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Abstract

The Oberwolfach Problem OP (F ) — posed by Gerhard Ringel in 1967 —
is a paradigmatic Combinatorial Design problem asking whether the com-
plete graph Kv decomposes into edge-disjoint copies of a 2-regular graph
F of order v. In this paper we provide all the necessary equipment to
generate solutions to OP (F ) for relatively small orders by using so-called
difference methods. From the theoretical standpoint, we present new
insights on the combinatorial structures involved in the solution of the
problem. Computationally, we provide a full recipe whose base ingre-
dients are advanced optimization models and tailored algorithms. This
algorithmic arsenal can solve the OP (F ) for all possible orders up to 60
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with the modest computing resources of a personal computer. The 20
new orders, from 41 to 60, encompass 241 200 instances of the Oberwol-
fach Problem, which is 22 times greater than those solved in previous
contributions.

1 Introduction

Gerhard Ringel proposed the Oberwolfach Problem (OP ) for the first time in 1967
[18], while attending a conference at the Mathematical Research Institute of Ober-
wolfach, in Germany. In conferences held at the Institute, participants usually dine
together in a room with circular tables of different sizes, and each participant has an
assigned seat. Ringel asked whether there exists a seating arrangement for an odd
number v of people and (v − 1)/2 meals so that all pairs of participants are seated
next to each other exactly once.

Formally, given a spanning 2-regular subgraph (a 2-factor) F of Kv (the complete
graph of v vertices), the Oberwolfach problem OP (F ) asks whether Kv with v odd
decomposes into (v − 1)/2 edge-disjoint copies of F . We write F = [m1`1, . . . ,

mt`t]
whenever F is a 2-regular graph with mi cycles of length `i, and refer to mi as the
multiplicity of the cycle length `i, for i = 1, . . . , t. In this case, we will often write
OP (m1`1, . . . ,

mt`t) in place of OP (F ). For the sake of simplicity, we omit any `i for
which mi = 0, and we remove the superscript when mi = 1 for a given i.

In 1979, Huang et al. [21] extended the problem to the case where v is even.
Although OP has drawn interest, and much progress has been made over the past
few years (see, for instance, [5, 6, 8, 17, 19, 22, 27]), a complete solution has yet to
be found. A survey of the most relevant results on this problem, updated to 2006,
can be found in [13].

Solutions to OP can often be found by focusing on those having symmetries with
a particular action on the vertex set. By knowing the structure of these solutions, the
problem of finding edge-disjoint 2-factors turns into finding a few well-structured 2-
factors. The so-called difference methods – a family of algebraic tools – set the rules to
construct such well-structured 2-factors. Difference methods were introduced for the
first time by Anstice [3] to generalize solutions to Kirkman’s 15 schoolgirls problem,
one of the paradigmatic problems in Combinatorial Design Theory. Arranging seats
around tables is not new for Operations Research as well. Garćıa et al. [16], for
instance, introduced a table placement problem aiming to maximize a measure of
social benefit.

The baseline of this work is the contribution of Deza et al. [15]. There, authors
solved OP for 18 ≤ v ≤ 40, modeling difference methods with undisclosed algorithms
and tests which were carried out on a high-performance computing cluster [12].

In this paper, we provide all the necessary equipment to generate solutions to an
Oberwolfach problem of a relatively small order; not only on the theoretical side but,
most importantly and differently from Deza et al. [15], also on the computational
side. Indeed we give a full recipe whose base ingredients are advanced optimization
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algorithms rather than an exhaustive search. These algorithms allowed us to rapidly
obtain the desired solutions for all possible orders v ≤ 60 with a personal computer
which, we point out, is a much lower performance threshold compared to a high-
performance computing cluster of Deza et al. [15] in 2008. We also recall that the
number of generated solutions increases with the order of the problem, for instance,
from 1756 partitions of v = 40 to 33552 partitions of v = 60.

Our approach blends combinatorial design theory with optimization and compu-
tation paradigms. We model difference methods as Constraint Programming (CP )
problems, and leverage on state-of-the-art algorithms to find the combinatorial so-
lutions. We were able to generate complete solutions for OP when v ≤ 60. Our ap-
proach solves a generic instance within 5 seconds on a standard computer, compared
to the need for a high-performance computing cluster [15]. The extensive computa-
tional testing allowed us to derive new theoretical results for OP , in particular, a new
necessary condition was detected on the existence of 1-rotational solutions. More-
over, an Integer Programming (IP ) model verifies the non-existence of solutions for
OP (23, 5).

In a nutshell, the above optimization tools enabled us to solve large OP instances
in limited CPU times and at the same time to derive theoretical results for general
classes of instances. We believe such an approach could be generalized to a broader
class of Combinatorial Design problems.

The paper proceeds as follows. In Section 2, since this work is at the intersection
of two distinct domains, Combinatorial Design Theory and Combinatorial Optimiza-
tion, we introduce a standard tool pertaining to the former (difference methods) by
means of an illustrative example. Section 3 presents how to construct well-structured
2-factors for the solution of OP (F ). Section 4 shows how to translate into CP mod-
els the findings of section 3. Section 5 provides the outcome of the experimental
testing. Section 6 concludes the paper with final remarks.

2 Difference methods and OP (F ): an illustrative example

Difference methods exploit the symmetries of a 2-factorization and tell us how to
construct one well-structured 2-factor which yields, by translation, the complete
set of 2-factors giving a solution to OP (F ). To explain it in the context of the
Ringel’s informal formulation, we can construct, for instance, the first meal seating
arrangement (the desired well-structured 2-factor) and derive/translate from it the
remaining ones. In the following example, we provide a well-structured 2-factor for
OP (3, 6), and show how the remaining meals can be derived starting from it.

Figure 1 depicts the seating arrangement of the first meal (see Section 3.1, Propo-
sition 3.1) of OP (F ), where F contains two cycles (dinner tables) of size 3 and 6,
thus F = [3, 6] and v = 9.

We label the vertices of F with the elements of Z8 ∪ {∞} and for each edge
incident with two vertices different from ∞, say i and j, the two differences i − j
and j− i (both mod (v−1)) have to be calculated. For instance, if we consider the
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Figure 1: A first meal arrangement for OP (F = [3, 6]).

vertices labeled 2 and 1 in Figure 1, we obtain the differences 1 and −1 ≡ 7 (mod 8).
The list ∆F of all possible differences between adjacent vertices of F , different from
∞, contains every element in {1, 2, . . . , 7} with multiplicity 2. Furthermore, F + 4 =
F , where F + 4 is the graph obtained from F by adding 4 to every vertex but ∞.
In other words, we have found a vertex labeling of F such that ∆F contains every
element in {1, 2, . . . , 7} with multiplicity 2, and F +4 = F . These are the two crucial
conditions which guarantee that F is the sought-after 2-factor (see Proposition 3.1)
which will generate a solution to OP (F ). Indeed, the set F = {F, F+1, F+2, F+3}
of all distinct translates of F (see Figure 2) gives us a set of edge-disjoint copies of
F which decompose K9, that is, a solution to OP (F ).

In the following section we provide conditions to find a well-structured 2-factor F
which guarantee that all its distinct translates yield a solution to OP(F ). In Section
4, these conditions are then reformulated as CP models to be tackled by a solver to
generate solutions (i.e. first meal arrangements).

3 Constructions of well-structured 2-factors

A graph has a 2-factorization if and only if it is regular and of even degree, as Petersen
[23] shows. However, given a particular 2-factor F , if we ask for a 2-factorization
whose factors are all isomorphic to F , then the problem becomes much harder. Our
focus is on constructing 2-factorizations of K∗v which is the complete graph Kv of
order v when v is odd, or Kv − I, i.e. the complete graph Kv minus the 1-factor
I, when v is even. Given a 2-factor F of order v, the Oberwolfach problem on F
(OP (F )) asks for a 2-factorization of K∗v into copies of F .

A solution to OP (F ) exists whenever the order of F is less than 40 [15], except
only when F ∈ {[ 23], [43], [4, 5], [23, 5]}. These are the only known cases in which
the problem is not solvable. We point out that even though Piotrowski [25] self-
cites for a computer-based proof of the non-existence of a solution to OP (23, 5), no
published proof exists. OP (F ) has also been solved when F is a uniform 2-factor
(i.e., F consists of cycles of the same length) [1, 2, 20], when F is bipartite (i.e., F
contains only cycles of even lengths) [1, 5], when F has exactly two cycles [27], or for
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Figure 2: The remaining meals arrangements for OP (F = [3, 6]).

an infinite family of prime orders [6]. In addition, [7, 8, 10] studied solutions having
symmetries with a prescribed action on the vertices, and existence for sufficiently
large v can be found in [17]. Furthermore, a solution to the infinite variant of the
Oberwolfach problem can be found in [14]. However, the problem is still open in
general, and [13, Section VI.12] provides a detailed survey on this subject, updated
to 2006.

3.1 1-rotational solutions to OP (F )

Buratti and Rinaldi [8] construct 1-rotational solutions in the odd case, that is,
2-factorizations of Kv, with v odd, with a well-behaved automorphism group. Let
v = 2n+ 1 be a positive integer, let Z2n denote the group of integers modulo 2n, and
set V = Z2n ∪ {∞}. The list of differences of a subgraph Γ of KV is the multiset
∆Γ of all possible differences between pairs of adjacent vertices of Γ, excluding the
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vertex ∞, namely:

∆Γ =
{
x− y

∣∣ bx, yc ∈ E(Γ \ {∞})
}
. (1)

We use the notation bx, yc to denote an edge between the nodes x and y. Also, for
every g ∈ Z2n, we denote by Γ + g the graph with vertex set V obtained from Γ by
replacing each vertex x 6=∞ with x+ g.

The following result, proven in [8], provides conditions which guarantee the exis-
tence of a solution to OP (F ).

Proposition 3.1. Let F be a 2-regular graph satisfying the following properties:

1. V (F ) = Z2n ∪ {∞},

2. ∆F ⊃ Z2n \ {0},

3. F + n = F .

Then F = {F + g | g ∈ Z2n} is a solution of OP (F ).

A factorization F of K2n+1 constructed as in Proposition 3.1 is called 1-rotational,
since the permutation group G = {τg | g ∈ Z2n} of V , where τg fixes ∞ and maps
x ∈ Z2n to x+ g, is an automorphism group of F whose action on V \ {∞} creates
only one orbit.

In [11, Proposition 2.5] it is shown that if there exists a 2-regular graph F =
[`1, `2 . . . , `s] of order 2n + 1 satisfying the assumptions of Proposition 3.1, then
there exists a solution to OP ([`1 + 1, `2 . . . , `s]) where `1 is the length of the cycle
of F through∞. The following result weakens this condition by showing that `1 can
be the length of any cycle of F provided that it contains a suitable difference.

Proposition 3.2. Let F = [`1, `2 . . . , `s] be a 2-regular graph of order 2n + 1
satisfying the assumptions of Proposition 3.1. If C is an `1-cycle of F such that
∆C contains an element of Z2n of order 2 (mod 4), then there exists a solution to
OP ([`1 + 1, `2 . . . , `s]).

Proof. Let C = (c1, c2, . . . , c`1) be the `1-cycle of F whose list of differences contains,
by assumption, an element x of order u ≡ 2 (mod 4). Without loss of generality, we
can assume that x = c1 − c2.

Let G =
{

2x · i + j | i ∈ {0, 1, . . . , u/2 − 1}, j ∈ {0, 1, . . . , 2n/u − 1}
}

and recall
that, by the definition of order, u is the smallest positive integer such that xu ≡ 0
(mod 2n); hence xu/2 ≡ n (mod 2n). Therefore, it is not difficult to check that

both {G,G + x} and {G,G + n} are partitions of Z2n. (2)

Considering that F satisfies the assumptions of Proposition 3.1, we have that F =
{F + g | g ∈ Z2n} is a solution of OP (F ). By taking into account (2) and recalling
that F + n = F , it follows that F = {F + g | g ∈ G}.
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Now set C ′ = (c1,∞′, c2, . . . , c`1), where ∞′ 6∈ Z2n ∪ {∞}, and let F ′ be the
2-regular graph of order 2n+ 1 obtained from F by replacing C with C ′. Finally, set
F ′ = {F ′+ g | g ∈ G}, where F ′+ g is the graph obtained from F ′ by replacing each
vertex v 6∈ {∞,∞′} with v + g, and set V = Z2n ∪ {∞,∞′}.

In order to prove that OP (F ′) has a solution, we will show that F ′ is a 2-
factorization of K∗2n+2 = KV − I, where I = {b∞,∞′c} ∪ {bg, x+ gc | g ∈ G}. Note
that (2) guarantees that I is a 1-factor of KV . Also, since F ′ contains all the edges
of F except only for bc1, c2c, and considering that

{bc2 + g, c1 + gc | g ∈ G} = {bg, x+ gc | g ∈ G} ⊂ I,

it follows that every edge of KV − I of the form ba, bc with a 6= ∞′ 6= b belongs to
exactly one cycle of F ′. Finally, again by (2) we have that

{
b∞′, c1 +gc, b∞′, c2 +gc |

g ∈ G
}

=
{
b∞′, bc | b ∈ Z2n

}
, therefore every edge of K∗2n+2 of the form b∞′, bc with

b ∈ Z2n belongs to exactly one cycle of F ′. Hence, F ′ is a 2-factorization of K∗2n+2

and this completes the proof.

We now provide two necessary conditions for the existence of a 2-regular graph
satisfying the assumptions of Proposition 3.1.

Proposition 3.3. If F = [ a1`1,
a2`2, . . . ,

as`s] is a 2-regular graph of odd order
2n+ 1 satisfying the assumptions of Proposition 3.1, then

|{i | ai`i is odd}| = 1. (3)

Proof. In [8, Proposition 3.4], the authors show that

1. the cycle of F passing through ∞ has odd length, and

2. if C is any other cycle of F such that C + n = C, then C has even length.

Therefore, if C is an odd length cycle of F not passing through∞, then C 6= C+n ∈
F . In other words, if ai denotes the number of cycles of F of odd length `i, then ai
is even, unless `i is the length of the cycle through ∞ and the assertion follows.

Remark 3.1. Let C be a cycle with vertices in V = Z2n∪{∞} such that C = C+n.
It is not difficult to check that C has one of the following forms:

(a) C = (∞, c1, . . . , cm−1, cm, cm + n, cm−1 + n, . . . , c1 + n),

(b) C = (c1, . . . , cm−1, cm, cm + n, cm−1 + n, . . . , c1 + n), and ∞ 6∈ V (C),

(c) C = (c1, c2, . . . , cm, c1 + n, c2 + n, . . . , cm + n), and ∞ 6∈ V (C).

In the first two cases, the translation by n acts on C as a reflection, while in the latter
case such an action is a rotation. In [8, Proposition 3.7], it is shown in particular
that a 2-factor of KV satisfying the assumptions of Proposition 3.1 contains exactly
one cycle on which the translation by n acts as a reflection, which then coincides
with the cycle through ∞. Therefore, any cycle C of F fixed by n and not passing
through ∞ has the same form as in (c).
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The following result can be seen as a generalization of [9, Theorem 3.2].

Proposition 3.4. Let F be a 2-regular graph of order 2n + 1 and let r denote the
number of cycles in F of even length. If F satisfies the assumptions of Proposition
3.1 and its cycle passing through ∞ has length 3, then either n ≡ 0 (mod 4) or
n−1

2
+ r is an even integer.

Proof. Let F be a 2-regular graph of order 2n+ 1 such that

1. V (F ) = Z2n ∪ {∞},

2. ∆F ⊃ Z2n \ {0},

3. F + n = F .

and let C∞ denote the cycle of F through ∞. By assumption, C∞ has length 3, and
by conditions 1 and 3 we have that C∞ + n = C∞; hence C∞ = (∞, g, g + n) for
some g ∈ Z2n.

Let C1, C2, . . . , Cu be the list of the cycles in F distinct from C∞, with Ci =
(ci,1, ci,2, . . . , ci,`i) for every 1 ≤ i ≤ u. By condition 3, we can assume without loss of
generality that Ci+n = Ci when 1 ≤ i ≤ s, and Ci+n = Ci+t when s+1 ≤ i ≤ s+t,
where u = s + 2t. Hence, for 1 ≤ i ≤ s we have that `i is even, and by Remark 3.1
we obtain that ci,j+`i/2 = ci,j + n for every 1 ≤ j ≤ `i/2. Now set mi = `i/2 when
1 ≤ i ≤ s, otherwise set mi = `i. Also, let di,j = ci,j+1 − ci,j (where the subscript j
is computed modulo `i) and set Di = {di,j | 1 ≤ j ≤ mi} for every 1 ≤ i ≤ s + t.
Considering that any translation preserves the differences, we have that

d ∈ ∆Ci, if and only if d ∈ ±Di.

for every 1 ≤ i ≤ s + t. By recalling condition 2, and considering that ∆C∞ =
{±n} and

∑s+t
i=1mi = n − 1, it follows that Z2n \ {0, n} =

⋃s+t
i=1(±Di). Also, since

ci,1 +
∑mi

j=1 di,j = ci,mi+1, we have that
∑mi

j=1 di,j = n when 1 ≤ i ≤ s, otherwise∑mi

j=1 di,j = 0; hence
∑s+t

i=1

∑mi

j=1 di,j = sn. Finally, considering that Z2n \ {0, n}
contains 2bn

2
c odd integers and −x 6= x for every x ∈ Z2n \ {0, n}, it follows that⋃s+t

i=1Di contains exactly bn
2
c odd integers, therefore

sn ≡
⌊n

2

⌋
(mod 2).

If n is even, then n ≡ 0 (mod 4). If n is odd, then n−1
2
≡ s (mod 2). Denoting

by s′ the number of even length cycles in {Cs+1, Cs+2, . . . , Cs+t} and recalling that
Ci 6= Ci +n ∈ F for s+ 1 ≤ i ≤ s+ t, it follows that the total number of even length
cycles in F is r = s + 2s′, hence n−1

2
≡ r (mod 2), that is, n−1

2
+ r is even, and the

assertion is proven.

Proposition 3.1 tells us how to construct 1-rotational solutions of order 2n + 1.
These can then be used, following Proposition 3.2, to construct solutions of order
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2n+2. Finally, Propositions 3.3 and 3.4 give us necessary conditions for a 1-rotational
solution to exist.

We use the above results to construct 1-rotational solutions to OP (F ) whenever
F is a 2-regular graph of order 4t+ 1, thus n = 2t and t ∈ N. Equation (4) defines F
as the graph containing ui cycles of odd length `i, and wj cycles of even length mj,
for every i ∈ {1, 2, . . . , h} and j ∈ {1, 2, . . . , k}. Recalling the necessary condition in
Proposition 3.3, we have

F = [u1`1, . . . ,
uh `h,

w1 m1, . . . ,
wk mk] : |{i | ui is odd}| = 1. (4)

The graph F must also satisfy Equation (5), which implements Proposition 3.4.

∃!i : (`i = 3 ∧ ui is odd)⇒

2t ≡ 0 (mod 4) ∨

(
2t− 1

2
+

k∑
i=1

wi

)
≡ 0 (mod 2).

(5)

The symmetries stated in Remark 3.1 reduce the labeling problem on F to a
simpler one on a new graph F ∗, the asymmetric version of F , which can be seen as
the union of 2 subsets, namely the set of paths (P) and the set of cycles (C). To
better describe the structure of F ∗, we assume without loss of generality that u1 is
odd, and the remaining ui are even. Hence we can write u1 = 2a1 + 1, ui = 2ai for
every i ∈ {2, 3, . . . , h}, and mj = 2µj for every j ∈ {1, 2, . . . , k}. Thus Equation (6)
describes the structure of the reduced graph F ∗,

F ∗ = C ∪ P , (6)

C = [(`1 + 1)/2,a1 `1,
a2 `2, . . . ,

ah `h] , (7)

P = [[w1µ1, . . . ,
wk µk]], (8)

where P is the graph containing wj paths with µj edges, for every j ∈ {1, 2, . . . , k},
and they are pairwise vertex-disjoint. C also contains a cycle with (`1 − 1)/2 nodes,
namely the one with infinity.

In a more general and intuitive way, the rationale for F ∗ is as follows. On the one
hand, we consider the cycles of odd length in F . If there is an even number ui ≡ 0
(mod 2) of cycles of odd length `i, these contribute in F ∗ with ui/2 cycles of length
`i in C. The only leftover cycle is of odd length `1 (since the number of nodes is
4t+ 1) and it is the one passing through∞, which contributes with an open chain of
length (`1−1)/2 in P . On the other hand, an even number wj ≡ 0 (mod 2) of cycles
of even length mj are represented in F ∗ as wj/2 cycles of length mj in C, similar to
an even number of odd cycles. Any cycle of even length mj with single multiplicity
wj = 1 becomes a chain of length mj/2 in P .

Note that the number of edges of F ∗ is 2t − 1. We seek to determine a vertex
labeling of F ∗ with the elements of Z4t such that

1. V (F ∗) contains exactly one element in {x, x+ 2t}, for every x ∈ Z4t,
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2. ∆F ∗ = Z4t \ {0, 2t}.

This labeling of the vertices of F ∗ leads to a labeling of F satisfying Proposition 3.1,
and hence to a solution for OP (F ) (see Figure 3).

3.2 (Almost) 2-rotational solutions to OP (F )

Here we describe a method to construct solutions to OP (F ) in all cases where there
is no 1-rotational solution and, in particular, when the necessary conditions of Propo-
sitions 3.3 and 3.4 do not hold.

Let v = 2n+1 be a positive integer, and set V =
(
{0, 1}×Zn

)
∪ {∞}. For every

subgraph Γ of KV and for every i, j ∈ {0, 1}, let ∆ijΓ be the list of (i, j)-differences
of Γ defined below:

∆Γij =
{
x− y

∣∣ b(i, x), (j, y)c ∈ E(Γ \ {∞})
}
. (9)

For every g ∈ Zn we denote by Γ + g the graph with vertex set V obtained from Γ
by replacing each vertex (i, x) with (i, x+ g).

The following result provides sufficient conditions for the existence of a solution
to OP (F ).

Proposition 3.5. Let F = [`1, `2 . . . , `s] be a 2-regular graph of order 2n+ 1 satis-
fying the following conditions:

1. V (F ) =
(
{0, 1} × Zn

)
∪ {∞},

2. the vertices adjacent to ∞ are of the form (0, x0), (1, x1) for some x0, x1 ∈ Zn,

3. if n is odd, then ∆00F = ∆11F = Zn \ {0} and ∆01F = Zn,

4. if n is even, then:

(a) F contains the path P = b(0, 0), (0, n/2), (1, n/2), (1, 0)c in one of its cycles,

(b) ∆ij(F − P ) = Zn \ {0, n/2} for every (i, j) ∈ {(0, 0), (0, 1), (1, 1)}.

Then there exists a solution of OP ([`1, `2 . . . , `s]). Furthermore, if C is an `1-
cycle of F such that ∆01C contains an integer distinct from n/2, then there exists a
solution to OP ([`1 + 1, `2 . . . , `s]).

Proof. Let F = {F + g | g ∈ [1, n]} when n is odd, otherwise let F = {F +
g, F ∗ + (n/2 + g) | 1 ≤ g ≤ n/2}, where F ∗ is the 2-regular graph obtained
by replacing the path P (which is contained in F by condition 4a) with P ∗ =
b(0, 0), (1, n/2), (0, n/2), (1, 0)c. It is important to notice that in this case

F − P = F ∗ − P ∗. (10)

We claim that F is a solution of OP (F ). By condition 1 and considering that the
total number of edges (counted with their multiplicity) covered by F is n|F | =
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n(2n+ 1) = |E(K2n+1)|, to prove the assertion it is enough to show that every edge
of KV , with V =

(
{0, 1} × Zn

)
∪ {∞}, is contained in some 2-factor of F .

Denoting with (0, x0) and (1, x1) the neighbours of ∞ in F (condition 2), we
have that b∞, (i, a)c ∈ F − xi + a for every (i, a) ∈ V \ {∞}. By recalling that (10)
holds when n is even, it follows that every edge of KV incident to∞ belongs to some
2-factor of F .

Now let (i, a) and (j, b) be two distinct vertices of V \ {∞} such that a− b 6= n/2
for n even. By conditions 3 and 4b, there exists an edge of F , say b(i, a′), (j, b′)c such
that a′−b′ = a−b. It follows that b(i, a), (j, b)c = b(i, a′), (j, b′)c+(b−b′) ∈ F+(b−b′).
By taking into account (10) for n even, we have that b(i, a), (j, b)c belongs to some 2-
factor of F . It is not difficult to check that every edge of the form b(i, a), (j, a+n/2)c,
with 1 ≤ a ≤ n/2, is contained in P + a or P + (n/2 + a). Hence every edge of KV

is contained in some 2-factor of F which is therefore a solution to OP (F ).

Now let C = (c0, c1, . . . , c`1 − 1) be the `1-cycle of F such that ∆01C contains
an element distinct from n/2; in other words, C contains an edge of the form
b(0, y0), (1, y1)c with y0 − y1 6= n/2; hence, this edge does not belong to P . Without
loss of generality, we can assume that c0 = (0, y0) and c1 = (1, y1).

Set H and H∗ be the 2-regular graphs of order 2n + 2 obtained from F and
F ∗, respectively, by replacing the edge bc0, c1c with the 2-path bc0,∞′, c1c, where
∞′ 6∈ V . Also, I = {b∞,∞′c} ∪ {bc0 + g, c1 + gc | 1 ≤ g ≤ n} is clearly a 1-factor of
K2n+2 = KV ∪{∞′}. Finally, let H = {H + g | g ∈ [1, n]} when n is odd, otherwise let
H = {H + g,H∗ + (n/2 + g) | 1 ≤ g ≤ n/2}.

We claim that H is a solution to OP ([`1 + 1, `2 . . . , `s]). Since C is also a
cycle of F ∗ for n even, both H and H∗ are 2-regular graphs of K2n+2 isomorphic
to [`1 + 1, `2 . . . , `s]. Also, considering that F is a 2-factorization of KV , every
edge of KV ∪{∞′} − I not incident to ∞′ is contained in some 2-factor of H. Since
H − P = H∗ − P ∗ and b∞′, (i, a)c = b∞′, cic + (a − yi), it follows that every edge
incident to ∞′ belongs to some 2-factor of H, therefore H provides a solution to
OP ([`1 + 1, `2 . . . , `s]).

A factorization F of K2n+1 = KV , with V = ({0, 1}×Zn)∪ {∞}, constructed as
in Proposition 3.5, when n is odd, is called 2-rotational, since the permutation group
G = {τg | g ∈ Zn} of V , where τg fixes ∞ and maps (i, x) ∈ V \ {∞} to (i, x+ g), is
an automorphism group of F whose action on V \ {∞} creates two orbits of size n.

The idea of constructing 2-factorizations of K2n+1 with n even, as described in
Proposition 3.5, was first presented in [15].

4 Solving instances of the Oberwolfach Problem

4.1 Computing 1-rotational solutions

Recalling the content of Section 3.1, we propose a linear-time algorithm that imple-
ments Proposition 3.3 and the related Remark 3.1, and reduces F to F ∗. Afterward,
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CP solves the problem over F ∗, and therefore the labeling of F is retrieved.
Algorithm 1 starts by reducing F to F ∗ with lines (5-8), where the only unpaired
cycle (ui = 1 mod 2 as of Equation 4) of odd length li reduces to a cycle of length
(li − 1)/2 in F ∗ (symmetry of case a). This latter cycle contains node ∞. In lines
(9-12), a pair of 2 isomorphic (ui > 1) cycles of odd lengths la and lb is reduced to a
single cycle of length li = la in F ∗ (symmetry of case c). In the same way, in lines
(15-17), a pair of 2 isomorphic (wi > 1) cycles of even length ma = mb is reduced to
a single cycle of length mi = ma in F ∗ (symmetry of case c). In lines (18-21), the
remaining unpaired cycles (wi = 1) of even lengths mi are reduced to open chains
of length mi/2 in F ∗ (symmetry of case b). We may derive F from F ∗ by an inverse
constructive process.

Algorithm 1: Reducing to F ∗

1: Input: The original graph F

2: Output: The transformed version of the graph, F ∗

3: infinite=false, and VCP = DCP =0

4: for i in ui do . Iterate through odd-length cycles

5: if ui ≡ 1 (mod 2) && infinite=false then . The cycle with infinite

6: Put a chain of length (li − 1)/2 in F ∗ in position 0;

7: ui −−; VCP + = (li − 1)/2; DCP = li/2− 2;

8: infinite=true;

9: else . ui > 1. Pair of odd-length cycles. Simplify one.

10: Put a cycle of length li in F ∗;

11: ui = ui − 2; VCP + = li; DCP = li;

12: end if

13: end for

14: for i in wi do . Iterate through even-length cycles.

15: if wi > 1 then . Pair of even-length cycles. Simplify one.

16: Put a cycle of length mi in F ∗;

17: wi = wi − 2; VCP + = mi; DCP = mi;

18: else wi = 1 . Treat the cycle as a chain of half length.

19: Put a chain of length mi/2 in F ∗;

20: wi −−; VCP + = mi/2; DCP = mi/2;

21: end if

22: end for

23: return F ∗

Following the reduction, the F ∗ labeling problem (F ∗ LP) aims at finding a
labeling for F ∗ so that there is a solution to the complete OP (F ).

Problem 4.1 (F ∗ Labeling). Let F ∗ = (V,E) be a graph of order |V (F ∗)| = γ + 1,
and let vi ∈ V be an element in G∪ {∞} where G = Z2γ. Also, let F ∗ = O ∪C with
O set of open chains and C set of closed cycles. For each node i ∈ V̄ = V \{∞} the
F ∗ Labeling Problem asks to assign a label ni ∈ G so that the following conditions
hold:

1. Each element in the set Ṽ receives a unique label from G.
nα 6= nβ for all nα, nβ ∈ V̄ .

2. The set V̄ contains either label nα or its γ-translated label.
nα ∈ V̄ ∨ nβ = nα + γ (mod 2γ) ∈ V̄ with nα ∈ Z2γ.
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3. ∆F ∗ has cardinality λ = 2γ − 2 and contains all the elements in G\{0, γ} with
multiplicity 1. |∆F ∗| = 2(γ − 2) ∧∆F ∗ = G\{0, γ}.

The corresponding CP model (11-17) describes (F ∗ LP).

We remark that alldifferent and card are typical CP operators on arrays of ele-
ments [4]. The first operator requires all array elements to exhibit different values.
The second one, which takes an additional integer argument value c, imposes the
cardinality of the integer value c in the given array.

V = {ni | ni ∈ G}, (11)

alldifferent(V) dom(V ) = [0, 2γ), (12)

card(V |ni) + card(V |(ni + γ (mod 2γ))) = 1 for all ni ∈ Zγ, (13)

D = dC ∪ dO, (14)

dC = {(nα − nβ (mod 2γ))} for all α, β ∈ V ∧ bα, βc ∈ C, (15)

dO = {ωi − φ, φ− ωi (mod 2γ)} for all oi = [ω1, . . . , ωi] ∈ O, (16)

φ = ω1 + γ (mod 2γ),

alldifferent(D) dom(D) = (0, 2γ)\{γ}. (17)

Equations (11)-(12) enforce Condition (1) in (F ∗ LP), while (13) enforces Con-
dition (2) for γ-translated labels. The difference-set is split into two subsets, as in
Equation (14): dC in (15) for the edges over F ∗, and dO for open chains in (16). The
virtual label φ is reported in the latter subset. Finally, Constraint (17) enforces Con-
dition (3) in (F ∗ LP). Therefore, the problem of labeling F ∗ collapses to a feasible
assignments of set V , represented in (11).

Example 4.1. (referring to Problem 4.1) Consider an OP (F = [5,2 3,2 4, 6]) of
order 4t + 1 = 25 with t = 6. F reduces to F ∗, and the simplified instance is
OP (F ∗ = [3∞, 3, 4, 3c]) where O = [3c] and 3∞ is the cycle with ∞. Therefore
γ = 12 and nodes in V (F ∗) acquire their labels from Z24 ∪ {∞}. Figure 3 represents
the reduced F ∗, with the virtual node 12. ∆F ∗ = G\{0, 12}, hence the labeling is a
valid solution for the (F ∗ LP). Figure 4 represents the corresponding labeling for F .

∞

9

11

2,22 5

6

22

1,23

8,16

7,17

2 7

48

5,19

3,21

4,20

6,18 0 13 3 12
11,13 10,14 9,15

Figure 3: F ∗ instance for F = [5,2 3,2 4, 6].
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Figure 4: F instance derived from F ∗ = [3∞, 3, 4, 3c].

A 2-factor F of order 4t + 1 which generates a 1-rotational solution for OP (F )
satisfies Proposition 3.1, 3.3, and 3.4. Correspondingly, a solution of order 4t+2 can
be derived from F , according to Proposition 3.2, and its polynomial-time computa-
tion works as follows. Given F = [l1, l2, ..., ls] and F ′ = [l1 + 1, l2, ..., ls], a new node
∞′ joins the cycle l1. The new node replaces a path P = bc1, c2c ∈ l1 with a new
path P ∗ = bc1,∞′, c2c in the cycle l1. Therefore, the difference-set of F ′ omits values
c1 − c2 and c2 − c1 (in modulo). For our computational tests, node ∞′ is arbitrarily
inserted between two nodes c1, c2 so that c1 − c2 = c2 − c1 mod 2t. Solutions of
order 4t+ 2 require the same computational effort as 1-rotational instances of order
4t+ 1. Moreover, we highlight how multiple instances of order 4t+ 2 originate from
the same instance of order 4t+ 1 (see Example 4.2).

Example 4.2. Consider two instances of order 4t + 2, such as OP (19, 4, 3) and
OP (18, 5, 3) with t = 6. Both the instances originate from OP (18, 4, 3), of order
4t+ 1.

4.2 Computing (almost) 2-rotational (n odd)

This class of solutions derives from Proposition 3.5 (see also Section 3.2). Since that
proposition distinguishes between odd and even values of n, we present the approach
for odd values of n, and discard Condition (4) of Proposition 3.5. For even values of
n, see the Appendix (6.1).

Given the 2-regular graph F = (V,E) of order 2n+ 1, recalling that n is odd, we
write n = 4t+3 where t ∈ N. The set V = ({0, 1}×G) ∪ {∞} represents nodes labels,
where G is the additive group Z2t+1. Without loss of generality,∞ lies in the longest
cycle of F . There are 3 difference-sets, as Condition 3 of Proposition 3.5 states. Each
difference bα, βc ∈ E(F ) goes into a set depending on {0, 1} labels of both α and β.
We propose a two-step approach that initially determines the first labels and then
the second ones. Once the first labels are determined, the problem resembles a 1-
rotational problem where the decision variables are in a set of integers. On the other
side, there are 3 difference-sets, as described by Equation (9). The first-step solution
provides information about the type of edge (e.g., bα = (i, a), β = (i, b)c | a, b ∈ G is
in the difference-set ∆Fii), and the second-step exploits such knowledge.

The Binary Labeling Problem (BLP) is the first-step subproblem, and asks to
label each node i ∈ V (F )\{∞} with a coordinate ci ∈ {0, 1}, namely the binary label.
Once the solution of (BLP) is given, the Group Labeling Problem (GLP) seeks to
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assign a second coordinate ni ∈ G, namely the group label, to each node, so that
Condition 3 of Proposition 3.5 holds. Differences of the type ∆01F are directed from
cα = cx = 0 to cβ = cy = 1. Without loss of generality, the direction is arbitrarily
fixed. Besides, ∆00F and ∆11F contain both the two undirected differences for each
edge (e.g., both α− β and β − α).

According to Condition 1 of Proposition 3.5, there are exactly 2t+1 nodes for each
binary label. Condition 2 states that two nodes adjacent to ∞ have different binary
labels. Condition 3 defines difference-sets’ cardinalities as |∆00F | = |∆11F | = 2t
while |∆01F | = 2t+ 1. (BLP) formalizes such conditions.

Problem 4.2 (Binary Labeling Problem). Let F = (V,E) be a 2-regular graph of
order |V | = 4t + 3. (BLP) asks to assign to each node i ∈ V̄ = V \{∞} a binary
label ci ∈ {0, 1} so that the following conditions hold:

1. The two nodes α, β ∈ V̄ adjacent to ∞ have different binary labels.
∃bα,∞c ∧ bβ,∞c : cα 6= cβ.

2. There are exactly 2t + 1 directed differences (edges) between nodes with different
binary labels.
|∆01F = {α− β | b(0, α), (1, β)c for all α, β ∈ G}| = 2t+ 1.

Equations (18-24) formulate (BLP) in CP .

C = {ci | ci ∈ {0, 1}} for all i ∈ V̄ , (18)

dM = {dj | dj ∈ {0, 1}} for all j ∈ 0, 1, . . . , E(F\{∞}), (19)

dj =

{
1 if cα = 0, cβ = 1

0 otherwise.
for all α, β ∈ V̄ ∧ bα, βc, (20)

card(dM | 1) = 2t+ 1, (21)

card(C| 1) = 2t+ 1, (22)

card(C| 0) = 2t+ 1, (23)

cα = 1 ∧ cβ = 0 if bα,∞c ∧ bβ,∞c ∧ α 6= β. (24)

Example 4.3. (referring to Problem 4.2) Consider an OP (5, 6) of order 4t+3 = 11
with t = 2. An example of binary labels assigned according to the (BLP) is in Figure
5).

Each node i ∈ V̄ acquires a binary label ci, hence the solution is the set C in
Equation 18. Each element dj ∈ dM (19) is 1 if and only if the oriented edge bα, βc
connects a node α : cα = 0 with β : cβ = 1, and 0 otherwise. Constraint (21)
ensures that Condition (2) of (BLP) holds, while Constraints (22) and (23) bound
the cardinality of binary-labeled nodes in V . (24) implements Condition (1) in (BLP)
by hard-fixing labels of the two nodes adjacent to ∞.

Computational solutions for 2-rotational instances led us to understand the un-
derlying structure of (BLP). Correspondingly, it was possible to devise a general
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Figure 5: (BLP) over OP (F = [5, 6]).

polynomial-time algorithm to solve (BLP). The rationale is to search for known pat-
terns and insert parts of solution (e.g.: label a subset of nodes) until the problem
reduces to a basic pattern of the form F [3], F [5, 6], F [53], and F [35]. Algorithm 2 in
the Appendix (see 6.1) presents such a procedure.

Once (BLP) returns the binary labels, solving the OP (F ) is matter of a group
labeling over the additive group G. Condition (3) of Proposition 3.5 holds on the
difference-sets. In analogy with the labeling for 1-rotational methods, each group-
label ni ∈ G | i ∈ V (F ) translates into two values in (two) difference-set, depending
on its binary label. Difference-sets (9) fulfill Equations (25-27).

∆00F = {nα − nβ (mod 2t+ 1) : (25)

for all α, β ∈ V (F ) ∧ bα, βc ∧ cα = cβ = 0}
∆11F = {nα − nβ (mod 2t+ 1) : (26)

for all α, β ∈ V (F ) ∧ bα, βc ∧ cα = cβ = 1}
∆01F = {nα − nβ (mod 2t+ 1) : (27)

for all α, β ∈ V (F ) ∧ bα, βc ∧ cα = 0, cβ = 1}

Condition 2 of Proposition 3.5 infers domains on sets so that the desired 2-
factor F is a 2-rotational solution for OP (F ). Therefore, the Group Labeling Prob-
lem (GLP) formalizes Proposition 3.5.

Problem 4.3 (Group Labeling Problem). Let F = (V,E) be a 2-regular graph of
order |V | = 4t + 3. V (F ) = {{0, 1} × G} ∪ {∞} is the set of nodes over F , where
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G is the additive group Z2t+1. For each node i ∈ V̄ = V \{∞} with its binary label
ci ∈ {0, 1}, the (GLP) asks to assign a group label ni ∈ G so that the following
conditions hold:

1. Undirected difference-sets are so that ∆00F = ∆11F = G\{0},

2. The directed difference-set is so that ∆01F = G.

Equations (28-37) formulate the (GLP) with CP .

V = {A ∪B}, (28)

A = {ai | ai ∈ G, ci = 0} B = {bi | bi ∈ G, ci = 1}, (29)

alldifferent(A) dom(A) = [0, 2t+ 1), (30)

alldifferent(B) dom(B) = [0, 2t+ 1), (31)

dA = {(aα − aβ mod (2t+ 1))} for all α, β ∈ A ∧ bα, βc, (32)

dB = {(bα − bβ mod (2t+ 1))} for all α, β ∈ B ∧ bα, βc, (33)

dAB = {(aα − bβ mod (2t+ 1))} for all α ∈ A, β ∈ B ∧ bα, βc, (34)

alldifferent(dA) dom(dA) = (0, 2t+ 1), (35)

alldifferent(dB) dom(dB) = (0, 2t+ 1), (36)

alldifferent(dAB) dom(dAB) = [0, 2t+ 1), (37)

card(dA) = card(dB) = 2t card(dAB) = 2t+ 1. (38)

Equation (28) represents the set V as the union of A and B, respectively the
subset of nodes with binary label ci = 0, and ci = 1. The solution is a feasible
assignment for V . Constraints (30)-(31) force on both A and B domains over G.
Difference-sets in (32-34) rewrite sets in Equations (25-26). Finally, constraints and
domains in (35-37) enforce Conditions 1 and 2 of (GLP). In particular, Constraint
(38) ensures that difference-sets have the required cardinalities. The (GLP) solution
generates a complete solution for OP (F ), with roto-translation similar to the ones
explained for 1-rotational methods. Proposition 3.5 describes how F generates the
other 2-regular copies.

Example 4.4. (referring to Problem 4.3) Consider an OP (F = [5, 6]) of order
4t + 3 = 11 with t = 2. Assuming binary labels are assigned, an example of group
labels from (GLP) is represented in Figure 6.

According to Proposition 3.5, a solution of order 4t + 3 generates a solution of
order 4(t + 1). The process requires polynomial-time, and is as follows. Starting
from the 4(t + 1) instance, a 2-path P = [a, i∗, b] is selected from the cycle C∞ (the
cycle containing the ∞ node), and replaces the edge ba, bc. The resulting graph is
the 2-regular F ∗, of order |V (F ∗)| = 4t + 3. The 2-rotational approach solves the
4t + 3 instance on F ∗. Afterwards,the pruned node i∗ goes back to F ∗, so that F ∗

becomes F . Without loss of generality, i∗ lies between nodes with different binary
labels i∗ inside the cycle C∞, so that P ∗ = [α, i∗, β] | cα 6= cβ. Node i∗ is relabeled
as ∞2 while the original ∞ becomes ∞1. Therefore, the difference-set ∆01F on F
loses the difference nα − nβ (or nβ − nα if and only if cβ = 0, cα = 1).
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Figure 6: (GLP) over OP (F = [5, 6]).

5 Experimental Results

We implemented the proposed algorithms and formulations with Java 1.8 (see Section
6.1 for code), IBM ILOG CPLEX and CP Optimizer 12.7. Tests ran on a Intel(R)
Core i5-3550 @ 3.30GHz with 4GB of RAM, a computer. Deza et al. [15] solve
instances of much smaller size (order ≤ 40), with undisclosed algorithms running on
a dedicated cluster machine [12]. The new 20 orders we solve here, from 41 to 60, are
241200, that is 22 times greater than those (10897) solved in [15]. Moreover, they
generalize r-rotational rules also with r /∈ {1, 2}, while our contribution deals only
with r ∈ {1, 2}. Table 1 reports computational results for instances with n ∈ [40, 60],
and complete solutions are available online (see Section 6.1). Timelimits for (GLP)
and (F ∗ LP) are 5 · (1 + |V (F )|/50) seconds, and |V (F ∗)|/20 seconds, respectively,
while Algorithm 2 solves (BLP) in negligible time.
The 2-rotational approach (see 4.2) with odd n values (see Proposition 3.5) solves
instances of order 4t + 3. Solutions of order 4t directly derive from the 4t + 3 ones.
The 1-rotational approach (see 4.1) solves instances of order 4t+ 1, and hence 4t+ 2.
While solving orders 4t + 1, we discovered that certain instances do not have a
1-rotational solution, and, consequently, we derived Proposition 3.4.

The formal proof stemmed after this empirical evidence. The 2-rotational ap-
proach with even n values (see 6.1) solves instances not fulfilling requirements in
Proposition 3.4. We generated all the order-dependent partitions of integers i ∈
[40, 60] with at least three or more cycles (tables), since Traetta [27] provides com-
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plete solutions to the two-table OP . Each order (1st column of Table 1) is tackled
by means of 2-rotational and/or 1-rotational rules (3rd column). The time (4th col-
umn) represents the total time required for the class OP , so that all the instances
(5th column) have a solution (6th column). Correspondingly, the average time per
instance (7th column) is the arithmetic mean. The proposed methodologies solved
all the instances. Finally, from our tests, 1-rotational methods appear to be faster
than 2-rotational methods in terms of CPU times, according to Table 1. Also, we
can report that single solutions for OP with n < 120 could be generated in less than
60 seconds.

# Type Method Time (s) Partitions Solved Avg. Time (s.ms)

40 4t (Derived from 39) 911 1756 1756 00.519

41 4t+1 807 2056 2056 00.393
1-rotational 90 1433 00.063

A 2-rotational 717 623 01.151

42 4t+2 (Derived from 41) 90 2418 2418 00.037

43 4t+3 A 2-rotational 2462 2822 2822 00.872

44 4t (Derived from 43) 2462 3302 3302 00.746

45 4t+1 3268 3851 3851 00.849
1-rotational 1406 2547 00.552

A 2-rotational 1862 1304 01.428

46 4t+2 (Derived from 45) 1406 4488 4488 00.313

47 4t+3 A 2-rotational 6348 5215 5215 01.217

48 4t (Derived from 47) 6348 6072 6072 01.045

49 4t+1 5587 7033 7033 00.794
1-rotational 460 4417 00.104

A 2-rotational 5127 2616 01.960

50 4t+2 (Derived from 49) 460 8158 8158 00.056

51 4t+3 A 2-rotational 16705 9441 9441 01.769

52 4t (Derived from 51) 16705 10920 10920 01.530

53 4t+1 18998 12600 12600 01.508
1-rotational 4246 7513 00.565

A 2-rotational 14752 5087 02.900

54 4t+2 (Derived from 53) 4246 14552 14552 00.292

55 4t+3 A 2-rotational 57043 16753 16753 03.405

56 4t (Derived from 55) 57043 19296 19296 02.956

57 4t+1 42700 22183 22183 01.925
1-rotational 2519 12557 00.201

A 2-rotational 40181 9626 04.174

58 4t+2 (Derived from 57) 2519 25491 25491 00.099

59 4t+3 A 2-rotational 105258 29241 29241 03.600

60 4t (Derived from 59) 105258 33552 33552 03.137

Table 1: Computational results for the OP with n ∈ [40, 60], with more than 3 cycles
per instance



F. SALASSA ET AL. /AUSTRALAS. J. COMBIN. 79 (1) (2021), 141–166 160

5.1 IP proves the absence of solution for OP (23, 5)

The Handbook of Combinatorial Design from [13] states that it is well known that
OP (23, 5) has no solution, referring to a conference proceeding of Rosa [26]. In a
different work, Alspach et al. [2] cite an unpublished paper by Piotrowski [25]. In the
latter, the author self-cites an unpublished paper [24] from 1979, where he describes
a proof made with the aid of a computer. We provide a simple proof of non-existence
for OP (23, 5) with an IP formulation. The OP (23, 5) is the problem of arranging
n = 11 people in 2 tables of 3 and 1 table of 5 for M = 5 meals. Each person has
a label in Z11. The IP formulation enumerates every feasible combination of labels
for tables of 3 (triplets) and tables of 5 (5-sets). Afterwards, IP seeks to select for
M = 5 meals, one 5-set and two triplets so that each node is seated next to every
other node exactly once during all the meals. There are

(
11
3

)
= 165 different triplets,

with at least one distinct label, and
(

11
5

)
·12 = 5544 5-sets with different adjacencies.

The IP formulation in (39)-(44) models OP (23, 5).

minF,T 0 (39)

subject to∑
i∈I

Fid = 1 for all d ∈ D, (40)∑
j∈J

Tjd = 2 for all d ∈ D, (41)∑
i∈I

Fid · flil +
∑
j∈J

Tjd · tljl = 1 for all d ∈ D, for all l ∈ L, (42)∑
d∈D

(
∑
i∈I

Fid · faiαβ +
∑
j∈J

Tjd · taiαβ) = 1 for all α, β ∈ L ∧ α 6= β, (43)

Fid, Tjd ∈ {0, 1} for all i ∈ I, j ∈ J, d ∈ D. (44)

The binary variables Fid : i ∈ I = [1, 5544] and Tjd : j ∈ J = [1, 165] with d ∈ D =
[1, D = 5] respectively represent all the different 5-sets and triplets over the 5 meals,
respectively. Fid and Tjd take value of 1 if and only if the corresponding element -
the ith 5-set or the jth triplet - is selected for the dth day. Coefficients flil and tljl
are respectively equal to 1 if the label l ∈ L = [1, 11] is present in the ith 5-set or
ith triplet. Coefficients faiαβ and tajαβ are equal to 1 if two different labels α, β ∈ L
are adjacent in the ith 5-set or ith triplet. The model has no objective function, as
of in Equation (39). Equations (40) and (41) enforce the selection of one 5-set and
two triplets per each d ∈ D. Constraint (42) enforces that each label appears only
once for each d ∈ D. Constraint (43) enforces that two labels α, β ∈ L are adjacent
only one time over all the meals. The continuous relaxation of (39)-(44) finds no
solution in less than a second: hence OP (23, 5) has no solution. Correspondingly,
the following proposition holds.

Proposition 5.1. Let OP (23, 5) be the Oberwolfach Problem with 2 cycles of length
3 and a cycle of length 5. There is no solution to OP (23, 5).
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6 Concluding remarks

CP – particularly its propagation and inference algorithms – exploits difference
methods for the Oberwolfach problem by means of well-posed formulations. 1 and
2-rotational methods reduce the complete OP to the problem of labeling a single
2-factor and that problem is efficiently solved in CP . In particular, Constraint prop-
agation exploits the relations of mutual exclusion between labels to smartly guide
the search procedure. Computational results prove the effectiveness of the approach,
which provided complete solutions for the OP for n ∈ [40, 60]. Moreover, theoretical
results such as Proposition 3.4 and the proof of absence of a solution for OP (23, 5)
constitute a further outcome of this work. The complementarity of Combinatorial
Design and Combinatorial Optimization and their positive interaction is, in our view,
the main stake pointed out here. The contribution is bidirectional: computational
evidence helps to deduce theoretical results, and the latter provides models for the
former. We believe that approaches similar to the one presented may help to solve
other problems in Combinatorial Design Theory.

6.1 Solutions and code

We complement the paper with the software written to implement the methodologies
presented. To make its use accessible, we provide a GUI interface.

The software is available on GitHub at the following repository:
https://github.com/ALCO-PoliTO/TheOberSolver

Full solutions are available at:

https://github.com/ALCO-PoliTO/TheOberSolver/tree/master/OberResults.

The IP DinnerFor11 formulation of OP (23, 5) is available at

https://github.com/ALCO-PoliTO/DinnerFor11
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Appendix

BLP Algorithm

The graph F = [n1l1,
n2 l2, ...,

na lb] is described with ni the number of cycles of length
li, T =

∑a
i ni the number of cycles, and tM = maxb l the longest cycle in F . The

input is an unlabeled F and the output is the BLP solution for F , namely Fl. The
Algorithm iteratively adds to the incumbent a partial labeling for a known pattern,
and terminates when all the nodes have been labeled and transferred from F to Fl.
Lines (3-6) iterate through T cycles, and reduce each cycle li ≥ 7 with a cycle of
length at most of 6, by labeling patterns of 4 nodes at a time. Cycles with exactly
4 nodes - as of in lines (7-9), are labeled instantly. Lines (12-18) search for more
complex patterns (e,g: F = [3, 5]). Lines (19-21) label basic patterns in F . The
order reported in line (14) is binding, and labeled patterns have different orienta-
tions depending on the incumbent labeled nodes. The worst-case time complexity of
Algorithm 2 is O(T · tM) with an implementation without Lists.

Algorithm 2: (BLP) Algorithm
1: Input: The graph F = [n1 l1,n2 l2, ...,na lb] = [t1, t2, ..., tT ]

2: Output: The labeled (colored) graph Fl

3: for ti in F do

4: while ti ≥ 7 do

5: Fl ← last labels of ti are [1100];ti ← (ti − 4) . Color last four elements

6: end while

7: if ti = 4 then

8: Fl ← labels of ti are [1100]; ti ← (ti − 4) . Color last four elements

9: end if

10: end for

11: found=true

12: while found do . Search for known patterns

13: found=false . The order of search is strictly as specified

14: if F contains patterns like F [3, 5], F [45], F [83], F [26], F [23, 6] then

15: found=true

16: Fl ← labels of t are [Pattern]; ti ← (ti − Pattern.length)

17: end if

18: end while

19: if the remaining problem t in Ti is of the form of F [3],F [5, 6],F [53],F [35] then

20: Fl ← labels of t are [Pattern]; ti ← (ti − Pattern.length)

21: end if . Check for basic solutions. The order of search is as specified

22: return Fl

(Almost) 2-rotational with n even

The approach to this class of instances is similar to the one presented for odd n. The
2-rotational method with even n solves instance not fulfilling Proposition 3.3. The
methodology is analogous to the one for odd n, but Condition 3 from Proposition 3.5
is discarded, while Condition 4 holds. If n is even, F has order of 4t+ 1 with n = 2t.
The set of vertices is V = ({0, 1}×G) ∪ {∞}, with G the additive group Z2t. (BLP)
and (GLP) slightly vary, according to the Proof of Proposition 3.5. In particular,
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according to Condition 4 of Proposition 3.5, a cycle of F contains a path of the
form P = b(0, 0), (0, n/2), (1, n/2), (1, 0)c. The modified(BLP) takes into account
the path P so that the first two nodes of P take the label 0, and the last two
the label 1. We call critical paths all the candidates paths in F . Difference-sets,
represented Equations (25-27), are considered over the graph F − P , with modulo
4t, and their cardinality is lowered to 2t−2. For ease of notation, the introduced new
sub-problems are the Even Binary Labeling Problem (eBLP) and the Even Group
Labeling Problem (eGLP).

Problem 6.1 (Even Binary Labeling Problem). Let F = (V,E) be a 2-regular graph
of order |V | = 4t + 1. The (eBLP) asks to assign to each node i ∈ V̄ = V \{∞} a
binary label ci ∈ {0, 1} so that the following conditions hold:

1. bα,∞c ∧ bβ,∞c =⇒ cα 6= cβ,

2. There is at least one critical path P so that
P = bx, y, z, kc | x, y, z, k ∈ V̄ ∧ cx = cy = 0, cz = ck = 1,

3. |∆(F − P )01 = {α− β : b(0, α), (1, β)c ∀ α, β ∈ G}| = 2t− 2.

The CP model (18-24) is modified to fit the additional Condition (2) for the
(eBLP). Constraints (21-23) are modified to enforce the new cardinality (2t− 1) for
both dM and C. Moreover, the following additional Constraints hold:

A = {Ai | Ai ∈ {0, 1}} for all i ∈ PA, (45)

Ai =

{
1 if cx = cy = 0 ∧ cz = ck = 1

0 otherwise.
PAi = bx, y, z, kc, (46)

card(Ai|1) ≥ 1. (47)

The set PA in (45) enumerates all combinations of four consecutive nodes in F . In
Constraints (45) and (46), each element Ai ∈ A is set to 1 if cx = cy = 0∧cz = ck = 1,
and hence Ai is a critical path. At least one critical path exists as of (47). Once
(eBLP) is solved, the (eGLP) labels are determined considering a single critical path
Ai. If no solution is found for the latter sub-problem, a new critical path Aj 6= Ai
induces a different (eGLP). In terms of (eGLP), Condition 4a induces four specific
group-labels on the critical path Ai.

Problem 6.2 (Even Group Labeling Problem). Let F = (V,E) be a 2-regular graph
of order |V (F )| = 4t + 1. V (F ) = {{0, 1} × G} ∪ {∞} is the set of nodes over F ,
where G is the additive group Z2t. For each node i ∈ V̄ = V \{∞} - given the binary
label ci ∈ {0, 1} of V and a critical path P , the (eGLP) asks to assign a label ni ∈ G
so that the following conditions hold:

1. Difference sets are so that ∆00(F −P ) = ∆11(F −P ) = ∆01(F −P ) = G\{0, t},

2. F contains the path P = bx, y, z, kc = b(0, 0), (0, t), (1, t), (1, 0)c.
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The (eGLP) CP formulation is similar to the one in (28-37), and the critical-path
P = Ai constitutes an additional input.

V = {A ∪B}, (48)

A = {ai | ai ∈ G, ci = 0} B = {bi | bi ∈ G, ci = 1}, (49)

alldifferent(A) dom(A) = [0, 2t), (50)

alldifferent(B) dom(B) = [0, 2t), (51)

dA = {(aα − aβ mod (2t))} for all α, β ∈ A, bα, βc /∈ P, (52)

dB = {(bα − bβ mod (2t))} for all α, β ∈ B, bα, βc /∈ P, (53)

dAB = {(aα − bβ mod (2t))} for all α ∈ A, β ∈ B, bα, βc /∈ P, (54)

alldifferent(dA) dom(dA) = (0, 2t)\{t}, (55)

alldifferent(dB) dom(dB) = (0, 2t)\{t}, (56)

alldifferent(dAB) dom(dAB) = (0, 2t)\{t}, (57)

nx = nk = 0, ny = nz = t P = bx, y, z, kc, (58)

card(dA) = card(dB) = card(dAB) card(dAB) = 2t− 2. (59)

Constraints (49-54 and 59) have different cardinalities and modulo arguments in.
The value n/2 = t is not in difference-sets of Constraints (52-54). Moreover, edges
inside P do not figure in difference-sets. Condition 2 of (eGLP) assigns labels for
nodes inside the critical path P , as in Constraint (58).
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