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Abstract

Erdős and Gyárfás conjectured in 1995 that every graph with minimum
degree three has a cycle of length 2k for some integer k > 1. Y. Caro
has asked the related question of whether every such graph has a cycle
whose length is a non-trivial power of some natural number. There have
been numerous related questions and conjectures, including questions by
various authors. We address a special case of the question of Caro, as
well as others, by showing that every graph G of minimum degree 3, such
that the set of centers of induced claws of G is independent, contains a
cycle of length ak for some integers a ≥ 2 and k ≥ 2.

1 Introduction

Erdős and Gyárfás conjectured ([5], [8]) that every graph with minimum degree three
has a cycle of length 2k for some integer k > 1.

Debose, Erdős, and Hobbs [4] narrowed the question by asking if each claw-free
graph with minimum degree two, maximum degree three, and at most two vertices
of degree 2 contains a cycle of length 2k for some non-negative integer k. In [3],
Shauger and the second-named author proved the result for planar claw-free graphs.
In [11], the result is proved for cubic claw-free graphs of genus at most six. More
recently, Verstraete has related results concerning unavoidable cycle lengths ([12],
[14]), Heckman and Krakovski [7] have shown that each 3-connected 3-regular planar
graph contains some 2j cycle for 2 ≤ j ≤ 7, and Bensmail [1] showed that there
exist arbitrarily large cubic graphs all of whose 2-power cycles have length 4 only, or
8 only.

Herein, we study a related result. West [15] relates that Caro suggests the weaker
question of whether every such graph has a cycle whose length is a non-trivial power
of some natural number. We address a special case of the question of Caro, as well
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as others, by showing that every graph G of minimum degree 3, and such that the
set of centers of induced claws of G is independent, contains a cycle of length ak for
some integers a ≥ 2 and k ≥ 2.

2 Preliminaries

We use the terminology of Bondy and Murty [2]. All graphs are finite, simple, and
undirected. In particular, for a graph G, we let ν(G) denote the number of vertices
of G. A graph in which each vertex has degree 3 is said to be cubic (or 3-regular).
A triangle is an isomorphic copy of K3. A vertex v of G is said to be contained in
a triangle of G if and only if there exists a triangle T that is a subgraph of G and
v ∈ V (T ).

An isomorphic copy of K1,3 is said to be a claw. For graphs G and H , G is said
to be H-free if G has no induced subgraph isomorphic to H . Our emphasis is on
claw-free and almost claw-free cubic graphs. The reader is referred to the excellent
survey [6] of such graphs by Faudree, Flandrin and Ryjáček.

3 Main Results

An important result in our Theorem 1 below is the following of Paz (Theorem 7.3
of [9]).

Lemma 1. If m is a positive integer then for every positive integer n such that
n > 14.4

| m√1.5−1|m there is at least one positive integer a such that n < am < 3
2
n.

We begin with a specific case of the more general results that follow, because the
ideas and techniques used throughout are exemplified in the simpler case.

Theorem 1. Suppose that G is a graph containing a cycle D such that:

1. D is not of length 10;

2. each vertex of D is of degree 3 in G;

3. each vertex of D is contained in precisely one triangle of G; and

4. if D meets a triangle T in G then D contains at most one edge of T .

Then G has a cycle of length ak for some positive integers a ≥ 2 and k ≥ 2.

Proof. The reader may verify that in the result of Paz above, n must be chosen
greater than or equal to 286 in order that m be greater than or equal to 2. The
following table (Figure 1) notes that there is at least one power ak for some positive
integers a ≥ 2 and k ≥ 2 such that 2n ≤ ak ≤ 3n for each n = 2, 3, 4, . . . , 286 with
the exception of n = 5.

By contracting each triangle T of the cycle D in G to an associated unique vertex
of degree 3 in the corresponding graph G′, D gives rise to a cycle D′ in G′. If D′ has
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n ak in [2n, 3n]
2 4

3− 4 9
5 none

6− 8 16
9− 13 27
14− 16 32
17− 28 49
29− 81 81
82− 112 225
113− 121 243
122− 171 343
172− 256 512
257− 286 625

Figure 1: Integer-powers in [2n, 3n].

length less than or equal ito 286 then the neighborhood of cycle D in G contains a
cycle of each length 2n, . . . , 3n and therefore a cycle of length ak for some positive
integers a ≥ 2 and k ≥ 2. Since D does not have length 10, D′ does not have
length 5.

We may therefore assume that cycle D in G has length ν(D)≥ 3
2
· 286 = 429. We

may suppress one-third (or more) of the vertices of D to single vertices to note that
the subgraph of G induced by the neighborhood N(D) of D gives rise to every cycle
length L in G such that 286 ≤ 2

3
ν(D) ≤ L ≤ ν(D). By the result of Paz above, there

are integers a ≥ 2 and k ≥ 2 such that n < ak < 3
2
n. With n = 2

3
ν(D) ≥ 286, we

have 2
3
ν(D) ≤ ak ≤ ν(D).

Each vertex v of a cubic claw-free graph G is contained in exactly one triangle
of G. Straightforward calculation ensures that such a graph G′ must contain cycle
lengths other than n = 10. The following corollary then follows immediately.

Corollary 1. Suppose that G is a claw-free graph with δ ≥ 3. Then G has a cycle
of length ak for some positive integers a ≥ 2 and k ≥ 2.

Corollary 2. Suppose that G is a claw-free graph with minimum degree δ ≥ 2,
maximum degree Δ = 3, and the collection V2(G) = {v ∈ V (G) : d(v) = 2} has two
or fewer elements. Then G has a cycle of length ak for some positive integer a ≥ 2
and some integer k ≥ 2.

Proof. Suppose that V2(G) consists of a single vertex v with neighborhood N(v) =
{a, b}.

Assume that v is contained in no triangle and let G′ denote (G− v) ∪ {e = ab}.
Then G′ has a cycle E ′ of length ak for some positive integers a ≥ 2 and k ≥ 2 by
Corollary 1. It then follows that G has a cycle E of length 1 + ak for some positive
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integer a ≥ 2 and some integer k ≥ 2. We may assume that E contains vertex v.
If E contains only one edge of each triangle that it meets then its length is 2t + 1,
where t is the number of triangles meeting E. Then G contains cycles of all lengths
from 2t+ 1 to 3t+ 1, inclusive. With 2t+ 1 playing the role of n in Lemma 1, there
is a cycle of length ak where n = 2t + 1 < am ≤ 3t + 1 < 3

2
(2t + 1). As above,

smaller cases of t may be calculated computationally. We may therefore assume that
E contains two edges of some triangle that it meets. The length 1 + ak of E may
then be reduced by one.

If v is contained in triangle T then two copies of G are joined by an edge whose
end vertices are the copies of v. The resulting graph is cubic and claw-free and we
then apply Corollary 1.

We therefore assume that V2(G) = {u, v}. As a first case, assume that u and
v are adjacent. We may assume that neither u nor v is contained in a triangle.
Assume the other vertex adjacent to u is w. By replacing the path wuv by a single
edge wv and applying the case above, we conclude that G has a cycle F of length
1 + ak for some positive integer a ≥ 2 and some integer k ≥ 2 and such that F
contains vertex u and v. If F contains only one edge of each triangle that it meets
then its length is 2t + 2, where t is the number of triangles meeting E. Then G
contains cycles of all lengths from 2t + 2 to 3t + 2, inclusive. As above, there is a
cycle of length bj where n = 2t+ 2 < bj ≤ 3t+ 2 < 3

2
(2t+ 2), with the smaller cases

completed computationally. We may therefore assume that F contains two edges of
some triangle that it meets. The length 1 + ak of F may then be reduced by one.

As a next case, we assume V2(G) = {u, v}, that u and v are not adjacent, and
that u is contained in triangle Tu and v is contained in triangle Tv. The proof of this
is almost identical to the preceding case. As a final case, we assume V2(G) = {u, v},
that u and v are not adjacent, and that u is contained in triangle Tu and v is contained
in no triangle. The proof of this case is as in the case above that V2(G) consists of
a single vertex and that vertex is contained in no triangle.

Corollary 3. Suppose that G is a graph containing a cycle D such that:

1. the minimum degree of vertices in D is 2 and there are at most two vertices of
degree 2;

2. each vertex of D which is of degree 3 is contained in precisely one triangle of G;

3. if D meets a triangle T in G then D contains at most one edge of T ; and

4. the length of D is not 5 if V2(D) = {u} and the length of D is not 10 if
V2(D) = {u, v}.

Then G has a cycle of length ak for some positive integers a ≥ 2 and k ≥ 2.

Theorem 2. Suppose that a graph G has minimum degree 3 and that the set of
centers of induced claws of G is independent. Then G contains a cycle of length ak

for some integers a ≥ 2 and k ≥ 2.



P.J. COUCH ET AL. /AUSTRALAS. J. COMBIN. 79 (1) (2021), 100–105 104

The proof of this is very similar and is left to the reader; the only nuance is
dealing with the potential for triangles that share vertices, which can be tedious and
repetitive.

Ryjáček [10] has defined a graph G as almost claw-free if the set of centers of
induced claws is independent and for every vertex x, the domination number of
G[N(x)] is at most two. It is straightforward to see that every claw-free graph is
almost claw-free. Let G be an almost claw-free cubic graph. Suppose that D is a
cycle in G such that the length ν(D) of D is greater than or equal to 6 and if D
meets a triangle T in G then D contains at most one edge of T . The condition
that the centers of induced claws are independent guarantees that such a cycle meets
1
3
�ν(D)� or more triangles in G, where �x� is the usual ceiling function.

Theorem 3. Suppose that G is an almost claw-free graph with minimum degree 3.
Then G has a cycle of length ak for some integers a ≥ 2 and k ≥ 2.

Proof. We may assume thatG is non-planar by [7]. As a result (e.g., [13]), G contains
a cycle E with three pair-wise crossing chords. It is straightforward that such a cycle
must have length greater than or equal to 20. We may therefore assume that the
circumference of G is greater than or equal to 20. Let D be a cycle in G of length
20 or more such that if D meets a triangle T in G then D contains at most one
edge of T . As in Theorem 1, we contract each of 1

3
�ν(D)� triangles of D in G to

an associated unique vertex of degree 3 in the corresponding graph G′, yielding a
cycle D′ in G′. If ν(D′) ≥ 286 then the proof proceeds exactly as in Theorem 1. It
therefore suffices to note that there is at least one power ak for some positive integers
a ≥ 2 and k ≥ 2 such that n ≤ ak ≤ 4

3
n for the smaller possible values of n = ν(D).

A table may be easily constructed as in Theorem 1 demonstrating that such an ak

exists for all 20 ≤ n ≤ 286.

4 Remaining Questions

We close with some questions related to the results of this work. Some of these we
have not studied, but they are clearly related and are of interest; some are new, while
others are quite old.

1. If a graph G has minimum degree at least three, then does G contain a cycle
whose length is a power of two? [5]

2. If a graph G is claw-free and is of minimum degree three, then does G contain
a cycle whose length is a power of two? [3]

3. If a graph G has minimum degree three, then does G contain a cycle whose
length is a power (of two or more) of some integer greater than or equal to 2? [15]

4. As a special case of the previous questions, what if G is assumed to be Hamil-
tonian?
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