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of triangulations

sarah-marie belcastro∗

Mathematical Staircase, Inc.
Holyoke, MA, 01040

U.S.A.

Ruth Haas†

University of Hawai’i
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Abstract

We consider Grünbaum-colored triangulations that are dual to properly
3-edge-colored embedded cubic graphs. Previous studies of color-induced
subgraphs (CISGs) of Grünbaum colorings of triangulations have focused
on determining what properties of an embedding correspond to all CISGs
being connected. Here we examine CISGs from multiple perspectives,
including building on prior work to determine when these results do and
do not generalize. We determine when CISGs can and cannot be trees
or forests, and answer a question of Kasai, Matsumoto, and Nakamoto
about whether there can be a Grünbaum-colored triangulation with every
CISG a tree.

1 Background and Introduction

In a properly edge-colored cubic graph, the set of edges of each color forms a perfect
matching. When such a graph is embedded on a surface without edges crossing,
we may consider the topological dual; here, the set of edges of a given color has
more interesting structure, and investigating this structure is the motivation for the
present work. We begin by making these notions precise.

Recall that a cubic graph is 3-regular and a proper 3-edge coloring assigns three
colors to its edges such that no two incident edges receive the same color. A cellularly
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embedded graph G on a surface S has the property that S \ G is a collection of
topological disks, each of which is called a face of the embedding. The topological
dual of a cellularly embedded graph is another graph G◦ embedded on S such that
each vertex of G◦ corresponds to a face of G embedded on S, and an edge joins two
vertices of G◦ exactly when the two corresponding faces of G embedded on S share
an edge. (If two faces of G embedded on S share k edges, then the corresponding
vertices of G◦ are joined by k edges.) Note that (G◦)◦ = G. A triangulation is
an embedded graph where every face has three edges, and every triangulation is
topologically dual to an embedded cubic graph. Dualizing a proper 3-edge coloring
of an embedded cubic graph produces an edge coloring where each triangular face’s
edges use all three colors; this is called a Grünbaum coloring.

Not every cubic graph has a proper 3-edge coloring, and commensurately not ev-
ery embedded triangulation has a Grünbaum coloring. However, most nondegenerate
triangulations on a torus have Grünbaum colorings (see [1]) as do duals of all cubic
graphs of n ≤ 30 vertices (see [7]). In [6] the authors show that all even-degree trian-
gulations of sufficiently low genus or high representativity have Grünbaum colorings,
and [5] shows that on the projective plane, triangulations with all even degree except
for two adjacent vertices of odd degree have Grünbaum colorings. Thus, the class of
Grünbaum-colorable triangulations on surfaces is quite large. In this paper we only
consider embedded cubic graphs for which there exists a proper 3-edge coloring, and
their associated dual Grünbaum-colored triangulations.

We now establish some notation. We let C be a properly 3-edge colored cubic
graph cellularly embedded on a surface S. Dual to C is a Grünbaum colored triangu-
lation T , also embedded on S. Note that while both C and T are edge colored, those
colorings need not be unique. The colors used will be denoted c1, c2, and c3. We will
say that an edge is a ck edge if it is colored ck, and that a cycle is a ci-cj cycle if its
edges alternate in color between ci and cj. The subgraph of T induced by all edges
of color ci will be denoted Gi; this is called a color-induced subgraph (CISG). Notice
that this differs from inducing a subgraph from a subset of vertices. In particular,
even though every vertex of C will be incident to edges of all three colors, not every
vertex of T must be incident to a given color.

1.1 Prior work

The study of color-induced subgraphs is still in its infancy; there are only two papers
extant on the topic. The first paper was by Gottleib and Shelton [4], in which they
prove that a planar triangulation has a Grünbaum coloring such that each CISG is
connected, and this coloring is unique, if and only if the degree of each vertex of
the triangulation is even. Their proofs use planarity in an integral way (the Jordan
Curve Theorem for one direction, and uniqueness of vertex 3-coloring for the other),
so there is no straightforward generalization to any other surface.

More than a decade later, Kasai, Matsumoto, and Nakamoto in [5] proved that
a projective-planar triangulation has a Grünbaum coloring such that each CISG is
connected if and only if the degree of each vertex of the triangulation is even. Both
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papers note that there are even toroidal triangulations without CISGs connected,
and [5] gives such examples for every orientable surface of genus g ≥ 1.

1.2 Overview of results

The main results in this paper are about determining when there exists a Grünbaum
coloring where all CISGs are connected, extending [4], and when CISGs can be trees
or forests. In particular, we address the question raised in [5] as to whether it is
possible for a triangulation on the sphere or projective plane to have a Grünbaum
coloring with each CISG isomorphic to a tree. Here is a guide to the remainder of
the paper.

In Section 2.1, we give examples to show that various generalizations of the main
theorem in [4] do not hold. We contrast this in Section 2.2 with a surface-independent
condition under which there exists a Grünbaum coloring where all CISGs are con-
nected. This is accompanied by a family of Grünbaum-colored triangulations for
each genus (orientable and nonorientable) with all connected CISGs. In Section 2.3,
we characterize CISG components that are trees and prove that forest CISGs can
only occur on the plane or projective plane. We follow this in Section 2.4 with our
main theorem, that only on the projective plane can there be tree CISGs and that
for any projective planar embedding there can be at most two tree CISGs.

2 Results about CISGs on Surfaces

2.1 First Observations

In [4], the authors show that there exists a Grünbaum coloring of a planar triangula-
tion such that each color-induced subgraph is connected if and only if the degree of
each vertex of the triangulation is even. Their proof cannot be generalized: Starting
with a Grünbaum coloring with connected color-induced subgraphs, they use the
Jordan Curve Theorem to show that the triangulation must have even degree, and
many curves on surfaces are not Jordan curves. For the converse, the authors apply
the Three Color Theorem [9] to an even-degree planar triangulation to produce a
Grünbaum coloring with connected color-induced subgraphs; nonplanar even-degree
triangulations are not necessarily 3-vertex colorable.

Moreover, neither implication direction of this theorem generalizes to other sur-
faces. In [4], the authors close with one example of an all-even-degree triangulation
on the torus that does not have a Grünbaum coloring with connected color-induced
subgraphs. We give in Example 2.1 an example of a not-all-even-degree triangula-
tion on the torus that does have a Grünbaum coloring with connected color-induced
subgraphs.

Example 2.1. The generalized Petersen graph GP (9, 4) has an embedding on the
torus with a proper 3-edge coloring such that each pair of colors forms a Hamilton
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Figure 1: At left, GP (9, 4); center, a properly edge-colored embedding of GP (9, 4)
together with its dual triangulation; at right, the CISGs of the triangulation.

cycle. The dual triangulation has all CISGs connected. See Figure 1 for GP (9, 4),
the embedding and dual embedding, and CISGs.

In the planar case, there can be at most one Grünbaum coloring with connected
color-induced subgraphs [4]. On some other surface, does there exist a triangulation
with more than one Grünbaum coloring with connected color-induced subgraphs?
The answer is yes.

Example 2.2. The (5, 4) embedding of K6 on the torus (see [1] and [3]) is so called
because all faces are triangles except for one pentagonal face and one quadrangular
face. We transform this embedding into a triangulation L (for Lulu) by adding
three edges. In Figures 2 and 3 we demonstrate two different Grünbaum colorings
of L—these are completions of the fourth and sixth partial Grünbaum coloring of
the (5, 4) embedding of K6 on the torus (see [1])—and their associated connected
CISGs. In each figure, isolated vertices that are not part of the CISGs are shown for
convenience.

2.2 Connected-CISG Grünbaum colorings

In this section, we give a general condition under which we can assure that a
Grünbaum coloring has all connected CISGs, and exhibit infinite families of examples
with such Grünbaum colorings.

Proposition 2.3. Given any surface S, if a triangulation T on S is 3-vertex col-
orable, then there exists a Grünbaum coloring where all CISGs are connected.

Proof. We proceed by expanding on the argument in [4]: From a vertex 3-coloring,
we produce an edge coloring by assigning the color ck to every edge between vertices
of colors ci, cj. Any triangle has three different vertex colors and thus three different
edge colors, so this is a Grünbaum coloring.
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Figure 2: At left, one Grünbaum coloring of L; at right, the CISGs of L.

Figure 3: At left, a second Grünbaum coloring of L; at right, the CISGs of L.

Consider Ue, the portion of T formed by two faces that share an edge e. The
vertices incident to e have colors ci, cj, so the remaining vertices of these faces are
both color ck. Therefore on Ue, the subgraph of edges of a single color forms either a
single edge or a pair of edges joined by a vertex, and so is connected. An inductive
argument shows that any sequence of faces that are pairwise adjacent has the same
property that the subgraph in each color is connected.

Now, we claim that between any two same-color edges of T there exists such a
sequence of faces. Consider the topological dual graph C; two same-color edges of
T correspond to a pair of edges e1, e2 in C. Because C is connected, there is a path
connecting a vertex incident to e1 and a vertex incident to e2. This path corresponds
to a sequence of faces in T , where each edge in the path from C corresponds to an
edge shared by two faces in T . This sequence of faces has the property desired. This
shows that every CISG is connected.
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Example 2.4. We will exhibit a family of vertex 3-colorable graphs on each surface
of genus g ≥ 1, and therefore a family of Grünbaum-colored triangulations with each
CISG connected.

Consider first any 2m × 2n grid graph on the torus. This is bipartite and thus
vertex 2-colorable. Starring each face produces a vertex 3-colorable triangulation
(by giving the new vertices a third color). The associated Grünbaum coloring has
G1 the original grid, and G2, G3 are two interlaced “diagonal” grids formed by the
face-starring; each Gi is connected. See the left and center of Figure 4. In order
to extend this construction to an n-holed torus, begin with an even grid graph on
each of n tori and take the connected sum using disks contained in the interior of
(quadrilateral) faces. The joined regions are cylindrical, with the boundaries of the
two quadrilateral faces on the ends, and can be filled in with grid graphs as indicated
in Figure 4(right). Then the face-starring procedure produces the desired example.

Figure 4: At left, an even grid graph on the torus; at center, a Grünbaum-colored
triangulation on the torus; at right, a grid graph on a cylinder with original quadri-
lateral face boundaries bolded.

Now consider any (2m+1)×2n grid graph on the Klein bottle (see Figure 5 (left));
this is bipartite and thus vertex 2-colorable. We can follow the procedure above to
produce a Grünbaum-colored triangulation on a nonorientable surface of even genus
with all CISGs connected. It remains to examine the projective plane, whence the
procedure above gives a Grünbaum-colored triangulation on a nonorientable surface
of odd genus with all CISGs connected. Figure 5 (right) shows a Grünbaum-colored
face-starred bipartite grid graph on the projective plane.

Figure 5: At left, a bipartite grid graph on the Klein bottle; at right, a Grünbaum-
colored triangulation on the projective plane.
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2.3 Forest CISGs

In [5] the authors note that aside from the sphere and projective plane, a counting
argument shows that it is not possible for all three CISGs to be single trees. Is it
ever possible on any surface for even one of the CISGs to be a single tree? Or a
forest? Proposition 2.5 provides the answer.

Proposition 2.5. If a CISG of a Grünbaum coloring of an embedded triangulation
is a forest, then either

• the forest has two trees on a planar embedding, or

• the forest is a spanning tree on a projective-planar embedding.

Proof. Suppose that we have a Grünbaum coloring of a triangulation T with v ver-
tices embedded on S. Recall that χ(S) is the Euler characteristic of S, computed
from a cellular embedding as v− e+ f = χ(S). There are exactly 3(v− χ(S)) edges
in T , and there are the same number of edges of each color (because a Grünbaum
coloring is dual to a proper coloring of a cubic graph), namely v−χ(S). If χ(S) ≤ 0,
then v − χ(S) > v − 1, and there are too many edges of each color to form a tree.

This leaves the case χ(S) = 1, which corresponds to a single (spanning) tree
embedded on the projective plane, and the case χ(S) = 2, which corresponds to two
trees in a planar embedding.

Recall that because CISGs are induced by edges, there may be isolated vertices
in a CISG. Therefore, Proposition 2.5 leaves open the possibility that a CISG in a
planar embedding may be a single non-spanning tree (i.e. two trees where one is the
trivial tree). However, we now show that this is not possible.

Theorem 2.6. No CISG of a Grünbaum coloring of a planar triangulation can
consist of a single tree (spanning all but one vertex of T ).

Proof. Consider some Grünbaum coloring of a planar triangulation T and consider
the ck CISG. In the dual cubic graph C, the edges of any two colors ci, cj form a set
of even cycles {Zr}. At least one of the Zr contains no other cycle in its interior; call
this Z0. The ck edges of C contained in the interior of Z0 form a matching M .

If M is empty, then all ck edges incident to Z0 are exterior to Z0, so Z0 is dual
to a single vertex v in T with incident edges alternating color between ci, cj as in
Figure 6. Each pair of adjacent edges at v form two edges of a triangle that must
be completed by an edge colored ck. The collection of these edges form a cycle in T
surrounding Z0 in C, as shown in Figure 6. Therefore at least one component of the
ck CISG is not a tree, and so the ck CISG is not a single tree.

If M is nonempty, then it is dual to a ck tree K in T . (If there were a ck cycle of T
inside Z0, then there must also be additional ci, cj edges of C inside Z0, contradicting
the choice of Z0.) It remains to show that K is not the entirety of the ck CISG. If
not all ck edges incident to Z0 are part of M (e.g. if some are also exterior to Z0)
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Figure 6: A 2-color cycle in C corresponds to a monochromatic cycle in T .

then certainly the ck CISG has at least 2 components. If on the other hand all ck
edges incident to Z0 are part of M , then because C is connected, there are no ck
edges of C exterior to Z0. This means that Z0 bounds a face (the exterior face) of
the embedding of C, and that exterior face contains a single vertex of T . In turn, as
in the case when M is empty, this implies that there is a ck cycle of T , and thus of
K, homotopic to Z0. This contradicts that K is a tree. In neither case can the ck
CISG be a single tree.

While there are few conditions under which a CISG can be a forest, there are no
barriers to a CISG having a tree component. In this situation, independent of the
embbeding surface, we understand the topology of the dual.

Proposition 2.7. A component of a ck CISG of T is a tree K if and only if a ci-cj
cycle in C bounds a disk containing only the ck edges dual to K.

Proof. Suppose a ci-cj cycle in C bounds a disk containing only ck edges. As in the
proof of Theorem 2.6, these ck edges form a matching M . If M is empty then there
are no corresponding dual ck edges in T . If M is nonempty then as in the proof of
Theorem 2.6, M is dual to a ck tree in T .

Now suppose that some component of a ck CISG of T is a tree K. Every vertex
of K corresponds to a face in C. That face is surrounded by edges; the ck edges
correspond to edges of K that separate adjacent faces in C. Consider the union of
faces in C corresponding to vertices in K; it is a topological disk because there are
no cycles in K. The boundary of this disk consists of edges colored ci, cj because
every ck edge is interior to (and a chord of) the disk. See Figure 7 for an example.

2.4 Projective planar embeddings with tree CISGs

From Proposition 2.5, in the case of the projective plane it is possible to have a CISG
that is a tree. Next, we show by example that it is possible for two of the CISGs to
be trees.

Example 2.8. Consider K3,3. It is cubic and has exactly one embedding on the
projective plane. It also has a coloring in which every Kempe chain is a Hamiltonian
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Figure 7: A ck tree in T is surrounded by a ci-cj cycle in C.

circuit. The triangulation dual to this coloring of K3,3 embedded on the projective
plane has two CISGs that are trees, as shown in Figure 8. Note that this triangulation
is not simple; we leave open whether a simple triangulation with this property exists.

Figure 8: At left, the tri-Hamiltonian embedding of K3,3 on the projective plane,
with the dual triangulation shown at center and the three CISGs shown at right.

However, it is not possible for all three CISGs of a projective planar triangulation
to be trees, as we will show in Theorem 2.11. This implies, by the arboricity theo-
rem of Tutte [10] and Nash-Williams [8], that a decomposition of a projective planar
triangulation into three edge-disjoint spanning trees cannot induce a Grünbaum col-
oring.

As preparation, we make some observations. Consider a Grünbaum-colored trian-
gulation of the projective plane, T , with dual edge 3-colored embedded cubic graph
C. If each CISG of T is a tree, then all three CISGs are connected, and by Theorem
5 of [5], each vertex of T has even degree and each face of C has an even number of
sides. In Example 2.8, we noted that the tree CISGs of T happened to correspond
to Hamilton cycles in C. It turns out that this is always true.

Theorem 2.9 ([2]). If the ck CISG of a Grünbaum coloring of a projective-planar
triangulation T is a (spanning) tree, then C has a ci-cj Hamilton cycle.

In fact, a slightly stronger statement holds. Examine Figure 8; careful checking
of the embedding shows that the orange-purple and teal-purple Hamilton cycles
are noncontractible. This also turns out to always be true. If the Hamilton cycle in



S-M. BELCASTRO AND R. HAAS/AUSTRALAS. J. COMBIN. 79 (3) (2021), 461–475 470

question were contractible, then the corresponding CISG would have two components
(one inside the contractible Hamilton cycle and one outside it) which contradicts the
assumption that the CISG is a spanning tree. This proves the following.

Corollary 2.10. A (spanning) tree ck CISG of a projective-planar T corresponds to
a noncontractible ci-cj Hamilton cycle of C.

We are now ready to prove our main result. We have given an example where
two of the CISGs of T are spanning trees. We will now show that there cannot be a
Grünbaum-colored triangulation T on the projective plane P with all three CISGs
trees.

Theorem 2.11. At most two of the CISGs of a Grünbaum-colored projective-planar
triangulation T can be (spanning) trees.

Proof. Our proof proceeds by contradiction. Suppose that T is a Grünbaum-colored
triangulation on the projective plane P with all three CISGs trees. From Theorem 2.9
and Corollary 2.10, we see that in such a case, each pair of colors in C forms a
Hamilton cycle, and that Hamilton cycle must be homotopic to the generator of
π1(P ). (Recall that π1(P ) ∼= Z2.)

Given a ci-cj Kempe cycle in C, contracting the ci edges does not change the
topological type (contractible or noncontractible) of the cycle. Now we have that
a ci-cj Hamilton cycle and a ci-ck Hamilton cycle agree on the set of edges in the
common color ci, and this includes all ci edges. Thus, consider the multigraph created
by contracting the ci edges of C. The cj (resp. ck) edges form a noncontractible
Hamilton cycle. Without loss of generality, we may assume the cj cycle is drawn as
in Figure 9 by “straightening” it.

Figure 9: A cubic graph on the projective plane after contracting ci edges. Here cj
is shown in orange.

Each intersection of the ck cycle with the cj cycle corresponds to a contraction of
a ci edge. Given noncontractible cj and ck cycles, there are three possible reversals of
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Figure 10: The possible reversals of cj-ck intersections to vertices of C.

a contraction of a ci edge (henceforth called reversals): these are shown in Figure 10.

Notice that any particular pair of cj and ck cycles corresponds to an entire family
of cubic graphs. That is, each set of choices of reversals at the intersections cor-
responds to a cubic graph and most of these will be distinct graphs. Our strategy
will be to show that for any member of the family, the cj, ck edges cannot form a
noncontractible cj-ck Hamiltonian cycle.

Consider a closed curve contained in the complement of the union of the cj, ck
cycles and parallel to twice the homotopy generator equivalent to the cj cycle. This
curve bounds a topological disk; removing this disk leaves a Möbius band containing
the union of the cj, ck cycles (see Figure 11). We call this a ribbon graph neighborhood
of the union of the cj, ck cycles. The complement in the projective plane is a disc D,

Figure 11: A redrawing of the cj, ck cycles from Figure 9 (left) and the ribbon graph
neighborhood of the cj, ck cycles (right).

and the ribbon graph neighborhood is a Möbius band.

Each intersection of the cj, ck cycles may be incident to two boundary segments,
one boundary segment, or no boundary segments of the ribbon graph neighborhood,
as illustrated in Figure 12. We refer to these intersection types as 2-b, 1-b, and 0-b
respectively, and now examine the effect of reversing each of them in turn. We look
first at the effect of reversal of a 2-b intersection on the ribbon graph neighborhood.
The possibilities are demonstrated in Figure 13.
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Figure 12: Examples of the three different ways in which an intersection between cj
(orange) and ck (purple) cycles may be incident to the ribbon graph neighborhood
boundary. At left, a 2-b intersection; at center, a 1-b intersection; at right, a 0-b
intersection.

Figure 13: Ribbon graph neighborhoods of the possible reversals of certain cj-ck
intersections to vertices of C. At left, the cj and ck cycles cross; at right, they are
tangent.

Notice that in one of the three cases, the ribbon graph boundary is maintained,
whereas in the other two cases the cj-ck boundary is changed so that instead of a
Möbius band, the cj, ck ribbon graph neighborhood is a disk. In these latter cases,
the cj-ck Hamilton cycle must be contractible, which is a contradiction.

If we reverse a 1-b intersection, then the cj, ck ribbon graph neighborhood remains
a Möbius band; however, some of the remaining intersections may have additional
incidences with the boundary. Figure 14 gives an example where this is the case. Of
course, if we reverse a 0-b intersection then there is no effect on the cj-ck boundary.

We will now show that in any configuration of intersections, the cj-ck Hamilton
cycle must be contractible. Recall that a bifacial edge is incident to two distinct faces
of an embedding, whereas a monofacial edge is incident to only one face (twice). Our
argument is as follows: reverse the intersections in any order; either the reversal of
some intersection will change the ribbon graph boundary to that of a disk, or the
reversal of no intersection changes the ribbon graph boundary, in which case the
cj, ck edges are all bifacial. Here are the details.

Case 1 : All intersections are 2-b intersections.
If any of the reversals changes the boundary of the cj, ck ribbon graph to that of a
disk, then we have a contradiction; the cj-ck Hamilton cycle must be contractible.
Otherwise, none of the reversals changes the boundary of the cj, ck ribbon graph.
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Figure 14: Reversal of a 1-b intersection in Figure 11 (third from right) changes
two 1-b intersections to 2-b intersections and changes three 0-b intersections to 1-b
intersections. The intersections that change types are the third and fourth from the
left, as well as the fourth, fifth and sixth from the right.

In this case, consider the cj-ck Hamilton cycle, and retract the ribbon graph so that
the Hamilton cycle is on the boundary of the Möbius band. This makes it evident
that each edge is bifacial; one side of each edge is incident to the disc complement of
the Möbius band in the projective plane, and the other side of each edge is incident
to the interior of the Möbius band. This is a contradiction because a noncontractible
Hamilton cycle must be homotopic to the generator of π1(P ), which has only monofa-
cial edges. Here the cj-ck Hamilton cycle is instead homotopic to twice the generator
of π1(P ), and thus contractible.

Case 2 : All intersections are either 2-b intersections or 0-b intersections.
If any 2-b intersection reversal changes the boundary of the cj, ck ribbon graph to
that of a disk, then we have a contradiction by Case 1. Thus, suppose no 2-b inter-
section reversal changes the boundary of the cj, ck ribbon graph. After all reversals
of intersections, the boundary of the cj, ck ribbon graph is unchanged (because no
reversal of a 0-b intersection can alter that boundary). Therefore we have bifacial
cj, ck edges by the same argument as in Case 1, and thus the same contradiction.

Case 3 : There is at least one 1-b intersection.
If any reversal of a 2-b intersection changes the boundary of the cj, ck ribbon graph
to that of a disk, we have a contradiction by the Case 1 argument.

If no reversal of a 2-b intersection changes the boundary of the cj, ck ribbon graph
to that of a disk, we have two subcases.

Subcase 3A: No reversal of any 1-b intersection affects the boundary incidence of
any other intersection.
After all reversals, the boundary of the cj, ck ribbon graph is unchanged and therefore
by the Case 1 argument we have bifacial cj, ck edges and a contradiction.
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Subcase 3B: The reversal of some 1-b intersection affects the boundary incidence
of some other intersection.
Note that after reversing this intersection, the types of some remaining intersections
may have changed. Therefore we can consider whether the current intersection set
falls in Case 1, Case 2, or Subcase 3A. In these three situations, we have a contra-
diction. Otherwise we find ourselves again in Subcase 3B, reverse a 1-b intersection
that affects the boundary incidence of some other intersection, and re-consider the
intersection set. In every case, we reach a contradiction by one of Case 1, Case 2, or
Subcase 3A.

There are a finite number of intersections. Reversal of the last intersection cannot
affect the boundary incidence of other intersections, so this reversal must be in Case
1, Case 2, or Subcase 3A. Thus, this algorithm only terminates in a contradiction
to the noncontractability of the cj-ck Hamilton cycle. Therefore there exists at least
one pair i, j such that a ci-cj Hamiltonian cycle must be contractible, and in turn we
cannot have all three CISGs trees.
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