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Abstract

Gaussian filters have applications in a variety of areas in computer sci-
ence, from computer vision to speech recognition. The collapsing sum is
a matrix operator that was recently introduced to study Gaussian filters
combinatorially. In this paper, we view the collapsing sum from a discrete
tomographical perspective and examine the recoverability of its preim-
ages as a matrix completion problem. Using bipartite graphs, we derive
a necessary and sufficient condition for a partial matrix to be extended
to a preimage of a given matrix.

1 Introduction

Gaussian filters play a central role in image and signal processing, with applica-
tions in human and computer vision, edge detection, and speech processing [7, 15].
The collapsing sum is a matrix operator introduced in [3] to study Gaussian filters
combinatorially.

Let A be an m×n matrix. We denote the entries of a matrix by the corresponding
lower-case letter, so the (i, j)th entry of A is ai,j. The collapsing sum of A is the
(m− 1)× (n− 1) matrix σ(A) with entries

σ(A)i,j = ai,j + ai+1,j + ai,j+1 + ai+1,j+1.

When scaled by a factor of 1/4, the collapsing sum returns an average of nearby
entries. Applying the operator multiple times averages a matrix over larger regions
in the same manner as a Gaussian filter. To slightly simplify the mechanics of later
calculations, we work with the balanced collapsing sum σ−, whose entries are given
by

σ−(A)i,j = ai,j − ai+1,j − ai,j+1 + ai+1,j+1.
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We also state the analogues of our results for the collapsing sum, which follow from
straightforward modifications to our proofs.

The overarching philosophy of discrete tomography is to reconstruct discrete
structures from a small number of projections (see [8, 9] for an overview of the
field). Its origins can be traced back to the 1950s, when Gale [6] and Ryser [13] pro-
vided necessary and sufficient conditions for a binary matrix to have specified row
and columns sums. However, each pair of projections usually corresponds to multiple
matrices, so some a priori information about the structure of the matrix, such as
convexity or periodicity, is usually assumed. Much of the classical work in discrete
tomography focused on linear projections. Nivat [11] introduced rectangular scans, a
different kind of matrix projection, and studied their tomographical properties. Fur-
ther research on rectangular scans has been conducted by Frosini, Nivat, and Rinaldi
[4, 5, 12], among others.

The main problem in this paper continues in this vein. The collapsing sum can be
viewed as a 2× 2 rectangular scan, and our goal, broadly defined, is to reconstruct a
matrix from its (balanced) collapsing sum. In contrast to the work in [4, 5, 11, 12],
our tools will be algebraic as well as combinatorial. Stolk and Batenburg [14] have
described an algebraic framework for discrete tomography, and the collapsing sum is
particularly amenable to linear algebraic methods [3].

In general, we fix an arbitrary additive abelian group G and denote by Gm×n the
additive group of m × n matrices with entries in G. Although technically speaking
multiplication is not defined for elements of G, we define 1 · g = g · 1 = g for every
g ∈ G and set en as the n×1 vector in which every entry is 1. In Section 2, we prove
the following isomorphism using the balanced collapsing sum.

Theorem 1.1. Let Km,n = {ueTn + emv
T : u ∈ Gm×1 and v ∈ Gn×1}. If m,n ≥ 2,

then G(m−1)×(n−1) ∼= Gm×n/Km,n.

A similar result holds for the collapsing sum: If fn is the n× 1 vector whose ith
coordinate is (−1)i, then

G(m−1)×(n−1) ∼= Gm×n/{ufT
n + fmv

T : u ∈ Gm×1 and v ∈ Gn×1}.

The set Km×n is the kernel of the map σ− : G
m×n → G(m−1)×(n−1). When G is an

ordered group (Z or R, say), this set can be described in another manner. A matrix
A ∈ Gm×n is a Monge matrix if ai,k + aj,l ≤ ai,l + aj,k for every 1 ≤ i < j ≤ m
and 1 ≤ k < l ≤ n; it is an anti-Monge matrix if the inequality is reversed. It
turns out that A is a Monge matrix if and only if ai,k + ai+1,k+1 ≤ ai+1,k + ai,k+1

for every 1 ≤ i < m and 1 ≤ k < n. In other words, A is a Monge matrix if
and only if σ−(A) ≤ 0 and an anti-Monge matrix if and only if σ−(A) ≥ 0 (the
inequalities are entrywise). Thus, the kernel of σ− consists of exactly those matrices
that are simultaneously Monge and anti-Monge (such matrices are sometimes referred
to as sum matrices). Monge and anti-Monge matrices are of particular interest in
combinatorial optimization; see [1] for a survey.



T. DILLON /AUSTRALAS. J. COMBIN. 79 (1) (2021), 183–192 185

⎛⎝3 0 ∗ ∗
8 ∗ 2 0
∗ 1 ∗ 7

⎞⎠ x3x2x1

y4y3y2y1

Figure 1: A partial matrix in Z
3×4
∗ and its corresponding bipartite graph.

In terms of discrete tomography, Theorem 1.1 means that every collapsing sum
reconstruction problem is solvable. In fact, the equation σ−(X) = B has the same
number of solution matrices for every choice of matrix B ∈ G(m−1)×(n−1). In order to
make further progress, then, we have to assume some a priori information about X.
One way to do this is with a partial matrix.

Let ∗ be a symbol not in G. (We think of ∗ as a blank entry.) A partial matrix
is a matrix with entries in G ∪ {∗}, and the set of m× n partial matrices is denoted
by Gm×n

∗ . A completion of a partial matrix A ∈ Gm×n
∗ is a matrix C ∈ Gm×n so

that ci,j = ai,j whenever ai,j 	= ∗. An m × n partial matrix A is consistent with
an (m − 1) × (n − 1) matrix B if A has a completion whose balanced collapsing
sum is B. If A and B are two partial matrices with the same dimensions, we let
(A + B)i,j = ai,j + bi,j if ai,j 	= ∗ and bi,j 	= ∗, and (A + B)i,j = ∗ otherwise. Our
tomographical problem can be formally stated as follows.

Question 1.2. Given a partial matrix A ∈ Gm×n
∗ and a matrix B ∈ G(m−1)×(n−1),

under what conditions is A consistent with B? If A is consistent with B, when does
it have a unique completion C so that σ−(C) = B?

If every entry of A is ∗, then Question 1.2 reduces to the case with no a pri-
ori information. Similar questions on matrix completion have been asked in different
contexts. Each problem seeks conditions on a partial matrix that guarantee a comple-
tion with a specific property. Some look for completions with a prescribed spectrum
or characteristic polynomial [2], while others look for completions that are positive
(semi)definite or a have a specified rank [10].

To address Question 1.2, we introduce some terminology. For each partial ma-
trix A ∈ Gm×n

∗ , we define the bipartite graph HA on the bipartition
[{xi : i ∈

[m]}, {yi : i ∈ [n]}] with the edge (xi, yj) if ai,j 	= ∗ (see Figure 1). A sequence
c = (i1, j1, i2, j2, . . . , jk, i1) is a cycle in A if w(c) = (xi1 , yj1, . . . , yjk , xi1) is a cycle in
HA, in other words, if w(c) is a closed walk in HA that does not repeat edges. A cycle
c is minimal if the subgraph of HA induced by {xi1 , yj1, . . . , yjk} does not contain
a cycle on fewer vertices. A cycle (i1, j1, i2, j2, . . . , jk, ik+1 = i1) in A is balanced if∑k

r=1(air ,jr − air+1,jr) = 0, and A is cycle-balanced if every cycle in A is balanced. (If
A contains no cycles, then it is trivially cycle-balanced.) It turns out (see Lemma 3.1)
that we need only check the minimal cycles to verify that A is cycle-balanced. We
denote the edge set of H by E(H) and the number of connected components of H
by c(H). Our second theorem answers Question 1.2 and counts the exact number of
completions of A that collapse to B.
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Theorem 1.3. Let G be an additive abelian group, A be a partial matrix in Gm×n
∗ ,

and B̃ be any matrix in the preimage of B ∈ G(m−1)×(n−1) under σ−. The partial
matrix A is consistent with B if and only if A − B̃ is cycle-balanced; in this case,
A has a unique completion C satisfying σ−(C) = B if and only if HA is connected.
Moreover, if |G| = k and A is consistent with B, then there are exactly kc(HA)−1

completions of A that are preimages of B under σ−.

A similar statement is true for the collapsing sum.1 The proof of Theorem 1.3
that appears in Section 3 is valid even when A has a countably infinite number of
rows or columns.

2 Kernel of the balanced collapsing sum

Given two matrices A,B ∈ Gm×n, we write A ∼ B if there are vectors u ∈ Gm×1 and
v ∈ Gn×1 so that A = B + ueTn + emv

T . In other words, A ∼ B if and only if there
exist u1, . . . , um, v1, . . . , vn ∈ G so that ai,j = bi,j +ui+ vj for every (i, j) ∈ [m]× [n].
The relation ∼ is an equivalence and a congruence: If A ∼ B, then A+ C ∼ B + C
for any matrix C ∈ Gm×n. The equivalence class of A under ∼ is denoted [A], and
the equivalence class of 0m×n is denoted Km×n.

Lemma 2.1. The balanced collapsing sum σ− is constant on equivalence classes. That
is, if A ∼ B, then σ−(A) = σ−(B).

Proof. It suffices to prove that σ−(emu
T ) = σ−(ve

T
n ) = 0 for all u ∈ Gn×1 and v ∈

Gm×1. A generic element of σ−(emu
T ) is

σ−(emu
T )p,q = σ−

(
uq uq+1

uq uq+1

)
= 0.

The calculation for veTn is similar.

It will be useful to have a canonical representative for each equivalence class.

Definition 2.2. Let A ∈ Gm×n. The m× n matrix A is defined by

ai,j = ai,j − ai,1 − a1,j + a1,1.

Setting ui = −ai,1 and vj = −aj,1+a1,1, we have ai,j = ai,j +ui+ vj, which shows
that A ∼ A. A straightforward calculation shows that A = B if A ∼ B, so A is
indeed a well-defined representative of [A], the unique element of [A] whose first row
and column contain only zeros.

1Let G be an additive abelian group, A be a partial matrix in Gm×n∗ , and B̃ be any matrix in the
preimage of B ∈ G(m−1)×(n−1) under σ. There is a completion of A whose collapsing sum is B if and
only if A′ := A−B̃ satisfies

∑k
r=1(a

′
ir ,jr

+a′jr ,ir+1
) = 0 for every cycle (i1, j1, i2, j2, . . . , jk, ik+1 = i1)

in A; in this case, A has a unique completion C satisfying σ(C) = B if and only if HA is connected.
Moreover, if |G| = k and A is consistent with B, then there are exactly kc(HA)−1 completions of A
that are preimages of B under σ.
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Proposition 2.3. Let m,n ≥ 2 and σ− : G
m×n → G(m−1)×(n−1). The kernel of σ− is

exactly Km×n.

Proof. Since K = 0 for every K ∈ Km,n, we need to show that σ−(A) = 0 if and
only if A = 0. Lemma 2.1 implies that σ−(A) = σ−(A), and clearly A = 0 implies
σ−(A) = 0. If A 	= 0, let ap,q be a nonzero entry of A such that p+ q is minimal. Then
p, q > 1 and ap−1,q−1 = ap−1,q = ap,q−1 = 0, so σ−(A)p−1,q−1 = ap,q 	= 0; therefore
σ−(A) 	= 0.

We note that Frosini and Nivat [4, Theorem 7] prove Proposition 2.3 in the special
case of binary matrices. We next give a construction to show that σ− is surjective.

Definition 2.4. Let A ∈ Gm×n. The (m+ 1)× (n + 1) matrix A+ is defined by

a+p,q =
∑
i<p
j<q

ai,j ,

where the empty sum has value 0.

Example 2.5. If A =
(
2 −1
1 3

) ∈ Z
2×2, then

A+ =

⎛⎝0 0 0
0 2 1
0 3 5

⎞⎠ . ♦

Lemma 2.6. If m,n ≥ 2 and A ∈ Gm×n, then σ−(A
+) = A.

Proof. The proof is straightforward calculation:

σ−(A
+)p,q =

⎛⎝∑
i<p
j<q

ai,j −
∑
i<p+1
j<q

ai,j

⎞⎠−
⎛⎝∑

i<p
j<q+1

ai,j −
∑
i<p+1
j<q+1

ai,j

⎞⎠
=
∑
j<q

ap,j −
∑

j<q+1

ap,j

= ap,q.

With this, the proof of the first theorem is swift.

Proof of Theorem 1.1. The map σ− : G
m×n → G(m−1)×(n−1) is linear and therefore a

homomorphism. Lemma 2.6 shows that σ− is surjective. The kernel of σ− is Km,n by
Proposition 2.3, so applying the Fundamental Homomorphism Theorem finishes the
proof.

Thus, each equivalence class in Gm×n is the preimage of exactly one element of
G(m−1)×(n−1); namely, [A+] is the preimage of A. We can use Theorem 1.1 to count
the number and size of equivalence classes of Gm×n for finite groups G.
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Corollary 2.7. Let G be a finite abelian group of order k. There are exactly
k(m−1)(n−1) equivalence classes in Gm×n, each of size km+n−1.

In particular, for every B ∈ G(m−1)×(n−1), there are exactly km+n−1 matrices
A ∈ Gm×n such that σ−(A) = B.

3 Completion of partial matrices

This section consists mainly of a proof of Theorem 1.3. To recall the setup: A is an
m×n partial matrix, B ∈ G(m−1)×(n−1), and B̃ is a completion of A such that σ−(B̃) =
B. Also, we call the partial matrix A cycle-balanced if

∑k
r=1(air ,jr − air+1,jr) = 0 for

every cycle (xi1 , yi1, . . . , xk, yk, xk+1 = x1) in the bipartite graph HA.

We will need the following two lemmas.

Lemma 3.1. A partial matrix A is cycle-balanced if and only if every minimal cycle
in A is balanced.

Proof. If A is cycle-balanced, then every cycle in A is balanced, so in particular the
minimal cycles are. Now suppose that every minimal cycle is balanced. We prove that
every cycle is balanced by induction. Any 4-cycle is minimal and therefore balanced;
now let 2k ≥ 6 and assume that every cycle of length less than 2k is balanced.
Choose any cycle γ = (i1, j1, . . . , ik, jk, ik+1 = i1) of length 2k. If γ is minimal, then
it is balanced. Otherwise there is an edge (xis , yjt) in HA with t /∈ {s − 1, s} (mod
k). We can choose the starting vertex of γ so that s = 1. Then (i1, j1, . . . , it, jt, i1)
and (i1, jt, it+1, . . . , ik, jk, i1) are two cycles of length strictly less than 2k, so both
are balanced. We can decompose the sum

∑k
r=1(air ,jr − air+1,jr) over these smaller

cycles:(
t−1∑
r=1

(air ,jr − air+1,jr) + (ait,jt − ai1,jt)

)
+

(
(ai1,jt − ait,jt) +

k∑
r=t

(air,jr − air+1,jr)

)
.

Since the smaller cycles are balanced, both sums are 0, which shows that γ is bal-
anced.

Lemma 3.2. Let u, ũ ∈ Gm×1 and v, ṽ ∈ Gn×1. Then ueTn + emv
T = ũeTn + emṽ

T if
and only if u = ũ+ gem and v = ṽ − gen for some g ∈ G.

Proof. It is straightforward to check that the substitution works for all g ∈ G. For
the other direction, we have

ui + vj = ũi + ṽj (1)

for all (i, j) ∈ [m]× [n]. Writing u1 = ũ1 + g for some g ∈ G and evaluating (1) with
i = 1 gives vj = ṽj − g for all j ∈ [n]; inserting this into (1) shows that ui = ũi + g
for all i ∈ [m].
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Proof of Theorem 1.3. The theorem consists of solving the equation σ−(X) = B,

where X is a completion of A. Since this is equivalent to solving σ−(X − B̃) = 0, we

may assume that B = 0 by replacing A with the partial matrix A − B̃. With this
substitution, we need only prove the theorem with an arbitrary partial matrix A and
B = B̃ = 0.

We first prove that A is consistent with 0 if and only if A is cycle balanced. To
that end, assume that A is consistent with 0 and let C be a completion of A so that
σ−(C) = 0. Every cycle in C is also a cycle in A, so it suffices to show that C is
cycle-balanced. Since HC is the complete bipartite graph, the minimal cycles in HC

are the 4-cycles. For any 1 ≤ i1 < i2 ≤ m and 1 ≤ j1 < j2 ≤ n, we have

ci1,j1 − ci2,j1 + ci2,j2 − ci1,j2 =

i2−1∑
r=i1

j2−1∑
k=j1

σ−(C)r,k = 0,

since the sum is telescoping. By Lemma 3.1, C is cycle-balanced.

To prove the converse, assume that A is cycle-balanced and that HA has bi-
partitions X = {xi : i ∈ [m]} and Y = {yi : i ∈ [n]}; we want to construct a
completion C of A that satisfies σ−(C) = 0. (Example 3.3, which follows the proof,
walks through a particular instance of the following construction.) Let KX,Y be the
complete graph with bipartition [X, Y ]. If HA is connected, set A′ = A. Otherwise,
let S ⊆ E(KX,Y ) \ E(HA) be a subset of edges such that the graph with edge set
E(HA)∪S is connected and contains no cycles not in E(HA); we define a new partial
matrix A′ by setting

a′i,j =

⎧⎪⎨⎪⎩
ai,j if ai,j 	= ∗
0 if (xi, yj) ∈ S

∗ otherwise.

The matrix A′ is cycle-balanced, since any cycle in A′ is a cycle in A. For any pair
(s, t) ∈ [m]× [n], let (xs = xi1 , yj1, . . . , xik , yjk = yt) be a path in HA′. We define the
matrix C by

cs,t =

k∑
r=1

a′ir ,jr −
k−1∑
r=1

a′ir+1,jr
. (2)

This sum is independent of the specific path from i to j because A is cycle-balanced.
Moreover, C is a cycle-balanced completion of A. Taking the cycle (i, j, i+1, j+1, i)
in C shows that σ−(C)i,j = 0.

In the remainder of the proof, we assume that A is consistent with B and that C
is a completion of A with σ−(C) = B. We now prove that C is the unique completion
of A satisfying σ−(C) = B if and only if HA is connected. Therefore, let C ′ be a
completion of A such that σ−(C

′) = B. By Proposition 2.3, there are two vectors
u ∈ Gm×1 and v ∈ Gn×1 such that C ′ − C = ueTn + emv

T . Setting D = C ′ − C gives
di,j = ui + vj for all (i, j) ∈ [m] × [n]. Let I = {(i, j) : (xi, yj) ∈ E(HA)}. Since C ′

and C are both completions of A, we have di,j = 0 for each (i, j) ∈ I, which implies
that ui = −vj for each (i, j) ∈ I. If xs and yt are in the same component of HA,
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there is a path (xs = xi1 , yj1, . . . , xj� , yj� = yt). Then uir = −vjr = uir+1 for each r,
so us = −vt by induction.

If HA has only one component, then ui = −vj for every (i, j) ∈ [m] × [n], so
D = 0. Therefore C = C ′, which shows that A has a unique completion in the
preimage of B. If HA has at least two components, we may arbitrarily assign an
element of G to each component of HA; this uniquely determines the entries of u
and v. It is straightforward to check that for any such assignment, C ′ is indeed a
completion of A that satisfies σ−(C

′) = B. By Lemma 3.2, changing the value in
exactly one component changes the matrix D. Therefore A has multiple completions
in the preimage of B.

If |G| = k, then there are kc(H) possible values for (u, v). Lemma 3.2 shows
that a given matrix ueTn + emv

T is produced by exactly k pairs, so there are kc(H)−1

completions of A whose balanced collapsing sum is B.

Example 3.3. Suppose G = Z5 and set

A =

⎛⎝0 ∗ 1 ∗
∗ ∗ ∗ 2
1 ∗ 2 ∗

⎞⎠ .

We use the process described in the proof of Theorem 1.3 to construct a completion
C of A such that σ−(C) = 0. The graph HA is

x3x2x1

y4y3y2y1

We note that A is cycle-balanced. We then choose a set of edges to add that (1)
results in a connected graph and (2) does not create any new cycles. The set S =
{(x2, y2), (x2, y3)} works. Placing zeros in the corresponding entries of A yields the
matrix

A′ =

⎛⎝0 ∗ 1 ∗
∗ 0 0 2
1 ∗ 2 ∗

⎞⎠ .

We then fill in the remaining entries using formula (2). For example, (x1, y3, x2, y2) is
a path from x1 to y2, so formula (2) defines c1,2 = (a1,3 + a2,2)− a2,3 = 1. The other
entries can be computed in a similar manner to obtain

C =

⎛⎝0 1 1 3
4 0 0 2
1 2 2 4

⎞⎠ ,

and it is a simple matter to confirm that σ−(C) = 0. ♦

Although the notion of connectedness featuring in Theorem 1.3 is natural from a
graph-theoretic point of view, it can seem unexpectedly finicky from the perspective
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of matrices, so we conclude with a few comments. It is possible forHA to be connected
when only m+n−1 elements of an m×n partial matrix A are specified (for example,
those in the first row and column of A); on the other hand, HA can be disconnected
even when mn−min{m,n} elements of A are specified (the first m− 1 rows or the
first n − 1 columns). Moreover, connectedness is not a stable condition: For each
integer m+n−1 ≤ k ≤ mn−min{m,n}+1, there is an m×n partial matrix A with
k specified entries such that HA is connected, but deleting a single specified entry of
A disconnects HA. There do, however, exist partial matrices that are quite stable:
If the first k rows and columns of A are specified, then HA remains connected after
converting any k − 1 known entries to blank ones.
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