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Abstract

Peter Dembowski, at the Second Chapel Hill Conference on Combinato-
rial Mathematics and its Applications at the University of North Carolina
in 1970, announced a result by his student Olaf Prohaska that a finite
inversive plane of prime power order q is miquelian if and only if its
automorphism group contains a subgroup isomorphic to PSL(2, q) which
leaves a circle invariant and acts faithfully on it. No proof was subse-
quently published by either Prohaska or Dembowski.

We prove the Dembowski-Prohaska conjecture in case of inversive
planes of even order and take some steps towards the odd order case.
In particular we show that the action on the point set is equivalent to
the standard action of PSL(2, q) in the corresponding miquelian inversive
plane of order q and that circles that touch the fixed circle are as in the
miquelian plane.

1 Introduction

Inversive planes, also known as Möbius planes, are incidence geometries with points
and circles, see Section 2 for a definition. They have their origins in the geometry
of circles on a 2-sphere. In case of finitely many points these planes can simply
be described as 3 − (n2 + 1, n + 1, 1) designs. Finite inversive planes have been
investigated from many different perspectives: geometric, algebraic, combinatorial,
and through their automorphism groups.

Peter Dembowski announced at the Second Chapel Hill Conference on Combina-
torial Mathematics and its Applications at the University of North Carolina in 1970
a result by his student Olaf Prohaska that a finite inversive plane of prime power
order q is miquelian if and only if its automorphism group contains a subgroup iso-
morphic to PSL(2, q) which leaves a circle invariant and acts faithfully on it. He
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commented that such a “group can act in only one way on the plane, that the plane
can be reconstructed within the group, and that this reconstruction is the same as
that for the miquelian inversive plane of the same order q”. Unfortunately, neither
Prohaska nor Dembowski subsequently published a proof. We therefore refer to the
claim as the Dembowski-Prohaska conjecture.

The strategy for a proof outlined by Dembowski has been employed successfully in
other characterizations of classical geometries, for example, that an automorphism
group isomorphic to PSL(2, q2) on an inversive plane of order q characterizes the
miquelian plane or that the Suzuki group Sz(q) characterizes the inversive planes
over Suzuki-Tits ovoids; see [18, Satz 1 and 2]. It normally requires some kind of
transitivity properties.

In Section 2 we recall the basic definitions of inversive planes and some results
on finite inversive planes and central automorphisms of such planes. In the last sec-
tion we investigate finite inversive planes that admit a group Σ of automorphisms
isomorphic to PSL(2, q) which leaves a circle invariant. We show that the assump-
tion on the faithfulness of the action in the Dembowski-Prohaska conjecture can be
removed, collect some results on Sylow subgroups in the general finite case, and then
prove the Dembowski-Prohaska conjecture in case of even order. In the odd order
case we take some steps towards a proof and show that the action of Σ on the point
set is equivalent to the standard action of PSL(2, q) in the corresponding miquelian
inversive plane of the same order. This confirms Dembowski’s claim about the group
action in the outline of his strategy to prove the conjecture, but reconstructing the
geometry within the group proves difficult. As a partial result in this direction we
further obtain that circles that touch the distinguished circle stabilized by PSL(2, q)
are as in the miquelian inversive plane of order q. However, a description of other
circles remains elusive, and the Dembowski-Prohaska conjecture remains open so far
in the odd order case.

2 Inversive planes and their automorphisms

An inversive plane or Möbius plane I = (P, C) is an incidence structure consisting
of a point set P and a circle set C, elements of which are non-empty subsets of P .
Furthermore, the following three axioms are satisfied, compare [4] or [1, Abschnitt
III.2.2]:

• Joining: three mutually distinct points can be joined by a unique circle.

• Touching: the circles which touch a fixed circle K at p ∈ K partition P \ {p}
where a circle L touches K at p if and only if L = K or K ∩ L = {p}.

• Richness: there is a circle that contains at least three points and there are at
least two circles.

It readily follows that for each point p of I the incidence structure Ap = (Ap,Lp)
whose point set is Ap = P \ {p} and whose line set Lp consists of all circles of I
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passing through p but without p is an affine plane, called the derived affine plane
at p. This affine plane extends to a projective plane Pp, which we call the derived
projective plane at p. The axioms of an inversive plane are equivalent to each internal
incidence structure being an affine plane. Furthermore, a circle not passing through
the distinguished point p induces an oval in Ap (or in Pp such that the ideal line is
exterior). An inversive plane can thus be described in one derived affine plane A by
the lines of A and a collection of ovals. This planar description of an inversive plane,
which is the most commonly used, is then extended by one point which is adjoined
to all the lines of the affine plane.

The miquelian inversive plane is obtained as the geometry of non-trivial plane
sections of an elliptic quadric in 3-dimensional projective space over some field F.
The derived affine planes of the miquelian inversive planes are desarguesian and the
ovals are conics that are obtained from a given conic via dilatations. Geometrically,
the miquelian inversive planes can be characterized by Miquel’s theorem, cf. [1].

Another description of this model is as follows. Let E be a quadratic extension
of F. The point set is E where E = E ∪ {∞} and ∞ is an element not contained in
E. (E can be identified with the projective line over E.) Each circle is the image of
F = F ∪ {∞} under a fractional linear map x �→ ax+b

cx+d
in PGL(2,E).

Generalizing the notion of an elliptic quadric, one defines an ovoid to be a subset
of points of a 3-dimensional projective space such that no line has more than two
points in common with it and such that the collection of all tangents at a point fills
a plane, called the tangent plane at that point. Then the model for the miquelian
inversive plane can be generalized to an ovoidal (or egglike) inversive plane where
one takes an ovoid instead of an elliptic quadric as point set. These ovoidal inversive
planes obviously comprise the miquelian planes.

The spatial description of an ovoidal inversive plane as the geometry of plane
sections of an ovoid is related to the planar description in one derived affine plane
by stereographic projection from one point of the ovoid onto a plane not passing
through the point of projection. In this description all points of the inversive plane
except the point of projection are covered.

A finite inversive plane I is one which has only a finite number of points. In this
case the order of I is the order of any of its derived affine (or projective) planes. If
I has order n, then each circle has n+ 1 points and I has n2 + 1 points altogether.
Furthermore, the plane has n(n2 + 1) circles. In this case the axiom of touching
follows from the axiom of joining. The finite inversive planes of order n are precisely
the 3− (n2 + 1, n+ 1, 1) designs (or Steiner systems S(3, n+ 1, n2 + 1)).

There are many models of inversive planes, see for example, [11] for planes with
point set the 2-sphere S2 = C = C ∪ {∞}, the projective line over the complex
numbers C. However, all known finite inversive planes are ovoidal. There is only
one family of finite non-miquelian inversive planes known. These planes are over
Tits ovoids OT (q) where q = 22h+1, h ≥ 1. The ovoid OT (q) can be described
in PG(3, q) as the collection of the ideal point of the z-axis and all affine points
(x, y, xy+x2σ(x)+σ(y)) where x, y ∈ GF(q), the Galois field of order q, and σ is the
unique automorphism of GF(q) such that σ2(x) = x2 for all x ∈ GF(q). We denote
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the corresponding inversive plane by I(OT (q)).

The following result on finite inversive planes, due to Dembowski [4] for even
order and Thas [25] for odd order, shows that many of the principles of construction
of infinite inversive planes do not apply for finite planes, and thus that one can expect
the number of models of finite inversive planes of a given order to be very limited.

Theorem 2.1 A finite inversive plane of even order is ovoidal. A finite inversive
plane of odd order is miquelian if at least one of its derived affine planes is desar-
guesian.

Theorem 2.1 combined with the classification of ovoids in 3-dimensional projective
spaces of small orders and of finite projective planes of small orders and their ovals
can be used to obtain the following result; see [3], [8], [9], [24, Theorem C], [12], [22,
Corollary 2.4], [23, Corollary 4.3].

Theorem 2.2 A finite inversive plane of order at most 7 or order 9 or 16 is
miquelian. There is no finite inversive plane of order 6 or 10. Up to isomorphism
there are precisely two inversive planes of order 8 and precisely two inversive planes
of order 32.

An automorphism of an inversive plane is a permutation of the point set such that
circles are mapped to circles. The collection of all automorphisms of an inversive
plane I = (P, C) forms a group with respect to composition, the automorphism
group Aut(I) of I. The automorphism group of the miquelian inversive plane of
order q is isomorphic to PΓL2(q

2), see [6, 6.4.1], and the automorphism group of
the ovoidal inversive plane I(OT (q)) over a Tits ovoid OT (q) is isomorphic to the
semidirect product of the Suzuki group Sz(q) and the automorphism group of GF(q),
see [6, 6.4.4]. Clearly, every collineation of 3-dimensional projective space that leaves
an ovoid O invariant induces an automorphism of the ovoidal inversive plane I(O)
obtained from O. Conversely, one has the following.

Theorem 2.3 (H. Mäurer [21, Folgerung 4.3.2]) Each automorphism of an
ovoidal inversive plane I(O) is induced by a collineation of the ambient 3-dimensional
projective space that leaves the ovoid O invariant.

A central automorphism of an inversive plane is an automorphism that fixes at
least one point and induces a central collineation in the derived projective plane at
each of its fixed points.

Hering [14] studied two types of central automorphisms in inversive planes. These
are automorphisms that fix precisely one or two points (except the identity) and
that induce a translation or homothety, respectively, in the derived affine plane at
each of these fixed points. In fact, in his classification Hering considered groups
of automorphisms and determined their types according to transitive subgroups of
central automorphisms contained in them.

The first kind of central automorphisms investigated by Hering are translations
of I. They have exactly one fixed point except for the identity. More precisely, let C
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be a circle passing through p and let B(p, C) denote the touching pencil with carrier
p, that is, B(p, C) consists of all circles that touch the circle C at the point p. In
the derived affine plane at p the touching pencil represents a parallel class of lines
and one can consider translations in this direction. Then a B(p, C)-translation of
I is an automorphism of I that is either the identity or fixes precisely the point p
and each circle in B(p, C) globally. A group of B(p, C)-translations of I is called
B(p, C)-transitive if it acts transitively on C \ {p}.

The second kind of central automorphisms considered by Hering fix precisely two
points except for the identity. Let p and p′ be two distinct points of an inversive
plane I. A {p, p′}-homothety of I is an automorphism of I that is either the identity
or fixes precisely the points p and p′ and induces a homothety with centre p′ in the
derived affine plane Ap at p. (Then we also obtain a homothety with centre p in
the derived affine plane Ap′ at p′.) So a {p, p′}-homothety fixes every circle in the
bundle B(p, p′) of circles through p and p′. A group of {p, p′}-homotheties is called
{p, p′}-transitive if it acts transitively on each circle through p and p′ minus the two
points p and p′.

We say that a group Γ of automorphisms of I is B(p, C)-transitive or {p, p′}-
transitive if Γ contains a B(p, C)-transitive subgroup of B(p, C)-translations or a
{p, p′}-transitive subgroup of {p, p′}-homotheties, respectively. Let H = H(Γ) be
the collection of all touching pencils B(p, C), p ∈ C for which Γ is B(p, C)-transitive
and let K = K(Γ) be the collection of all unordered pairs {p, p′} of points for which
Γ is {p, p′}-transitive.

Hering determined the feasible configurations for H and K. Possible types with
respect to transitive sets of B(p, C)-translations are denoted by Roman numerals I to
VII. If the inversive plane under consideration is not the finite (miquelian) inversive
plane of order 2 all possible configurations of K given the type X ∈ {I, II, . . . ,VII}
with respect to B(p, C)-translations were determined, and type X is further distin-
guished by Arabic numerals which indicate types with respect to {p, p′}-homotheties.
In type X.1 one always has K = ∅. This leads to 18 different possible types X.y of
groups of automorphisms of inversive planes; see [14], [6, 6.1.14] or [13, Theorem 2.I]
for a full list of all 18 types. We only mention three Hering types explicitly.

I.1 H = ∅, K = ∅;
VI.1 For every point p of I there is exactly one touching pencil with carrier p that

is in H and K = ∅.
VII.2 H contains all touching pencils in I and K contains all unordered pairs of

points in I.

We say that an inversive plane I is of Hering type X.y if the full automorphism
group of I is of Hering type X.y. The miquelian inversive planes are precisely the
planes of type VII.2; compare [6, 6.4.12] for finite planes. The only known Hering
types of finite inversive planes are VI.1 and VII.2. Indeed, the ovoidal inversive
planes over Tits ovoids have type VI.1; compare [6, 6.4.4]. In fact, these last two
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types and possibly I.1 are the only Hering types that can occur for finite inversive
planes of even order.

Theorem 2.4 (D. Glynn [13]) A finite ovoidal inversive plane is miquelian, an
ovoidal inversive plane I(OT ) over a Tits ovoid OT or of Hering type I.1.

Some of the types described by Hering are known to be empty or to occur only
in finite inversive planes or of proper subgroups of the (full) automorphism groups
of miquelian inversive planes, see [6, Table II on page 262 and 6.4.15, 17, 18] and the
survey [17] by Krier.

We lastly mention very special central automorphisms of an inversive plane I. An
inversion at a circle C of I is an automorphism of I that fixes precisely the points
of C. In the derived projective plane at a point p of C an inversion at C induces
a central collineation with axis the line LC induced by C. We therefore also call C
the axis of the inversion. For example, in the miquelian inversive plane described
via a separable quadratic extension E of F conjugation κ : z �→ z̄ is an inversion.
Dembowski [4, (5.3) and Zusatz 5] showed the following, see also [20, Lemmas 25.3
and 25.4].

Proposition 2.5 Each inversion at a circle C in an inversive plane I is an involu-
tion. Moreover, I admits at most one inversion at C.

A finite inversive plane is miquelian if and only if every circle is the axis of
an inversion, see [6, 6.4.9] or [5, Satz 5.5]. In this case an inversion at a circle C
comes from a reflection in ambient projective space PG(3, q) about the plane that
determines C such that the quadric that is the point set of the miquelian plane is left
invariant. On the other hand the ovoidal inversive plane I(OT (q)) over a Tits ovoid
OT (q) admits no inversion, see [6, 6.4.5]. (The Suzuki group Sz(q) is transitive on
the circles of I(OT (q)); see [18, Corollary 1] or [20, Lemma 26.3].)

Conversely, one has a complete geometric description of involutions in finite in-
versive planes, see [6, 6.3.4] or [5, Satz 2.3].

Proposition 2.6 An involution in a finite inversive plane I of order n is an inver-
sion, a homothety, a translation or fixed-point-free. Moreover, in case of a translation
n must be even and in case of a homothety or fixed-point-free involution n must be
odd.

3 The Dembowski-Prohaska conjecture for finite inversive

planes

In [7, 3.3] Dembowski made the following claim.

Conjecture 3.1 (Dembowski-Prohaska, [7]) A finite inversive plane of prime
power order q is miquelian if and only if its automorphism group contains a subgroup
isomorphic to PSL(2, q) which leaves a circle invariant and acts faithfully on it.
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Clearly, each miquelian inversive plane admits such a group of automorphisms.

Throughout this section we use the following notation:

• I denotes a finite inversive plane of prime power order q = rh where r is a
prime.

• Σ is a subgroup of the automorphism group of I such that Σ is isomorphic to
PSL(2, q) and leaves a circle C of I invariant.

We prove the above conjecture in case of even order. We only partially follow
the strategy outlined by Dembowski. As a first step we make a straightforward
observation that shows that the assumption on the faithfulness of the action on the
circle is unnecessary.

Lemma 3.2 Σ acts faithfully and transitively on C. Moreover, the action of Σ on
C is equivalent to the standard action of PSL(2, q) on the projective line PG(1, q).

Proof. The group PSL(2, q) is simple when q ≥ 4, see for example [16, Hauptsatz
II.6.15]. Hence Σ acts either trivially or faithfully on C. Assume the former. A
Sylow 2-subgroup S of Σ is elementary abelian of order q when q is even or a Klein
4-group or a dihedral group when q is odd. In either case S contains at least three
distinct involutions. Each involution fixes C pointwise and thus is an inversion with
axis C. However, there can be only one inversion with axis C by Proposition 2.5.
This shows that Σ acts faithfully on C.

When q = 2 or 3, then I is miquelian, and PSL(2, q) is isomorphic to the symmet-
ric group S3 and the alternating group A4, respectively. The stabilizer of a circle in
the miquelian plane in these cases is PΓL(2, q) = PGL(2, q), which is isomorphic to
S3 and S4, respectively. Hence the stabilizer of a circle contains a unique subgroup
that is isomorphic to PSL(2, q). Furthermore, this subgroup acts in the standard
way on the circle. We conclude that Σ acts faithfully and transitively on C in these
two cases.

Since PSL(2, q) does not have a proper subgroup of index ≤ q if q > 11 (see
[10, Theorem 262] or [16, Hauptsatz II.8.27]), we see that Σ must act transitively on
C. Hence the action of Σ on C is equivalent to the action of Σ on the cosets of a
stabilizer Σx. But Σx is conjugate to the affine group L(2, q). Thus the action of Σ
on C is equivalent to the standard action of PSL(2, q) on PG(1, q).

In case q < 11 the inversive plane is miquelian. This follows from Theorem 2.2
when q �= 8 without any further assumptions. When q = 8 there are two inversive
planes of that order. The non-miquelian inversive plane of order 8 is ovoidal over a
Tits-Suzuki ovoid. Its automorphism group is isomorphic to the semidirect product
of the Suzuki group Sz(8) and a cyclic group of order 3, and thus has order 87360 =
26 · 3 · 5 · 7 · 13 (see [6, 6.4.4]). Therefore the automorphism group cannot contain
PSL(2, 8) as a subgroup, which has order 504 = 23 · 32 · 7.

The miquelian inversive plane of order q has automorphism group isomorphic to
PΓL(2, q2); see [6, 6.4.1]. The stabilizer of a circle is PΓL(2, q). When q ∈ {4, 5, 7}
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the group Σ has index 2 in PΓL(2, q); when q = 8, 9 then Σ has index 3 and 4,
respectively. By the second isomorphism theorem for groups Σ∩PSL(2, q) has index
at most 4 in Σ. Hence Σ coincides with the standard PSL(2, q) in PΓL(2, q) by the
simplicity of Σ. In particular, Σ is transitive on C and the action of Σ on C is
equivalent to the standard action of PSL(2, q) on PG(1, q).

In the remaining case when q = 11 the group PSL(2, 11) has a proper subgroup
of index 11 and thus a transitive permutation representation on 11 points; compare
[16, Satz II.8.28]. Such a subgroup of index 11 is isomorphic to A5. So assume that
Σ fixes a point x ∈ C and acts transitively on C \ {x}. Let y ∈ C, y �= x. Then Σy

can neither be transitive on nor fix a point in C \ {x, y}. Indeed, in each of these
two cases the stabilizer of a point in C \ {x, y} contains an involution which must be
an inversion with axis C by Proposition 2.6, a contradiction to the faithful action of
Σ on C. One concludes that Σy has two orbits of length 5 on C \ {x, y}. If S is a
Sylow 2-subgroup of Σy, then S fixes a point in each orbit so that every σ ∈ S fixes
at least four points on C. However, S \{id} consists of three involutions, which then
must all be inversions with axis C, a contradiction to Proposition 2.5. This shows
that Σ acts transitively on C, and equivalence to the standard action of PSL(2, q)
on PG(1, q) follows as before. �

Lemma 3.3 Let Δ be a Sylow r-subgroup of Σ, and let δ ∈ Δ \ {id}. Then δ fixes
a point p on C and p is the only fixed point of δ.

Proof. By Lemma 3.2 we know that Σ acts faithfully on C and that the action of Σ
on C is equivalent to the standard action of PSL(2, q) on the projective line PG(1, q).
In particular, Δ fixes precisely one point p on C and acts regularly on C \ {p}.

Assume that δ fixes a second point p′ �= p. Then p′ /∈ C. Since the bundle of
circles through p and p′ contains q + 1 circles, we see that δ fixes a circle D through
p and p′. Now C ∩D is fixed by δ so that C ∩D = {p}, that is, C and D are tangent
at p.

In case of q being odd we consider the derived projective plane Pp′ at p′. The
circle D induces a line LD in Pp′, and the circle C appears as an oval OC in Pp′ . As
seen above, LD is a tangent to OC at p. Since q is odd, there is a unique second
tangent �= LD to OC through the ideal point of LD. But OC has no ideal points, so
the second tangent touches OC in an affine point x �= p. Hence x ∈ C is also fixed
by δ, a contradiction to the regularity of Δ on C \ {p}.

If q > 2 is even, then δ is an involution. The circle D has q + 1 points and
two fixed points p and p′ of δ on it. Hence δ fixes at least one other point p′′ ∈ D,
p′′ �= p, p′, and must be the unique inversion with axis D. In fact, because Δ is
abelian, Δ leaves D invariant.

Let x ∈ C \ {p} and Φ = Σp,x the stabilizer of p and x. Then Φ has order
q − 1. Furthermore, in PSL(2, q) we see that {φδφ−1 | φ ∈ Φ} = Δ \ {id}. But
φδφ−1 is an inversion with axis φ(D). However, if δ1, δ2 ∈ Δ \ {id} are distinct, then
δ1δ2 ∈ Δ\{id} and δ1δ2 is a translation by [5, Satz 4.2.(a)], see also [6, 6.3.12.(a)], and
we have a contradiction. (Alternately, Δ is a 2-group all whose elements of order 2
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are inversions. By [6, 63.13] such a group is cyclic or a generalized quaternion group.
However, Δ is elementary abelian of order q > 2, a contradiction.)

When q = 2, the plane I is miquelian and the statement follows.

This shows that δ has a unique fixed point in any case. �

Lemma 3.4 Each involution in Σ is a homothety in case q is odd and a translation
in case q is even.

Proof. We first assume that r = 2 so that I has even order. Let δ ∈ Δ \ {id} and
let x �= p be a point where p is the unique fixed point of Δ, compare Lemma 3.3.
Then δ(x) �= x and there is a unique circle Cx through the three points p, x, δ(x).
Clearly, Cx is fixed by δ. Furthermore, two distinct of these circles can only intersect
in p. Hence these circles are exactly the circles in the touching pencil B(p, C). Thus
δ is a B(p, C)-translation.

We now assume that q is odd. All involutions in PSL(2, q) are conjugate to each
other, and, in particular, conjugate to

σ : x �→ −1

x
.

Let a ∈ GF(q) such that −a2−1 is a square in GF(q). Such an a exists. When q ≡ 1
(mod 4), then −1 is a square in GF(q), and we can choose a = 0. In case q ≡ −1
(mod 4) we know that −1 is a non-square in GF(q), and there must be an a ∈ GF(r)
such that a2 + 1 is a non-square in GF(q). (Otherwise each of 1, 2, . . . , r − 1 is a
non-zero square — a contradiction as r − 1 = −1 in GF(q).)

For such an a as above let

σa : a �→ ax+ 1

x− a
.

Then σa ∈ PSL(2, q) is an involution that commutes with σ. Now consider the
automorphisms σ̃, σ̃a ∈ Σ that induce σ and σa on C, respectively. By Proposition
2.6 each involution of I is an inversion, a homothety or fixed-point-free (as q is odd).

Assume that there is an involution in PSL(2, q) that extends to an inversion of
I. Then every involution in Σ is an inversion. In particular this is true for σ and
σa from above. Since these two inversions commute, their composition σ̃a ◦ σ̃ is an
involution and a homothety of I by [6, 6.3.12] or [5, Satz 4.2], a contradiction to our
assumption that all involutions are inversions.

Finally assume that there is a fixed-point-free involution in Σ. Then every in-
volution in Σ is fixed-point-free. We now consider the Klein 4-group V generated
by σ̃ and σ̃a. This group has order 4 and acts on the point set P of I. However,
|P | = q2 + 1 ≡ 2 (mod 4) is not divisible by 4. Thus there must be a point p that
has an orbit of length 1 or 2. In either case there is an involution in V that fixes p,
a contradiction to our assumption that all involutions are fixed-point-free. �
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Corollary 3.5 If q is even then Σ is B(p, C)-transitive for each point p ∈ C.

Proof. Let p ∈ C and let Δ ≤ Σp be a Sylow 2-subgroup of Σ. By Lemma 3.4
we know that each δ ∈ Δ is a B(p, C)-translation. Since |Δ| = |C \ {p}| = q, we
conclude that Δ (and thus Σ) is B(p, C)-transitive. �

We are now ready to prove the Dembowski-Prohaska conjecture for finite inversive
planes of even order.

Theorem 3.6 Let I be a finite inversive plane of order q = 2h and assume that the
automorphism group of I contains a subgroup isomorphic to PSL(2, q) which leaves
a circle invariant. Then I is miquelian.

Proof. Since finite inversive planes of order ≤ 7 are miquelian by Theorem 2.2, we
may assume that q ≥ 8. Let Σ ∼= PSL(2, q) be a group of automorphisms of I that
leaves the circle C invariant. By Lemma 3.2 we know that Σ acts faithfully on C.

By Corollary 3.5 the inversive plane I is B(p, C)-transitive for each p ∈ C. Hence
the Hering type of I is not I.1. Thus, by Glynn’s theorem, Theorem 2.4, the plane is
miquelian or ovoidal over a Tits ovoid OT (q). However, the automorphism group
of an ovoidal inversive plane I(OT (q)) is the semi-direct product of the Suzuki
group Sz(q) by the cyclic automorphism group of the field GF(q) and thus has
order hq2(q2 + 1)(q − 1). This order is not divisible by q(q + 1)(q − 1) and so the
automorphism group of I(OT (q)) does not contain PSL(2, q) as a subgroup. This
finally proves that I must be miquelian. �

Remark 3.7 An alternative route for a proof of Theorem 3.6 was suggested by
the referee. It is based on a characterization of elliptic quadrics among ovoids in
3-dimensional projective space of even order by Matthew Brown [2]: An ovoid of
PG(3, q), q = 2h, is an elliptic quadric if and only if some secant plane section is a
conic.

Since the order q of I is even, the inversive plane is ovoidal over some ovoid O in
3-dimensional projective space PG(3, q) over GF(q). If, as before, Σ ∼= PSL(2, q) =
SL(2, q) is a group of automorphisms of I = I(O) that leaves the circle C invariant,
then Σ is induced by a group Σ′ of collineations of PG(3, q) by Mäurer’s result,
Theorem 2.3. Now Σ′ fixes C and thus the plane EC whose intersection with O is C.
By the determination of the possible actions of SL(2, q) on a desarguesian projective
plane of order q in [19, Korollar 1], see also [6, 1.4.51], one obtains that C is a conic
in EC . Hence the above characterization by M. Brown yields that O is an elliptic
quadric. Thus I(O) is miquelian. �

The Dembowski-Prohaska conjecture for finite inversive planes could be verified
above in case of even order because one has so much more information about inversive
planes of even order than inversive planes of odd order. If one wants to follow the
strategy originally outlined by Dembowski to prove the conjecture in odd order,
it seems the first steps are to verify that automorphisms in a Sylow r-subgroup



G.F. STEINKE/AUSTRALAS. J. COMBIN. 79 (3) (2021), 527–541 537

are translations of the inversive plane and that the action of Σ on the point set is
equivalent to the corresponding action in the the miquelian plane of order q. We
take these steps in the following.

Theorem 3.8 Let Σ be a subgroup of the automorphism group of a finite inversive
plane I of order q = rh where r is an odd prime. Assume that Σ is isomorphic to
PSL(2, q) and fixes a circle C.

Then Σ is transitive on P \ C. Moreover, the action of Σ on P is equivalent to
the standard action of PSL(2, q) on PG(1, q2) (as a subgroup of PSL(2, q2)).

Proof. Let p ∈ P \ C. By Lemma 3.3 no automorphism in Σp can have order
divisible by r. Hence the order of Σp is a divisor of 1

2
(q2 − 1). On the other hand,

the orbit Σ(p) of p has length at most |P \ C| = q(q − 1) so that |Σp| ≥ q+1
2
. From

the list of subgroups of PSL(2, q), see [10, 260] or [16, Hauptsatz II.8.27], we obtain
that Σp is cyclic, a dihedral group or isomorphic to an alternating group A4 or A5

or a symmetric group S4.

We first show that Σp cannot contain a Klein 4-group V as a subgroup. Assume
to the contrary that it does. In this case Σp contains three distinct commuting
involutions σ1, σ2, σ3 ∈ V . Each σi is a homothety by Lemma 3.4. Hence each σi

fixes precisely a second point pi �= p of the inversive plane. But the σi commute so
that p1 = p2 = p3 = p′. This shows that V fixes p and p′, and these two points are
the only fixed points of V . Furthermore, V fixes every circle through p and p′.

Pick x ∈ C. The circle Cx through p, p′ and x is fixed by V and must meet C in
another point x′ �= x, otherwise x is fixed by V . But then {x, x′} is invariant under
V . Since V has order 4, there must be a σi ∈ V that fixes x, a contradiction to σi

being a non-trivial homothety with centres p and p′. This proves our claim that V
cannot be contained in Σp. Thus Σp cannot be isomorphic to A4, S4 or A5, or be a
dihedral group of order divisible by 4.

Assume that Σp is a dihedral group whose order is not divisible by 4. Then Σp

is generated by involutions. Again by Lemma 3.4 these involutions are homotheties.
So in the derived projective plane Pp at p we have central collineations with axis
the ideal line W (with respect to the derived affine plane Ap at p). But then each
collineation σ̃ of Pp that is induced by σ ∈ Σp also has W as an axis. The circle C
induces an oval O in Pp. Let x ∈ O and let Tx be the tangent to O at x. Since q is
odd, there is a tangent T ′

x �= Tx to O that passes through the ideal point wx ∈ W on
Tx. This second tangent touches O in an affine point x′ �= x. A collineation σ̃ where
σ ∈ Σp fixes wx and thus {x, x′}. By assumption there is a σ ∈ Σp of odd order.
Then σ̃ fixes x. Since x ∈ C was arbitrary, this implies that σ acts trivially on C, a
contradiction to the faithfulness of Σ on C.

This shows that Σp is cyclic. From the list of subgroups of PSL(2, q) and because
q is odd one sees that q+1

2
is the maximum order a cyclic subgroup can have. Hence

Σp has order q+1
2

and Σ is transitive on P \ C.

Any two cyclic subgroups of order q+1
2

are conjugate in PSL(2, q). In the standard
action of PSL(2, q) on PG(1, q2) (as a subgroup of PSL(2, q2)) one sees that one can
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identify Σp with the stabilizer of a point in PG(1, q2)\PG(1, q). Hence the statement
of the action of Σ follows. �

Theorem 3.9 Let Σ be a subgroup of the automorphism group of finite inversive
plane I of prime power order q = rh. Assume that Σ is isomorphic to PSL(2, q) and
fixes a circle C. Let Δ be a Sylow r-subgroup of Σ and let p ∈ C be the unique fixed
point of Δ.

Then Δ consists of B(p, C)-translations. Hence Σ is B(p, C)-transitive for each
p ∈ C.

Proof. In the case r = 2 the statement of the theorem has been established in
Corollary 3.5.

We now assume that q is odd. Let p′ ∈ C \ {p} and let Φ = Σp,p′ be the stabilizer
of p and p′. Then Φ has order n = q−1

2
.

We first show that Φ has precisely three orbits in B(p, C), namely {C} and two
orbits O1 and O2, each of length n. Assume otherwise. Then there is a circle C ′ �= C
in B(p, C) and a φ ∈ Φ\ {id} that fixes C ′. We consider the derived projective plane
Pp′ at p

′. The line LC in Pp′ induced by C is a tangent to the oval O′ in Pp′ induced
by the circle C ′ (the point of tangency being p). Since q is odd, there is a unique
second tangent �= LC to O′ through the ideal point of LC . This second tangent
touches O′ in an affine point x �= p. Hence x ∈ C ′ is also fixed by φ, a contradiction
to Theorem 3.8 because in the standard action of PSL(2, q) on PG(1, q2) no element
other than the identity fixes more than two points.

Δ acts on B(p, C) and because it is an r-group and already fixes C must fix a
second circle C1 ∈ B(p, C) \ {C}. Without loss of generality we may assume that
C1 ∈ O1. But Φ normalizes Δ so that Δ fixes each circle in O1, the orbit of C1 under
Φ. It follows that Δ leaves O2 invariant. Again, because r does not divide n, we
obtain that Δ fixes a circle C2 ∈ O2. As before we see that Δ fixes each circle in O2,
the orbit of C2 under Φ.

This shows that Δ acts trivially on B(p, C) and thus consists of B(p, C)-transla-
tions. But then Δ and thus Σ is B(p, C)-transitive. �

Corollary 3.10 Circles that touch C are as in the miquelian inversive plane of order
q.

Proof. From Theorem 3.8 we know that the action of Σ on P is equivalent to
the standard action of PSL(2, q) on PG(1, q2) as a subgroup of PSL(2, q2). Circles
that touch C are apart from the point of tangency in C orbits of Sylow r-subgroups
by Theorem 3.9. Hence, in suitable coordinates, they can be described as in the
miquelian inversive plane of order q. �

Remark 3.11 (a) There are a number of cases apart from Corollary 3.5 where
one can directly show (that is, without the use of Theorem 3.8) that a Sylow
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r-subgroup Δ of Σ that fixes p ∈ C consists of B(p, C)-translations, namely
when r = 3, h = 1, or q ≡ 1 (mod 4).

Indeed, when r = 3 one considers the circles Cx through x, δ(x), δ2(x) where
δ ∈ Δ \ {id}. Such a circle is left invariant by δ because δ has order 3.
Moreover, δ has a fixed point on Cx, which must be the point p by Lemma 3.3.
Two distinct of these circles can only intersect in p. Hence these circles are
exactly the circles in the touching pencil B(p, C) and δ is a B(p, C)-translation.

In case h = 1 the group Δ is cyclic of prime order r. This group fixes p and C
and thus leaves the touching pencil B(p, C) invariant. Since B(p, C) contains
exactly r circles with at least one of them fixed, one sees that B(p, C) is fixed
elementwise by Δ.

Lastly, when q ≡ 1 (mod 4) then −1 is a square in GF(q). All involutions
in PSL(2, q) are conjugate to each other, and each has precisely two fixed
points on C. By Lemma 3.4 every automorphism σ̃ of I that induces an
involution σ ∈ PSL(2, q) on C is a homothety with centres on C. Specifically,
one considers the following involutions of PSL(2, q):

σt : x �→ t− x

where t ∈ GF(q). Then σ̃t is a homothety of I that fixes the point ∞ ∈ C.
Clearly, τt = σt ◦σ0 is the map x �→ x+ t on GF(q)∪{∞}, and {τt | t ∈ GF(q)}
is a Sylow r-subgroup of PSL(2, q). In the derived projective plane P∞ we have
three collineations σ′

0, σ
′
t and τ ′t . Since σ′

0 and σ′
t are involutory homotheties

with centres on the line LC induced by C, their composition τ ′t is a translation
with centre the ideal point of LC , see [15, Lemma 4.21]. But then τ̃t is a
translation in I.

(b) The orders not covered in (a) are q = rh where r ≡ 3 (mod 4), r ≥ 7 and
h ≥ 3 is odd. Involutions in these cases behave quite differently. They are
homotheties that are fixed-point-free on C. Furthermore, the sets of centres of
all involutions in Σ form a partition of P \ C. Therefore the method of proof
from the case q ≡ 1 (mod 4) is not applicable.

(c) In each of the cases from (a) the Sylow r-group Δ is B(p, C)-transitive. The
transitivity of Σ on C then implies that Σ is B(x, C)-transitive for each x ∈ C.
Thus Σ acts transitively on P \ C by [6, 6.3.14] or [14, Hilfssatz 2.6].

(d) Once transitivity on P \ C is established as in (c), the stabilizer of a point
p /∈ C has order q+1

2
and thus is cyclic, a dihedral group or isomorphic to A4

when q = 23 or S4 when q = 47. So only A5 is directly eliminated this way.

Although the action of Σ on the point set is as in the miquelian plane of the same
order q this does not give us enough information to determine the circles of I, except
for those circles that touch C. By Theorem 2.1 it will suffice in case of odd order
q that every circle in the bundle B(p1, p2) of circles through p1 and p2 on C is as in
the miquelian plane of order q, that is, in this case one does not have to determine
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the circles that do not meet C. If C ′ �= C belongs to B(p1, p2), then the stabilizer
ΣC′ of C ′ is contained in the stabilizer Σ{p1,p2} of C ′ ∩ C = {p1, p2}. The latter is a
dihedral group of order q − 1 and any two such groups are conjugate in Σ.

The first problem then is to geometrically identify ΣC′ within Σ{p1,p2}. There may
even be different stabilizers for different C ′s in B(p1, p2). The second problem one
faces is that Σ{p1,p2} does not act trivially on B(p1, p2) (not in the miquelian plane
anyway) and so there are circles C ′ �= C in B(p1, p2) such that C ′ \C is not an orbit
under the stabilizer ΣC′ . So different orbits need to be glued together to obtain the
circle C ′.

In summary, there are several problems to overcome before the Dembowski-
Prohaska conjecture can be proved in case of odd order and the conjecture in these
cases remains open for now.
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[4] P. Dembowski, Möbiusebenen gerader Ordnung, Math. Ann. 157 (1964), 179–
205.

[5] P. Dembowski, Automorphismen endlicher Möbius-Ebenen, Math. Z. 87 (1965),
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