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Abstract 

We verify the skew weighing matrix conjecture for orders 2t .13, t 2:: 5, 
and give new results for 2t.15 proving the conjecture for t :2: 3. 

1 Introduction 

An orthogonal design A, of order n, and type (Sl' S2, . .. , su), denoted 
OD(n; Sl, S2, ... ,su) on the commuting variables (±Xl, ±X2, ... , ±xu , 0) is a square 
matrix of order n with entries ±Xk where each Xk occurs Sk times in each row and 
column such that the distinct rows are pairwise orthogonal. 

In other words 
AAT = (SlX~ + ... + sux~)In 

where In is the identity matrix. It is known that the maximum number of variables 
in an orthogonal design is p(n), the Radon number, where for n = 2a b, b odd, set 
a = 4c + d,O :::; d < 4, then p(n) = 8e + 2d. 

A weighing matrix W = W(n, k) is a square matrix with entries 0, ±1 having k 
non-zero entries per row and column and inner product of distinct rows zero. Hence 
W satisfies WWT = kIn, and W is equivalent to an othogonal design OD(n; k). The 
number k is called the weight of W. 

Australasian Journal of Combinatorics ~(1993), pp.143-152 



Weighing matrices have long been studied because of their use in weighing ex
periments as first studied by Hotelling [8J and later by Raghavarao [9] and others. 

There are a number of conjectures concerning weighing matrices: 

Conjecture 1 (Wallis [13]) There exists a weighing matrix W( 4t, k) for k E 
{1, ... ,4t}. 

This conjecture was proved true for orders n = 2t, t a positive integer by Geramita, 
Pullman and (Seberry) Wallis [3]. Later the conjecture was made stronger by Seberry 
until it appeared in the following forms. 

Conjecture 2 (Seberry) When n == 4(mod 8)) there exist a skew-weighing matrix 
(also written as an OD(n; 1, k)) when k ~ n - I) k = a2 + b2 + c2, a, b, c integers 
except that n - 2 must be the sum of two squares. 

Conjecture 3 (Seberry) When n == O(mod 8)) there exist a skew-weighing matrix 
(also written as an OD(n; 1, k)) for all k ~ n - 1. 

This conjecture was established for n = 2t .3, 2t .5, 2t.9 by Geramita and (Seberry) 
Wallis [4,51, by Eades and (Seberry) Wallis [1] for t 2:: 3 and for n = 2t.1S and 2t.21, 
t 2:: 4 by Seberry [10, 11]. The result for 2t.15 is improved to t 2:: 3 in this paper and 
the results are given for 2t .13, for t ~ 5. 

Given the sequence A = {aI, a2, ... , an} of length n the non-periodic autocorrela
tion function N A ( s) is defined as 

NA(S) = L aiai+s, s = 0,1, ... ,n-1. (1) 
i=l 

If A( z) = a1 + a2Z + ... + an zn
-

1 is the associated polynomial of the sequence A, 
then 

n-l 

A(z)A(z-l) = L L aiajzi-j = NA(O) + L NA(s)(zS + Z-8), z of O. (2) 
i=l j=l s=l 

Given A as above of length n the periodic autocorrelation function PA(s) is defined, 
reducing i + s modulo n, as 

n 

PA(s) = Laiai+s, s = O,l, ... ,n-l. (3) 
i=l 

2 Preliminary Results 

We make extensive use of the book of Geramita and Seberry [6]. We quote the 
following theorems, giving their reference from the aforementioned book, that we 
use: 
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Lemma 1 [6, Lemma 4.11] If there exists an orthogonal design OD(n;sl,s2, 
... , StL) then there exists an orthogonal design OD(2n; Sl, Sl, eS2, ... , esu) where e =1 
or 2. 

Lemma 2 [6, Lemma 4.4] If A is an orthogonal design 0 D(n; Sl, S2, ... ,StL) on 
the commuting variables (±Xl, ±X2, ... , ±xtL , 0) then there is an orthogonal design 
OD(n; Sl, S2, ... , 8i + Sj,"" su) and OD(n; S1, S2, ... , Sj-1, Sj+1, .. . , StL) on the u-1 
commuting variables (±X1, ±X2, ... , ±Xj-l, ±Xj+1,"" ±xtL , 0). 

Lemma 3 [6, Corollary 5.2] If all orthogonal designs OD(n; 1, k), k = 1, 2, "', 
n - 1, exist then all orthogonal design OD(2n; l,j), j = 1, 2, "', 2n 1, exist. 

Theorem 1 [6, Theorems 2.19 and 2.20] Suppose n O(rnod 4). Then the exis
tence of a W(n,n-1) implies the existence of a skew-symmetric W(n,n-1). The ex
istence of a skew-symmetric Wen, k) is equivalent to the existence of an OD(n; 1, k). 

Theorem 2 [6, Proposition 3.54 and Theorem 2.20] An orthogonal design 
OD(n; 1, k) can only exist in order n == 4(mod 8) if k is the sum of three squares. 
A n orthogonal design 0 D( n; 1, n - 2) can only exist in order n == 4( mod 8) if n - 2 
is the sum of two sq1Lares. 

Theorem 3 Orthogonal designs 0 D( n; 1, k) exist for k = 1 J 2, ... } n-1 in orders 
n = 2t , 2t +3 .3, 2t+3 .5, 2t+3 .7, 2t+3 .9) 2t+4.15 and 2t+4.21, t ~ 0 an integer. 

Theorem 4 [6, Theorem 4.49] If there exist four circulant matrices AI, A 2, A 3 } 

A4 of order n satisfying 

i=l 

where f is the quadratic form L;'j=l SjX~, then there ~s an orthogonal design 
OD(n; Sl, S2, . .. , su). 

Corollary 1 If there are four {O, ±1 }-sequences of length n and weight w with zero 
periodic or non-periodic autocorrolation function then these sequences can be used as 
the first rows of circulant matrices which can be used in the Goethals-Seidel array to 
form OD(4n;w) or a W(4n,w). If one of the sequences is skew-type then they can 
be used similarly to make an OD(4n; 1,w). We note that if there are sequences of 
length n with zero non-periodic autocorrelation function then there are sequences of 
length n + m for all m ~ O. 

Theorem 5 [6, Theorems 4.124 and 4.41] Let q be a prime power then there is 
a circulant W = W (q2 + q + 1, q2). Let p == 1 (mod 4) then there are two circulant 
symmetric matrices R, S of order (p + 1 )/2 satisfying 

RRT + SST = pl. 

Lemma 4 [6, Proof of Lemma 4.34] Let q be a prime. Then there is a circulant 
matrixQwhichsatisfiesQQT = qI-J,QJ = JQ O,QT = (_1)(q-l)/2Q. 

145 



Corollary 2 There exists a circulant W = W(13,9). There exist two circulant 
symmetric matrices Rand S or order 13 satisfying RRT + SST = 251. There 
exists a circulant symmetric matrix Q of order 13 satisfying QQT = 131 - J. 

Lemma 5 [6, Lemmas 4.21 and 4.22] Let A and B be circulant matrices of 
order nand R = (rij) where rij lif i + J - 1 nand 0 otherwise, then 
A(BR)T (BR)AT. 

3 Notation 

1 is the identity matrix with the order taken from the context; 

J is the matrix of ones with the order taken from the context; 

X is the backcirculant matrix with first row {a b OlO b } where 010 is a sequence 
of 10 zeros and a and b are commuting variables; 

Y is the circulant matrix with first row {O b OlO b} where OlO is a sequence of 
10 zeros and b is a commuting variable; 

W is the backcirculant matrix with first row {O 1 0 1 1 0 0 - 1 1 - I} 
where is used for -1) and W IS a W(13, 9); 

Rand S are circulant symmetric matrices satisfying RRT + SST = 251; 

Q is the circulant symmetric matrix of order 13 satisfying QQT = 131 - J; 

A, B, C, D are circulant symmetric matrices satisfying AAT + BBT + CCT 

+ DDT = 521 (these are Williamson matrices see [12, pp511, 541]. 

1 + K, L, M, N are circulant matrices where K is skew-symmetric, (cI + dK)' 
is the backcirculant matrix with the same first row as c1 + dK, and L, M and 
N are symmetric satisfying K KT -+- LLT + M MT + N NT = 511 (these 
are good matrices see [12, pp492]. 

4 Sequences with Zero Autocorrelation 

Tables 1 to 4 give sequences of lengths 13 and 15 with zero non-periodic and periodic 
auto-correlation function. 
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Length=13 Sequences with zero non-periodic autocorrelation function 
1,34 {+ 00+ - - a + + - OO-}, {O 0 0 + + + + 0 + - + -+}, 

{O - 0 + 0 + + 0 + 00 - +}, {- 00 - + + - 0 + + + --} 
1,37 {O + - + + 0 a 0 - - + -O}, {+ + - + - + 0 + + + + + -}, 

{- + a - + + 0 - - + + a O}, {- - - a + a + 0 a 0 + +-} 
1,1,40 {+ a + + + - a + - - - O-}, {+ a + - - + b - + + - O-}, 

{+ 0 + + + - a - + + + O+}, {+ 0 + - - + 0 + - - + O+} 
1,45 {+ + + - - + a - + + - - -}, {+ + - + - + 0+- + + + +}, 

{- + - + + - + + + + - a O}, {+ + - + + 0 - - - - + a a} 
48 {+ ++ + + + + - + - + a}, {+ + + - + + - - + - + - O} 

{+++ - - + + - + + - O}, {+ + + - - - - - + - - + O} 

Table 1: Sequences of length 13 with zero non-periodic autocorrelation function 

Length=13 Sequences with zero periodic autocorrelation function 
1,42 {- + + -OaO++ -+}, {- + - 0 - + 0 + + + + + +}, 

{+ + + + - + - 0 + 0 a + - }, {+ + - - - + 00+ + + --} 
1,46 {- - - + + - a + - - + + +}, {- + + + - + a + + + + +}, 

{++++++ 0 -0 - +-}, {+ + - - 0 - + 0 + + +-} 
1,48 {+ + + - + + a - - + - - -}, {- + + + + + a - + + + -}, 

{- + 0 + - + - - + + + + +}, {+ + + + - + - - + + a + -} 
1,49 {++ - + - a + - + + - -}, {+ + + + + + 0 + - + - + -} 

{+ + - - + + + + + + - - -}, {+ + + + 0- ++ + -} 

Table 2: Sequences of length 13 with zero periodic autocorrelation function 

Length=15 Sequences with zero non-periodic autocorrelation function 
49 {- + 0 + + 00+ + + a + - O+}, {+ -- - - + - + + + + - + + + -} 

{- 0 + + 0 + + - 00- + 0 + -}, {+ - - - + + 0 + - + + - -+} 
1,53 {O + + + - + + a - - + - - - O}, {+ + + + 0 - + + + - + - + + -}, 

{+ - + + - + + - + - 0 - + + +}, {+ - - - + + + + +- + -OO} 
1,56 {+ - + - - - - a + + + + - +-}, {- + - + + + + 0 + + + + +-}, 

{++--+++++--++ O}, {+ - - + + - + - + + - + + O} 

Table 3: Sequences of length 15 with zero non-periodic autocorrelation function 

Length=15 Sequences with zero periodic autocorrelation function 
1,42 {O + 0 - + - - a + + - + 0 - O}, {O + - + - + - - 0 + + + + + +}, 

{+ + - 00+ + 0 - + + 00 + -}, {+ + 0 0 0 - 0 - - + + + a 0 -} 
1,54 {+ + + - - + - a + - + + - --}, {+ + - 0 + - - + + + - + + + O}, 

{O + + + - + - + + + - 0 + -+}, {- + + + + + + 0 - + - + - --} 
1,57 {- - + - + - - a + + - + - ++}, {+ + - + - + - - + + - + + + +}, 

{- + + + + + - - + + + 0 - +-}, {+ + + 0 - + - - - + + + + +-} 

Table 4: Sequences of length 15 with zero periodic autocorrelation function 
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Length=17 Sequences with zero non-periodic autocorrelation function 
63 {+-+-+-++ O++++++--}, 

{+ + - + - + + - + + - + + - - + +}, 
{O - + + - 0 - - - - + + + - + ++}, 
{+ - + + + - - - + + + 0 - + - - O}, 

Table 5: Sequences of length 17 with zero non-periodic autocorrelation function 

Length=17 Sequences with zero periodic autocorrelation function 
1,61 {- - 0++ - + a - + - - 0 + ++}, 

{- + - + + + + + + + + + - + - - O}, 
{++-+-+++-++-++-- O}, 
{++-- 0+ + + + - 0 - + + -+}, 

1,65 {a + - - + - - - - + + + + - + + -}, 
{+ +- +++-++++-+-++}, 
{O + + + - + - + - + + + - + + - -}, 
{O - + + - - - - - + - + + + + - +} 

Table 6: Sequences of length 17 with zero periodic autocorrelation function 

Length=18 Sequences with zero non-periodic autocorrelation function 
1,66 {O + + + - + - + + a - - + - + - - -}, 

{O + + + - + ++O++-+-+++}, 
{+++ - 0+- - - + + + - - + - -+}, 
{+++ 0+- - - - - - + + - + +-} 

Table 7: Sequences of length 18 with zero non-periodic autocorrelation function 

5 Results in Orders Divisible by 13 

We recall that orthogonal designs OD(52; 1, k) can only exist if k is the sum of three 
squares. We see 52-2 = 52 + 52 72 + 12 so the other condition is satisfied. 

Hence we have that OD(52; 1, k) cannot exist for k = 4U(8b + 7), ie k E {7, 15, 23, 
28, 31,39, 47}. 

Theorem 6 Orthogonal designs OD(52; 1, k) exist for k E{x : x = a2 + b2 + c2
}. 

In other words the necessary conditions are sufficient for the existence of an 
o D( 52; 1, k). All are constructed using four circulant matrices in the Goethals-Seidel 
array. 

Proof. From [6, Theorem 4.149] we get the result for k f=- 34, 37, 42, 45, 46, 48 
or 49. Tables 1 and 2 give 4 sequences which can be used in Corollary 1 to give all 
these values. 

Corollary 3 W(52, k) exist for all k 1, 2, ... , 52. 
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Proof. From the theorem we only have to consider k E {7, 15, 23, 28, 31, 39, 47} 
as all other values of k have an OD(52; 1, k): setting the first variable zero gives the 
required weighing matrix. For these other values we consider OD(52; 1, k - 1) and 
equate the variables to give the result. 0 

Corollary 4 Orthogonal designs OD(104; 1, k) exist for k = 1, 2, ... , 103 with 
the possible exception of 94 and 95 which are undecided. 

Proof. We use Lemma 1 to construct OD(104j 1, 1, k, k) for k given in the previous 
Theorem. This assures us of the existence of all OD(l,j) with the possible exception 
of j = 56, 57, 62, 63, 78, 79, 94 and 95. We replace the variables of the 
OD(8; 1, 1, 1, 1,1,1,1,1) as given in Table 8 to get the orthogonal designs indicated 
there: 

Variables Replaced By Design Constructed 
cI dI X Y eA eB eO eD OD(104j1,1,1,4,52) 
aI bI cI dW eA eB eC eD OD(104;1,1,1,9,52) 
aI bI cS cR dA dB dC dD OD(104;1,1,25,52) 
X Y cS cR dS dR eS eR OD(104;1,4,25,25,25) 

Table 8: Construction of Orthogonal Designs in Order 104. 

So by equating variables and setting variables to zero we have constructed 
OD(104; 1, i), for i 56, 57, 62, 63, 78 and 79 giving the result. 0 

Corollary 5 Orthogonal designs OD(208j 1, k) exist for k = 1, 2, ... , 207 with 
the possible exception of 189 and 191 which are undecided. All W(208, k) exist) 
k = 1, 2, ... , 208. 

Proof. We use Lemma 1 to construct OD(208; 1, 1, k, k) for k given in the pre
vious Corollary. This assures us of the existence of all OD(l,j) with the possi
ble exception of j = 188, 189, 190 and 191. We replace the variables of the 
OD(16; 1, 1, 1, 1,1,1,5,5) by aI, bW, cQ, dI + cQ, dI - cQ, eJ, eI + cQ, eI - eQ 
to obtain an OD(208; 1,2,9,10,169) and hence equating and killing variables the 
OD(208; 1, i), i 188 and 190 giving the result. 0 

Corollary 6 Orthogonal designs OD(416j 1, k) exist for k 
W( 416, k) exist) k = 1, 2, ... , 416. 

1, 2, ... , 415. All 

Proof. We use Lemma 1 to construct OD(416; 1, 1, k, k) for k given in the previous 
Corollary. This assures us of the existence of all OD(l, j) with the possible exception 
of 378, 379, 382 and 383. We replace the variables of the following designs in order 
32 (i) OD(32j1,1,3,3,3,3,9,9) by aI, bI, (cI + dK)" dL, dM, dN, eR and eS to 
obtain the OD( 416; 1, 1,3,153,225) giving the result for 378, 379 and 382, and (ii) 
OD(32j1,1,1,1,2,2,3,3,9,9) by aI, bI, dI + eQ, dI - eQ, e(J 1), eQ, eR, eS, f I + eQ 
and f 1- cQ to obtain the OD( 416; 1, 1,2,18,75,288) design which gives by equating 
variables the 0 D( 416j 1, 1, 2, 381) giving the result for 383. 0 

Hence using Lemma 3 we have 
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Theorem 7 Orthogonal designs OD(2t.13; 1, k) exist for k = 1, 2, ... , 2t.13 - 1 
for all t 2:: 5. All W(2t.13, k) exist} k = 1, 2, ... , 2t.13 for all t 2:: 5. 

6 Results in Orders Divisible by 15 

We recall that orthogonal designs OD(60; 1, k) can only exist if k is the sum of three 
squares. We see 60-2 = 72 + 32 so the other condition is satisfied. Hence we have 
that OD(60; 1, k) cannot exist for k = 4a (8b + 7), ie k E {7, 15,23,28,31,39,47, 
55}. 

Theorem 8 Orthogonal designs OD(60; 1, k) exist for k E{ x : x = a2 + b2 + c2
} 

except possibly for k = 48 or 49 which are undecided. In other words the necessary 
conditions are sufficient for the existence of an 0 D( 60; 1, k) except possibly for k = 
48 or 49 which are undecided. All, except the OD(60; 1,46)} are constructed using 
four circulant matrices in the Goethals-Seidel array. 

Proof. From [6, Theorem 4.149] we have the result for k #- 34, 37, 42, 45, 46, 
48, 49, 53, 54, 56 or 57. Tables 1,3 and 4 give 4 sequences which can be used in 
Corollary 1 to give all these values except 46, 48 and 49. We replace the variables of 
the OD(12; 1, 1,5,5) by aI, bI, c(J 21), dQ to give the OD(60; 1, 1,45) and hence 
the OD(60; L 

Corollary 7 W(60, k) exist for all k = 1, 2, ... 1 60. 

Proof. From the theorem we only have to consider k E {7, 15, 23, 28, 31, 39, 47, 
48, 49, 55} as all other values of k have an OD(60j 1, k): setting the first variable 
zero gives the required weighing matrix. The sequences that can be used to give 
weights 48 and 49 are given in Tables 1 and 3 (note that for sequences with zero 
non-periodic autocorrelation function the appropriate number of zeros can be added 
to the end of each sequence to give the required length). For the other values we 
consider OD(60; 1, k - 1) and equate the variables to give the result. 0 

Corollary 8 Orthogonal designs OD(120; 1, k) exist for k = 1, 2, ... , 119. All 
W(120, k)} k = 1, 2, ... ,120 exist. 

Proof. We use Lemma 1 to construct OD(120; 1, 1, k, k) for k given in the previous 
Theorem. This assures us of the existence of all OD(l,j) with the possible exception 
of j = 47, 62, 63, 78, 79, 94 , 95, 96, 97, 98, 99, 110, and 111. 

In is the identity matrix with the order n taken from the context; 

I n is the matrix of ones with the order n taken from the contextj 

Write K = J - 21 and L = J - I; 

X is the backcirculant matrix with first row {a bOO b } where a and bare 
commuting variables; 
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Y is the circulant matrix with first row {O bOO b} where b is a commuting 

variable; 

A is the backcirculant matrix with first row {a b b } where a and b are com

muting variables; 

B is the backcirculant matrix with first row {a b b b b } where a and bare 

commuting variables; 

Q is the circulant symmetric matrix of order 5 with first row {O 1 - - I} satisfying 

QQT 51 - J; 

1+ E, F, G, H are circulant matrices where E is skew-symmetric, (el + dE)' 

is the backcirculant matrix with the same first row as cI + dE, and F, G and 

H are symmetric satisfying EET + ppT + GGT + HHT = 191 (these are 

good matrices see [12, pp492]. 

We replace the variables of the indicated ODin orders 24 and 40 as given in Table 

9 to get the orthogonal designs indicated there: 

OD(24;4,4,l,l,S,S) eJ-2eI OD(120jl,I,S,S,36) 

OD(24;4,4,1,S,S,1 ) eJ-2eI el OD(120;1,1,5,20,36) 

OD(24;6,1,1,1,9,6) eJ-2eI bI cI eQ OD(120;1,1 ,1,9,54) 

OD(24;4,4,4,4,1,2) (jI+eE), eP eG eH aI bI OD(120;1,2,4,76) 

o D (24;4,4,4,4,1,3) (fI +eE), eF eG eH aI bI OD(120;1,3,4,76) 

OD(24;9,1,12,1,1 ) cJ-2cI cJ-cI cQ aI bI OD(120;1,1,97) 

OD(24;S,1,l,2,lS) cJ-2cI X Y cJ cQ OD(120;1,4,9S) 

OD(24;9,9,1,1,1,3) dI+cQ dI-cQ cL aI bI cJ OD(120;1,1,18,91 ) 

OD(24;1,2,12,8,1 ) bI+bQ bI-bQ cK bQ B OD(120;1,111) 

ODe 40;18,19,1) bJ-2bI bJ-bI A OD(120;1,94) 

ODe 40;19,19,1,1) bJ-2bI bJ-bI aI el OD(120;1,l,9S) 

Table 9: Construction of Orthogonal Designs in Order 120. 

Setting variables equal to each other or to zero gives all the remaining cases. 0 

Hence using Lemma 3 we have 

Theorem 9 Orthogonal designs OD(2t.1S; 1, k) exist for k = 1, 2, ... , 2t.15 - 1 

for all t 2: 3. All W(2t.1S, k) exist, k = 1, 2, ... , 2t .1S, t 2:: 3. 
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