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Abstract

In this note we obtain upper bounds on the number of hyperedges in
3-uniform hypergraphs not containing a Berge cycle of given odd length.
We improve the bound given by Füredi and Özkahya in 2017. The result
follows from a more general theorem. We also obtain some new results
for Berge cliques.

1 Introduction

We say that a hypergraph H is a Berge copy of a graph F (in short: H is a Berge-
F ) if V (F ) ⊂ V (H) and there is a bijection f : E(F ) → E(H) such that for any
e ∈ E(F ) we have e ⊂ f(e). This definition was introduced by Gerbner and Palmer
[11], extending the well-established notion of Berge cycles and paths. Note that there
are several non-uniform Berge copies of F , and a hypergraph H is a Berge copy of
several graphs. A particular copy of F defining a Berge-F is called its core. Note
that there can be multiple cores in a Berge-F .

We denote by exr(n,Berge-F ) the largest number of hyperedges in an r-uniform
Berge-F -free hypergraph on n vertices. There are several papers dealing with
exr(n,Berge-Ck) (e.g. [8, 14, 15, 16]) or exr(n,Berge-F ) in general (e.g. [9, 10, 11,
12, 20]). For a short survey on this topic see Subsection 5.2.2 in [13].

In this note we consider ex3(n,Berge-Ck). In the case k = 5, this was first
studied by Bollobás and Győri [2]. They showed ex3(n,Berge-C5) ≤

√
2n3/2 + 4.5n.

This bound was improved to (0.254 + o(1))n3/2 by Ergemlidze, Győri and Methuku
[5]. For cycles of any length, Győri and Lemons [15, 16] proved exr(n,Berge-Ck) =
O(n1+1/�k/2�). The constant factors were improved by Jiang and Ma [18], and in the
case k is even by Gerbner, Methuku and Vizer [10]. In the 3-uniform case, Füredi
and Özkahya [8] obtained better constant factors (depending on k). In the case k is
even, further improvements were obtained by Gerbner, Methuku and Vizer [10] and
by Gerbner, Methuku and Palmer [9].
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A closely related area is counting triangles in Ck-free graphs. More generally, let
ex(n,H, F ) denote the maximum number of copies of H in an F -free graph on n
vertices. After some sporadic results, the systematic study of these problems (often
called generalized Turán problems) was initiated by Alon and Shikhelman [1]. Their
connection to Berge hypergraphs was established by Gerbner and Palmer [12], who
proved

ex(n,Kr, F ) ≤ exr(n,Berge-F ) ≤ ex(n,Kr, F ) + ex(n, F )

for any r, n and F .

Counting triangles in Ck-free graphs and counting hyperedges in Berge-Ck-free
3-uniform hypergraphs was handled together already by Bollobás and Győri [2] for
C5, and by Füredi and Özkahya [8], who proved ex(n,K3, C2k) ≤ 2k−3

3
ex(n, C2k) and

ex3(n,Berge-C2k) ≤ 2k
3
ex(n, C2k). Their upper bound for ex(n,K3, C2k) is still the

best known bound, but their other upper bound was improved to ex3(n,Berge-C2k) ≤
2k−3
3

ex(n, C2k) by Gerbner, Methuku and Vizer [10] in the case k ≥ 5 and by Gerbner,
Methuku and Palmer [9] in the case k = 3, 4.

In the case of forbidden cycles of any odd length, the number of triangles was first
studied by Győri and Li [17], who proved1 ex(n,K3, C2k+1) ≤ (2k−2)(16k−1)

3
ex(n, C2k).

It was improved independently by Füredi and Özkahya [8] and by Alon and Shikhel-

man [1]. The latter had the stronger bound ex(n,K3, C2k+1) ≤ 16(k−1)
3

ex(�n/2	, C2k).
In the case k = 2, the current best bound ex(n,K3, C5) ≤ 0.231975n3/2 is due to
Ergemlidze and Methuku [6].

Füredi and Özkahya [8] obtained the currently best upper bound on the Berge
version by showing

ex3(n,Berge-C2k+1) ≤ ex(n,K3, C2k+1) + 4ex(n, C2k) + 12exlin
3 (n,Berge-C2k+1),

(1.1)
where exlin

r (n,Berge-F ) denotes the largest number of hyperedges in an r-uniform
Berge-F -free linear hypergraph on n vertices. Recall that a linear hypergraph is one
in which any two hyperedges share at most one vertex.

In this note we improve the bound (1.1). Recall that we have ex3(n,Berge-C2k+1)
≥ ex(n,K3, C2k+1), thus we cannot hope for a huge improvement, especially as
ex(n,K3, C2k+1) might be the largest of the three terms. Indeed, the best upper
bound currently known is O(n1+1/k) for all the three terms, but the dependence of
the known upper bound in k is the largest for ex(n,K3, C2k+1) (we will state these
bounds after Theorem 1.2).

Recall that in case of C2k, the two upper bounds obtained by Füredi and Özkahya
[8] were ex(n,K3, C2k) ≤ 2k−3

3
ex(n, C2k) and ex3(n,Berge-C2k) ≤ 2k

3
ex(n, C2k), and

the Berge bound was improved in [10, 9] to match the generalized Turán bound.
Our goal would be to do the same here and get rid of the terms 4ex(n, C2k+1) +
12exlin

3 (n,Berge-C2k+1) in (1.1). We cannot achieve that, but we decrease these addi-
tional terms. Recall that the currently best bound for the generalized Turán problem

1We note that the bound is incorrectly stated in their paper [17].
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is ex(n,K3, C2k+1) ≤ 16(k−1)
3

ex(�n/2	, C2k) by Alon and Shikhelman [1]. Our new up-
per bound on ex3(n,Berge-C2k+1) is larger than that bound by exlin

3 (n,Berge-C2k+1).
We wonder if it is an example of a more general phenomenon and whether similar
bounds could be obtained for other graphs.

The way we use the linearity involves subdividing an edge uv, i.e. deleting it
and adding uw and vw for a new vertex w. Our method uses only the following
two properties of C2k+1: it can be obtained from C2k by subdividing an edge, and
deleting a vertex from C2k+1 we obtain a path. In the next theorem we state our
result in the most general form.

Theorem 1.1. Let F be a connected graph obtained from F0 by subdividing an
edge and F ′ be obtained from F by deleting a vertex. Let c = c(n) be such that
ex(n,Kr−1, F

′) ≤ cn for every n. Then we have

(i) exr(n,Berge-F ) ≤ ex(n,Kr, F ) + 2r−1ex(n, F0) + exlin
r (n,Berge-F ),

(ii) exr(n,Berge-F ) ≤ max
{
1, 2c

r

}
2r−1ex(n, F0) + exlin

r (n,Berge-F ).

In the case F = C2k+1 we have F0 = C2k and F ′ = P2k, the path on 2k ver-
tices. A theorem of Luo [19] shows ex(n,Kr−1, P2k) ≤ n

2k−1

(
2k−1
r−1

)
, but what we

need for the 3-uniform case is the Erdős-Gallai theorem [4] showing ex(n, P2k) ≤
(k−1)n. Using this, (ii) of Theorem 1.1 gives ex3(n,Berge-C2k+1) ≤ 8k−8

3
ex(n, C2k)+

exlin
3 (n,Berge-C2k+1) if k > 2. We can improve this a little bit.

Theorem 1.2. If k > 2, then
ex3(n,Berge-C2k+1)

≤ 16k−16
3

ex(�n/2	, C2k) + exlin
3 (n,Berge-C2k+1)

≤
(

1280k−1280
3

√
k log k

)
�n/2	1+1/k + 2kn1+1/k + 9kn+ 16k−16

3
10k2�n/2	.

The bound in Theorem 1.2 is currently stronger than the bound given by (i) of
Theorem 1.1 for F = C2k+1 and r = 3. However, an improvement on ex(n,K3, C2k+1)
would immediately improve the bound in (i). Any significant improvement would
make (i) stronger than Theorem 1.2 for F = C2k+1.

The second inequality in Theorem 1.2 follows from known results. Füredi and
Özkahya [8] proved exlin

3 (n,Berge-C2k+1) ≤ 2kn1+1/k + 9kn, and Bukh and Jiang
[3] obtained the strongest bound on the Turán number of even cycles by showing
ex(n, C2k) ≤ 80

√
k log kn1+1/k + 10k2n. As we do not have good lower bounds on

ex(n, C2k), we cannot be sure that the first term is actually the larger term. However,
if exlin

3 (n,Berge-C2k+1) is the larger term, then our improvement on the upper bound
of ex3(n,Berge-C2k+1) is more significant, as we changed the constant factor of that
term from 12 to 1. Obviously we have exlin

3 (n,Berge-C2k+1) ≤ ex3(n,Berge-C2k+1),
hence further improvement is impossible here.

We prove Theorem 1.1 by combining the ideas of [8] and [1] with the methods
developed in [9, 10]. In the next section we state some lemmas needed for the proof.
We give a new proof of a lemma by Gerbner, Methuku and Palmer [9], and we
strengthen the lemma a little bit. This strengthens results on exr(n,Berge-Kk) for
some values of r, k and n. In Section 3 we prove Theorems 1.1 and 1.2.
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2 Lemmas

We say that a graph G is red-blue if each of its edges is colored with one of the colors
red and blue. For a red-blue graph G, we denote by Gred the subgraph spanned by
the red edges and Gblue the subgraph spanned by the blue edges. For two graphs H
and G we denote by N(H,G) the number of subgraphs of G that are isomorphic to
H . Let gr(G) = |E(Gred)|+N(Kr, Gblue).

Lemma 2.1 (Gerbner, Methuku, Palmer [9]). For any graph F and integers r and n,
there is a red-blue F -free graph G on n vertices, such that exr(n,Berge-F ) ≤ gr(G).

Note that an essentially equivalent version was obtained by Füredi, Kostochka
and Luo [7]. The proof of Lemma 2.1 relies on a lemma about bipartite graphs
(hidden in the proof of Lemma 2 in [9]). If M is a matching and ab is an edge in M ,
then with a slight abuse of notation we say M(a) = b and M(b) = a.

Lemma 2.2. Let Γ be a finite bipartite graph with parts A and B and let M be a
largest matching in Γ. Let B′ denote the set of vertices in B that are incident to M .
Then we can partition A into A1 and A2 and partition B′ into B1 and B2 such that
for a ∈ A1 we have M(a) ∈ B1, and every neighbor of the vertices of A2 is in B2.

Here we present a proof that is built on the same principle, but is somewhat
simpler than the proof found in [9]. Before that, let us recall the well-known notion
of alternating paths. Given a bipartite graph Γ and a matching M in it, a path P
in Γ is called alternating if its first edge is not in M , and then it alternates between
edges in M and edges not in M , finishing with an edge not in M . It is well-known
and easy to see that deleting the edges of P from M and replacing them with the
edges of P that were not in M , we obtain another matching, that is larger than M .

Proof. First we build a set V ′ ⊂ V (Γ) in the following way. Let V0 be the set of
vertices in A that are not incident to any edges of M . Then in the first step we add
to V0 the set of vertices in B that are neighbors of a vertex in V0, to obtain V1. In
the second step we add to V1 the vertices in A that are connected to a vertex in V1

by an edge in M , to obtain V2. Similarly, in the ith step, if i is odd we add to Vi−1

the set of vertices in B that are neighbors of a vertex in Vi−1, while if i is even, we
add to Vi−1 the vertices in A that are connected to a vertex in Vi−1 by an edge in M
(i.e. M(b) for some b ∈ B ∩ Vi−1), to obtain Vi. After finitely many steps, Vi does
not increase anymore, let V ′ be the resulting set of vertices.

We claim that no vertex from B \ B′ can be in V ′. Indeed, such a vertex could
be reached by an alternating path from a vertex in A that is not incident to M , thus
M is not a largest matching, a contradiction.

Then let A2 = A ∩ V ′, A1 = A \ A2, B2 = B′ ∩ V ′ and B1 = B′ \ B2. A vertex
in A2 cannot be connected to a vertex v not in B2, as v could be added to V ′ then.
Similarly, for a vertex u ∈ A1, M(u) has to be in B1, otherwise M(u) is in B2 and
then u can be added to V ′.
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Let us briefly describe how we can apply this lemma to obtain Lemma 2.1. We
take a Berge-F -free r-uniform hypergraph H on n vertices. Let A be the set of
hyperedges in H and B be the set of sub-edges of these hyperedges (by edge and
sub-edge we always mean an edge of size two, i.e. a pair of vertices). We connect
a ∈ A to b ∈ B if a ⊃ b. Let Γ denote this auxiliary bipartite graph. Let M be an
arbitrary largest matching and B′ be the vertices of B incident to the edges in M . It
is easy to see that the elements of B′ form an F -free graph which we call G. Indeed,
otherwise M defines the bijection between a copy of F and hyperedges in H to form
a Berge-F .

Now we apply Lemma 2.2 to Γ and M . We define a red-blue coloring of G by
taking the edges of G in B1 to be the red edges, and the edges of G in B2 to be the
blue edges. We have |H| = |A1|+|A2| = |B1|+|A2| = |E(Gred)|+|A2|. As hyperedges
in A2 have all their neighbors in B2, they each contain a blue Kr, which is distinct
from the other blue r-cliques obtained this way, showing |A2| ≤ N(Kr, Gblue).

Let us remark here that Lemma 2.2 also gives some information on the structure
of G. If there is a ∈ A1 that has a neighbor b ∈ B \B′, then we could obtain another
matching M ′ by changing the neighbor of a to b, i.e. M ′(a) = b and if a′ �= a, then
M ′(a′) = M(a′). Then B′ is replaced by B′′ = B′ \ {M(a)} ∪ {b}. In this case the
same partition of A into A1 and A2, and the partition of B′′ into B2 and B′′ \ B2

satisfies Lemma 2.2. This means for G that we can delete the (red) edge M(a) and
replace it with the edge b, to obtain another F -free graph.

If on the other hand the vertices in A1 have all their neighbors in B′, then we could
recolor the red edges to blue. Therefore, in G we can delete an edge and add another
edge so that the resulting graph is still F -free. Let α = αF,n be the largest value of
gr(G

′), where G′ is an n-vertex F -free blue-red graph. Assume that each n-vertex
F -free blue-red graph G′ with gr(G

′) = α is not monoblue and we cannot delete an
edge and add another edge to G′ so that the resulting graph is still F -free. Then
by the above, G cannot be one of these graphs, thus exr(n,Berge-F ) ≤ gr(G) < α.
This is usually a negligible improvement, as we often do not even know the order of
magnitude.

However, if F = Kk, Gerbner, Methuku and Palmer [9] proved that αKk,n =
max{gr(TB(n, k − 1)), gr(TR(n, k − 1))}, where TB(n, k − 1) is the monoblue Turán
graph T (n, k−1) and TR(n, k−1) is the monored Turán graph T (n, k−1). We mention
without going into the details that their proof also shows that for any other graphs
G we have gr(G) < αKk,n. As we cannot delete an edge from T (n, k − 1) and add
another edge to obtain a Kk-free graphs, we do have an improvement. For example,
if r = 4 and k = 5, then the result in [9] determines ex4(n,Berge-Kk) for n ≥ 11.
For n = 10, T (10, 4) has 36 copies of K4 and 37 edges. Therefore, (as ex(n,Kr, F ) is
a lower bound on exr(n,Berge-F )), we have 36 ≤ ex4(n,Berge-Kk) ≤ 37. With our
new observation, we know ex4(n,Berge-Kk) = 36.
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3 Proof of Theorems 1.1 and 1.2

Let H be a Berge-F -free r-graph on n vertices. We say that an edge uv with
u, v ∈ V (H) is t-heavy if u, v are contained together in exactly t hyperedges. First
we will build a linear subhypergraph H1 in a greedy way: if we can find a hyper-
edge H that does not share an edge with any hyperedge in H1, we add H to H1,
and then repeat this procedure. By definition, H1 is linear. Let H2 consist of the
remaining hyperedges. Note that |H| = |H1|+ |H2| ≤ exlin

r (n,Berge-F ) + |H2|, and
the remainder of the proof is for proving the needed upper bound on |H2|.

We build an auxiliary bipartite graph Γ in the usual way: let A be the set of
hyperedges in H2 and B be the set of sub-edges of these hyperedges. We connect
a ∈ A to b ∈ B if a ⊃ b. We will let M be a largest matching in Γ, however, we
do not choose M arbitrarily. Let M0 be an arbitrary largest matching in Γ. Let B′

be the set of vertices in B that are incident to some edge of M0 and A0 denote the
set of vertices in A that are incident to some edge of M0. Now a hyperedge a ∈ A0

contains a sub-edge M0(a), at least one sub-edge b0 shared with a hyperedge in H1,
maybe some sub-edges that are matched to some other a′ ∈ A, and maybe some
other sub-edges b ∈ B \ B′. We have the option to replace in M0 the edge between
a and M0(a) with any of the edges of Γ between a and an unused sub-edge of a, to
obtain another largest matching. We will build a largest matching M , that contains
the same vertices (A0) from A as M0.

For a ∈ A0, we pick M(a) to be one of the sub-edges b ∈ B of a (potentially we
let M(a) = M0(a)) in the following way: M(a) should share exactly one vertex with
b0 (where b0 is a sub-edge that is also a sub-edge of a hyperedge in H1) if possible.
We go through the hyperedges greedily; as long as there is a hyperedge a ∈ A0 such
that M0(a) can be changed in this way, we execute the change (it is possible that
M0(a) cannot be changed originally, but later a sub-edge of a that is M0(a

′) becomes
free to use, when M(a′) is chosen to be different from M0(a

′)). This process finishes
after finitely many (at most |A0|) steps, as we change M0(a) to M(a) at most once
for every a ∈ A0. After this, we rename the unchanged M0(a) to M(a).

The resulting matching M has the following property: for every a ∈ A0, a shares
a sub-edge b0 with a hyperedge in H1, such that that either M(a) shares exactly one
vertex with b0, or all the sub-edges of a sharing exactly one vertex with b0 are M(a′)
for some a′ ∈ A0.

Now we can apply Lemma 2.2 to Γ and M to obtain A1, A2, B1, B2. Let us call
the elements of B1 red edges and the elements of B2 blue edges. Let G be the graph
consisting of all the red and blue edges. Then G is obviously F -free.

Let us now take a random partition of V (H) into V1 and V2. For every a ∈ A0,
we look at b = M(a). If the two vertices of b are in one part, and all the other
vertices of a are in the other part, we keep a, otherwise we delete it. Let A∗ denote
the set of elements in A that are not deleted (note that elements in A \A0 are never
deleted, thus are in A∗). Let G′ be the graph consisting of the elements of B′ that
are connected by an edge in M to an element of A∗. Then G′ is obviously F -free, as
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it is a subgraph of G.

Claim 3.1. G′ is F0-free, where F0 is any graph for which F can be obtained from
F0 by subdividing an edge of F0.

Proof. Let us assume we are given a copy Q of F0 in G′ such that uv is the edge
that needs to be subdivided to obtain F . Observe that there is no edge between V1

and V2 in G′, thus Q is in one of them, say V1. Let w be a vertex of M(uv) with
u �= w �= v, then w ∈ V2, thus w is not in Q.

We say that a hyperedge H in H is good if H contains u and w for some w ∈
M(uv) \ {u, v} and H is not M(e) for any edge e of Q. If there is a good hyperedge,
then we build a Berge-F with the following core: we subdivide uv with w. For each
edge e of this core we assign M(e) except for uw (where we assign H) and vw (where
we assign M(uv)). This way we obtain a Berge-F , a contradiction.

M(uv) shares at least one sub-edge with a hyperedge H ∈ H1. If the sub-edge
shares exactly one vertex with uv, then H is good and we are done. Thus every
sub-edge of M(uv) shared with a hyperedge in H1 has to contain none or both of u
and v. In both cases, when we tried to change M0(M(uv)) when constructing M ,
we failed, because all such edges are matched to some other hyperedges of H2. In
particular, uw is M(a) for some a ∈ A0 and for some w ∈ M(u, v) \ {u, v}. Observe
that w is in V2, thus M(a) has vertices from both parts V1 and V2, hence a cannot
be in A∗ by the definition of A∗. This implies a is good, finishing the proof.

The above claim implies G′ has at most ex(n, F0) edges. For an arbitrary a ∈ A,
the probability that a is in A∗ is at least 1/2r−1. Let S be any subset of A, then
we have that the expected value of the number of hyperedges in A∗ ∩ S is at least
|S|/2r−1, thus there is a partition with |A∗ ∩ S| ≥ |S|/2r−1.

There are |B1| = |A1| red edges in G, and there is a random partition where
at least |A1|/2r−1 elements of A1 are undeleted, hence there are at least |A1|/2r−1

red edges in G′. This implies |A1|/2r−1 ≤ ex(n, F0). Hence there are at most
2r−1ex(n, F0) red edges altogether. For the total number of edges in G we can use
the same argument: there is a random partition where at least |A0|/2r−1 hyperedges
in A0 are undeleted, thus for the G′ defined by that partition, we have |A0| =
|E(G)| ≤ 2r−1|E(G′)| ≤ 2r−1ex(n, F0).

Observe that we have |H2| = |A1| + |A2| ≤ |A1| + N(Kr, Gblue) ≤ |A1| +
ex(n,Kr, F ), hence we are done with the proof of (i).

Note that G is not necessarily F0-free, but it is F -free. Let m be the number of
blue edges in G, then G has at most 2r−1ex(n, F0) −m red edges. An argument of
Gerbner, Methuku and Vizer [10] bounds the number of r-cliques in F -free graphs
with the given number of vertices and edges. For sake of completeness, we include
the argument here.

Let d(v) be the degree of v in Gblue. Obviously the neighborhood of every
vertex in Gblue is F ′-free. An F ′-free graph on d(v) vertices contains at most
ex(d(v), Kr−1, F

′) ≤ cd(v) copies of Kr−1. Thus v is contained in at most cd(v)
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copies of Kr in Gblue. If we sum, for each vertex, the number of Kr’s containing a
vertex, then each Kr is counted r times. On the other hand as

∑
v∈V (Gblue)

d(v) =

2|E(Gblue)| = 2m, we have
∑

v∈V (Gblue)
cd(v) = 2cm. This gives that the number of

blue Kr’s is at most 2cm/r. Thus we have

gr(G) ≤ 2r−1ex(n, F0)−m+ 2cm/r

≤ max

{
1,

2c

r

}
(2r−1ex(n, F0)−m+m)

= max

{
1,

2c

r

}
2r−1ex(n, F0).

The above inequality, together with Lemma 2.1, implies that

|H2| ≤ max

{
1,

2c

r

}
2r−1ex(n, F0),

finishing the proof of (ii).

Now we show how to obtain the small improvement needed to prove Theorem 1.2.
It is based on the proof of the upper bound on ex(n,K3, C2k+1) in [1]. If n is odd,
replace it by n + 1. As the stated upper bound is the same in both cases, obvious
mononicity conditions show we can do this. Thus we can assume n is even. When
we take the random partition into V1 and V2, first we take a random partition into
n/2 sets U1, . . . , Un/2 of size 2, and then randomly put one vertex into V1 and the
other into V2. The obtained graph G′ will be C2k-free, and it is divided into two
components, hence it has at most ex(|V1|, C2k) + ex(|V2|, C2k) edges. The way we
chose V1 ensures the above sum is 2ex(�n/2	, C2k). Then we can go through every
step of the remaining part of the proof to obtain the result we need, if for an arbitrary
a ∈ A, the probability that a is in A∗ is still at least 1/2r−1 = 1/4. We will separate
into cases according to the intersection of a with the parts Ui. In case the three
vertices of a are in three different Ui’s, the probability is 1/4. In case a contains Ui

for some i, there are two cases. If M(a) = Ui, then the probability is 0, otherwise
it is 1/2. As M(a) = Ui happens with probability 1/3 (having the condition that a
contains Ui), for every i we have that the probability of a being in A∗ if a contains
Ui is

2
3
· 1
2
≥ 1/4.

This gives the first inequality of Theorem 1.2. As we have mentioned after the
statement, the second inequality follows from earlier results, stated there.
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