, PJ with the set S~ is a subset of the set of subintervals 
obtained by partitioning the interval 

[0, (P - 1)(1 + E) + P] 

with the set S'. The lengths of the subintervals in the partitioning of [0, P] with S~ 
are E and 

{(£ + 1) - (I. + I.E) : a :S I. < P} = {I - I.E : a :S I. < P}. 

Hence S' partitions the interval 

[O,(P -1)(1 + E) + P] 

into subintervals of at least P + 1 distinct lengths. 
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We now consider wrapping the interval 

[0, (P - 1)(1 + E) + P] 

around a circle of circumference 

(P - 1)(1 + E) + P - 1 - 0, 

in doing so the ends of the interval will be overlapped by a length of 1 + o. There are 
only 2 elements in the set S~ which are in this overlapped section, these are 

2P - 2 + (P - l)E and 2P - 1 + (P l)c, 

due to the modulo equivalence of distances around the perimeter these points in the 
overlapped section are equivalent to 

o and 1 + o. 

o lies in the subinterval [0,1], creating 2 new subintervals of length 0 and 1 - 0, but 
in doing so we lose the subinterval of length 1. 1 + 0 lies in the subinterval [1,1+ E], 
creating 2 new subintervals of length E - 0 and 0, and although the subinterval of 
length E is destroyed there are other subintervals of this length, ego [2,2+ E]. SO the 
following are all subinterval lengths (given in ascending order) 

0, E 0, E, 1 - (P - l)E, 1 - (P - 2)E, ... ,1 2E,1 E and 1 - o. 

Hence there are P + 3 gap sizes. 

4. Unsolved Problems 

Notation: In this section we assume that all sets contain real numbers in the 
interval [0,1), and that every set contains O. We think of the elements of the set as 
points on the perimeter of a circle of unit circumference. The gaps of a set 5 are the 
arcs between adjacent points of 5 on the perimeter, and we define 11511 as the number 
of distinct gap sizes of S. 

Given sets Sand T we define the new set 

S V T = {{ s + t} : s E 5, t E T} , 

S V T is the wedge of Sand T. Geometrically the set S V T is obtained by extending 
the sequence T from each point in S on the perimeter. 

The 3 gap theorem can be stated as 

II{{in:} : 0 ::; i < N}II ::; 3, 

and the P + 3 theorem implies that 

II{ {in:} : 0 ::; i < P} V {{iJ3} : ° ::; i < Q}II S P + 3. 
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An obvious generalisation of these problems is to find an upper bound for 

It has been shown that (43) is no greater than 

3 K-l 

II Ni +3, 
2 i==l 

but is conjectured to be 
K-l 

Ni+CK, 

where CK is independent of , ... , N K . 

The LIJUUVVU110C problem, posed by Erdos, is to find values of a and fJ for which the 
limit 

lim sup II{{ia}: 0 ~ i < N} V {{ifJ}: 0 i < N}II 
N-+oo 

(44) 

is finite. Ron Holzman has shown that if a, fJ and 1 are linearly dependent over 
the rationals then (44) is finite, it is conjectured that this is a necessary condition. 
However there are no known instances for which (44) has been proven to be infinity. 

For the final problem let 

where aI, a2, . .. , ak and 1 are linearly independent over the rationals, then define 

n sets 
~ sn = S V S V ... V S . 

For some values of nand k (e.g. when n = 1) we can find values aI, a2, ... , ak 

for which each of the Isnl arcs on the perimeter has a unique gap size, and hence 
Ilsnll = Isnl. Howeverfor other values ofn and k Ilsnll < Isnl regardless of the choice 
of aI, a2, ... , ak; for example when k = 1 and n > 2 we have an instance of the 3 
gap theorem for which this is true. We can show that when n > 2k 

for all possible values aI, a2, ... , ak. However we are unsure if Ilsnll 
n S; 2k. 
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