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Abstract

Borel subgroup orbits of the classical symmetric space SO2n/GLn are
parametrized by DIII (n, n)-clans. We group the clans into “sects”
corresponding to Schubert cells of the orthogonal Grassmannian, thus
providing a cell decomposition for SO2n/GLn. We also compute a recur-
rence for the rank polynomial of the weak order poset on DIII clans, and
then describe explicit bijections between such clans, diagonally symmet-
ric rook placements, certain pairs of minimally intersecting set partitions,
and a class of weighted Delannoy paths. Clans of the largest sect are in
bijection with fixed-point-free partial involutions.

1 Introduction

Symmetric spaces are an important class of spherical varieties. If G is a complex
reductive algebraic group, spherical G-varieties are those for which a Borel subgroup
B of G acts with finitely many orbits. The theory of spherical varieties encom-
passes that of toric varieties, and their classification can be given similarly in terms
of “colored fans” (see [17] for an introduction). As such, these varieties present
rich opportunities for combinatorial investigation to complement their significance
in algebraic geometry and representation theory.

We define symmetric spaces as follows. Supposing G has an algebraic automor-
phism θ of order two, then the fixed-point subgroup L := Gθ is called a symmetric
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subgroup and the quotient G/L is the associated symmetric space.1 For simple G,
symmetric spaces were effectively classified by Cartan in the course of classifying real
forms of simple Lie algebras over the complex numbers (see [13, Chapter 10]).

Within the classification, there are a few cases which are closely related to Grass-
mannian varieties, which are realized as homogeneous spaces G/P where P is a
maximal parabolic subgroup of G. Grassmannian varieties parameterize vector sub-
spaces of a given vector space, and their cohomology theory is both a classical subject
[16] and a central topic in modern algebraic combinatorics. For the symmetric spaces
in question, the subgroup P admits a Levi decomposition as P = L� Ru(P ) where
L = Gθ as before, and Ru(P ) is the unipotent radical of P [15, Section 30.3].

This paper concerns the third of three cases in which this occurs,2 namely the
symmetric space of type DIII. Similar analysis was performed for type AIII (SLp+q/
S(GLp × GLq)) in [2] and [4], and for type CI (Sp2n/GLn) in [1]. The labels come
from Cartan’s original classification, which can be viewed as a refinement of the
classification of simple Lie algebras over the complex numbers. Type DIII refers
to the quotient SO2n/GLn. A realization in coordinates will be given in the next
section. Note that while all of the symmetric space theory we use is valid over an
algebraically closed field of characteristic other than two [26], all groups in this paper
are taken to be over the complex numbers.

Borel orbits in symmetric spaces are often parameterized by sets of clans, follow-
ing terminology of Matsuki-Oshima [21]. Since the work of Yamamoto [32], clans
often appear as strings of + and − symbols interspersed with pairs of matching nat-
ural numbers, for example +12+−12− (see Definition 2.2). As B-orbits in G/L are
in bijection with L-orbits in G/B, a clan encodes the data of a representative flag
for the corresponding L-orbit in the flag variety G/B, but they may also be regarded
as signed involutions of the symmetric group (see Definition 2.1). This paper will
describe some of the geometry of SO2n/GLn in terms of clans and provide some
relevant combinatorial results.

We shall now describe the organization of this paper. From now on, let θ be an
involution on G := SO2n which has L := Gθ ∼= GLn as fixed-point subgroup, and let
B be a Borel subgroup of G containing a θ-stable maximal torus T of G. We will
refer to the clans which parametrize the B-orbits in SO2n/GLn as DIII (n, n)-clans
(see Definition 2.5), or just DIII clans if n is either clear from context or irrelevant.
After setting down some notation and terminology in Section 2, our first result is
Theorem 3.4 which provides flags to represent GLn-orbits in SO2n/B, using results
of [28]. These particular flags had been overlooked in previous literature on clans.

The symmetric subgroup GLn ⊂ SO2n can be realized as the Levi factor of
a maximal parabolic subgroup P such that SO2n/P is OGr(n,C2n), the orthogonal
Grassmannian of maximal (n-dimensional) isotropic subspaces ofC2n. This gives us a
canonical G-equivariant projection map π : SO2n/GLn → OGr(n,C2n). Borel orbits

1In the literature, this definition is often broadened to include any space G/K where K lies
between the connected component of the identity of Gθ and its normalizer.

2See Remark 1.1.
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in Grassmannian varieties are called Schubert cells. A sect is a collection of clans
indexing B-orbits which map to the same Schubert cell under π. In Theorem 3.10,
we prove a description of the sects of SO2n/GLn which matches that previously given
by the authors and Can for types AIII and CI.

From results of [2], the sects provide a cell decomposition and Z-basis for the
(co)homology of SO2n/GLn. Further, an isomorphism of cohomology rings H∗(G/L)
∼= H∗(G/P ) follows from the fact that the fibration

C
a ∼= Ru(P ) ∼= P/L ↪→ G/L −→ G/P

gives π : G/P → G/L the structure of an affine bundle, applying the Leray-Hirsch
theorem. The latter ring is understood to be the subring of WL-invariants within
coinvariant algebra of a reflection representation of the Weyl group of SO2n, where
WL is the Weyl group of L. Note WL is also the Weyl group of P ; see [14, Chapter
4] for background.

Clans form a graded poset under the weak order, first defined in [25]. The cov-
ering relations of this poset are given by the action of minimal standard parabolic
subgroups Ps on corresponding B-orbits, where s is a simple reflection of the Weyl
group W = NG(T )/T . We recall a combinatorial description of this order and its
associated length function to compute the following recurrence relation for the rank
polynomial of this weak order poset in Section 4.

Theorem (4.10). The rank polynomial An(t) of the weak order poset on DIII clans
satisfies the following recurrence relation:

An(t) = 2An−1(t) + (t+ t2 + · · · tn−2 + 2tn−1 + tn + · · ·+ t2n−3)An−2(t).

This recurrence easily gives a generating function and recurrence for Δn, the
number of DIII (n, n)-clans, but we also obtain an explicit formula by a different
method in Section 5.

Proposition (5.2). The number of DIII (n, n)-clans is

Δn =

�n
2
�∑

r=0

2n−2r−1 n!

r!(n− 2r)!
.

The rest of Section 5 describes bijections between DIII clans and other combi-
natoral families of objects. The first involves the number of inequivalent placements
of 2n non-attacking rooks on a 2n × 2n board with symmetry across each of the
main diagonals, which was written about in the classic text of Lucas [19]. A bijec-
tion between DIII (n, n)-clans and such rook placements is given in Section 5.2,
by extracting a triangular portion of the square board and analyzing this resulting
“pyramid.” These pyramids also make it easy to describe a (near) bijection with ob-
jects studied by Pittel in [24]. Precisely, these are ordered pairs (p, p′) of partitions
of an n-element set such that p consists of exactly two blocks. This map is described
in Section 5.3.
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Schubert cells of G/P can be parameterized by lattice paths, which are also a tool
for understanding their geometry. As a step towards extending these ideas to the
symmetric space above, we present a bijection between DIII (n, n)-clans and certain
weighted Delannoy paths in Section 5.4. We do not further investigate the classes
of B-orbit closures in the cohomology of G/L, but it is our hope that a lattice
path model for the orbits may be helpful for the future development of tableaux
combinatorics to describe multiplication in the cohomology ring of G/L, extending
the Littlewood-Richardson rule. Wyser has related clan orbit closures to Richardson
subvarieties of flag varieties in order to extract some information on Schubert calculus
of flag varieties [29, 30].

Finally, we look at the pre-image of the dense Schubert cell of SO2n/GLn, which
we call the big sect. We prove that the clans of the big sect are in bijection with the
set of partial fixed-point-free involutions of an n-element set, denoted by PFn. The
elements of PFn parametrize congruence orbits of the upper triangular invertible
matrices on the set of skew-symmetric matrices, as described in [7]. Equipped with
the closure order of the orbits of that action, they form a poset which has also been
studied in [6]. Proof of the following theorem will appear in the first author’s Ph.D.
thesis.

Theorem. The closure order on DIII (n,n)-clans of the largest sect is isomorphic
to the poset of partial fixed-point-free involutions on n letters with the congruence
orbit closure order.

Remark 1.1. The list of symmetric spaces with symmetric subgroup equal to a Levi
subgroup often includes the type BDI spaces SOn/(SO2 × SOn−2), rounding out
the symmetric spaces of Hermitian type. However, our definition of symmetric
space (which matches that of [25, 26]) excludes this case from consideration. Some
details on Hermitian-type spaces (including type BDI) using an alternative orbit
parametrization can be found in [26, 27].

2 Notation and preliminaries

Let n be a positive integer. First, we describe our realization of SO2n. We follow
most of the notation of [28].

Let J2n denote the 2n× 2n matrix with 1’s along the anti-diagonal and 0’s else-
where. Then, we set

G := SO2n = {g ∈ SL2n | gtJ2ng = J2n}.

Let int(g) : SL2n → SL2n denote the map defined by int(g)(h) = ghg−1. Now define
the matrix

In,n :=

(
In 0
0 −In

)
.

Then we check that we have an involution θ on SL2n defined by θ := int(iIn,n).
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Since (iIn,n)
−1 = −iIn,n, then if

g =

(
A B
C D

)

is the n× n block form of g, we have

θ(g) =

(
iIn 0
0 −iIn

)(
A B
C D

)(−iIn 0
0 iIn

)
=

(
A −B
−C D

)
.

Observe that the restriction of θ to SO2n induces an involution on that group as well.
The fixed points of this involution must be block diagonal, that is

θ(g) = g ⇐⇒ g =

(
A 0
0 D

)
.

Furthermore, membership in the special orthogonal group forces D = Jn(A
−1)tJn.

Thus, A can be any invertible n×n matrix and this completely determines g, so the
fixed point subgroup L is isomorphic to GLn.

Next, we fix some combinatorial notation. We will write Sn for the symmet-
ric group of permutations of [n] := {1, . . . , n}. If π ∈ Sn, then its one-line no-
tation is the string π1π2 . . . πn, where πi = π(i) for 1 ≤ i ≤ n. For instance,
π = 164578329 is the one-line notation for the permutation π ∈ S9 with cycle
decomposition (1)(2 6 8)(3 4 5 7)(9).

An involution is an element of Sn of order at most two, and the set of involutions
in Sn is denoted by In. An involution π ∈ In can be written in cycle notation in the
canonical form

π = (a1 b1)(a2 b2) . . . (ak bk)(d1) . . . (dn−2k),

where ai < bi for all 1 ≤ i ≤ k, a1 < a2 < · · · < ak, and d1 < · · · < dn−2k. Signed
involutions are involutions where the fixed points are decorated with a choice of sign,
+ or −.

Definition 2.1. Let p and q be positive integers where q ≤ p. A signed (p, q)-
involution is a signed involution on p+ q letters such that there are p− q more +’s
than −’s.

For example, π = (1 8)(2 4)(3+)(5−)(6−)(7+) is a signed (4, 4)-involution. Clans
can be thought of as an alternative presentation of signed involutions.

Definition 2.2. Let p and q be two positive integers where q ≤ p. A (p, q)-clan γ is
a string of p+ q symbols from N ∪ {+,−} such that

1. there are p− q more +’s than −’s;

2. if a natural number appears in γ, then it appears exactly twice.
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For example, 12+21 is a (3, 2)-clan and +1+1 is a (3, 1)-clan. Clans γ and γ′ are
considered to be equivalent if the positions of the matching number pairs are the
same in both clans. For example, γ = 1122 and γ′ = 2211 are the same (2, 2)-clan,
since both of γ and γ′ have matching numbers in positions (1, 2) and in positions
(3, 4).

Evidently, a clan is just a signed involution in list notation where 2-cycles give the
positions of matching natural numbers and the locations of fixed points are occupied
by their signatures. To illustrate the equivalence between signed involutions and
clans, we remark that the signed (4, 4)-involution (1 8)(2 4)(3+)(5−)(6−)(7+) can be
regarded as the (4, 4)-clan 12+2−−+1.

Throughout this paper we prefer to use clans, though we will occasionally like
to refer to the underlying involution of a clan, which is obtained by simply ignoring
the signs on fixed-points in the associated signed involution. We will denote the
underlying involution of clan γ by σγ . In a clan γ, the matching natural numbers of
a pair coming from a transposition in σγ will be referred to as mates of one another.

Next we will specify the DIII clans. Let γ be a clan of the form γ = c1 · · · cn.
The reverse of γ, denoted by rev(γ), is the clan

rev(γ) := cncn−1 · · · c1.

We obtain the negative of γ, denoted by γ, by changing all +’s in γ to −’s, and
vice versa, leaving the natural numbers unchanged. Now, we define symmetric and
skew-symmetric clans.

Definition 2.3. A (p, q)-clan γ is called symmetric if

γ = rev(γ),

and is called skew-symmetric if
γ = rev(γ).

Example 2.4. Consider the clan γ = +−123312+−. Its reverse is −+213321−+.
Since γ = rev(γ), it is a skew-symmetric (5, 5)-clan.

The clan τ = 1234545321 is a skew-symmetric (5, 5)-clan which is also symmetric,
as it contains no ± symbols.

A pair of mates (ci, cj) exchanges places with another pair of mates (c2n+1−j,
c2n+1−i) upon taking the reverse of a (skew-)symmetric clan. Such pairs shall be
called opposing pairs. For instance (c3, c7) and (c4, c8) are opposing pairs in γ =
+−123312+−.

Definition 2.5. The set of DIII (n, n)-clans consists of those (n, n)-clans γ =
c1 · · · c2n which satisfy following the additional conditions:

1. γ is skew-symmetric, that is γ = rev(γ);
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2. if ci ∈ N, then ci 
= c2n+1−i;

3. the total number of −’s and pairs of matching natural numbers among c1 · · · cn
is even.

Recall that the Coxeter group of type Dn, which is the Weyl group of SO2n, can
be regarded as the signed permutations on n letters with an even number of sign
changes. This can also be viewed as a subgroup of S2n by identifying the symbol
−i with 2n + 1 − i for each 1 ≤ i ≤ n. The underlying involutions of DIII clans
are then involutions of a type Dn Weyl group. Note that unlike (n, n)-clans for
the type AIII and CI symmetric spaces, not all involutions of the Weyl group are
attainable as the underlying involution of some clan. In particular, condition 2 of
Definition 2.5 prohibits the longest element of the type Dn Weyl group from arising
as an underlying involution. For instance, when n is even, the longest element takes
i �→ −i for all 1 ≤ i ≤ n which would be underlying the clan 12 · · ·nn · · · 21.

We shall write Δ(n) to denote the set of DIII (n, n)-clans. It was first stated
in [21] and proved in [28] that DIII (n, n)-clans parametrize L-orbits in SO2n/B.
Our notation for clans comes from the latter source. In the next section, we will
produce representative flags for each orbit and describe sects for these clans.

3 Sects

3.1 Background

In order to describe sects and representative flags for DIII clans, we must first visit
the theory of parabolic subgroups of special orthogonal groups. We refer the reader
to [20] for more details.

Given a vector space V with bilinear form ω, recall that an isotropic subspace W
is one such that ω(u,v) = 0 for all vectors u,v ∈ W . If we also use ω to stand for
the matrix which represents this bilinear form in a particular choice of basis, this
condition becomes utωv = 0. A polarization of V is then a direct sum decomposition
of V into subspaces which are each isotropic (with respect to ω), that is V = V−⊕V+.

Taking V = C2n, we have a bilinear form given by the matrix J2n used to define
our realization of G = SO2n. Let En be the subspace generated by standard basis
vectors {ei | 1 ≤ i ≤ n}. It is easy to check that this is an isotropic subspace of C2n

with respect to J2n, and in fact it is maximal with respect to inclusion of isotropic
subspaces. There is a distinguished polarization of C2n as

V = En ⊕ Ẽn, (3.1)

where Ẽn is the subspace spanned by {en+1, . . . , e2n}. Note, however, that (infinitely)
many other isotropic subspaces could replace Ẽn in the direct sum decomposition
above.

An isotropic flag is defined as a sequence of vector spaces

{0} ⊂ V1 ⊂ . . . Vr ⊂ V
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such that Vi is an isotropic subspace of V for all 1 ≤ i ≤ r. From [20, Proposition
12.13], the parabolic subgroups of SO2n are precisely the stabilizers of flags which
are isotropic with respect to the form J2n.

The stabilizer of the the flag {0} ⊂ En ⊂ C2n is the parabolic subgroup P
consisting of matrices with n× n block form(∗ ∗

0 ∗
)

and which has Levi factor L =

{(
A 0
0 Jn(A

−1)tJn

) ∣∣∣∣ A ∈ GLn

}
; (3.2)

see [20, p. 144] or [9, Section 8.1] for related discussion. Thus, we see that the Levi
subgroup of this parabolic subgroup coincides with a symmetric subgroup of type
DIII, that is Gθ = L where θ is the involution of Section 2. Furthermore, the
subgroup L is exactly the stabilizer of the polarization of (3.1). The association of
the symmetric pair (G,L) with a polarization is another feature that type DIII has
in common with type AIII and CI (see [10, p. 511]).

The upshot of this coincidence is that we have a G-equivariant projection map

π : G/L −→ G/P

which we can analyze. Letting B be the Borel subgroup of upper triangular matrices
in G [20, p. 39] (which contains the θ-stable maximal torus of diagonal matrices) we
can relate the B-orbits in G/P , which are Schubert cells, to the B-orbits in G/L.
The equivariance of π allows us to ask precisely which clans constitute the pre-image
of a particular Schubert cell. We call such a collection of clans the sect associated
to the Schubert cell.

In the literature, clans usually parametrize symmetric subgroup orbits in a flag
variety by encoding the information of how flags in that orbit relate to a reference
polarization. In type DIII, one may consider L-orbits in G/B, which can be identi-
fied with one component of the variety of all full flags isotropic with respect to J2n.
For J2n, a full isotropic flag V• in C2n is a sequence of vector subspaces {Vi}ni=0 such
that

{0} = V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vn, (3.3)

where dimVi = i for all i and Vn is a maximal isotropic subspace. We find it
convenient to write

V• = 〈v1,v2, . . . ,vn〉
to indicate that V• is the flag with Vi = span{v1, . . . ,vi} for all 1 ≤ i ≤ n. Any full
isotropic flag is canonically extended to a full flag in C2n

{0} ⊂ V1 ⊂ . . . ⊂ V2n−1 ⊂ V2n = C
2n

by assigning
V2n−i := V ⊥

i = {v ∈ C
2n | ω(v,w) = 0, ∀w ∈ Vi},

so we may abuse notation slightly by using V• to refer to either one. For instance,
the standard isotropic full flag E• := 〈e1, . . . , en〉 can be written in extended form as

E• = 〈e1, . . . , en, en+1, . . . , e2n〉.
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If g ∈ G is a matrix whose ith column is a vector vi, then the isotropic flag
corresponding to the coset gB will be given by V• = 〈v1, . . . ,v2n〉, and vice versa.
For example, the coset of the identity matrix I2n corresponds to the standard isotropic
flag E•.

The space of full flags isotropic with respect to J2n is a disconnected double cover
of G/B; it consists of two isomorphic SO2n-orbits. Since we will represent flags by
matrices g that identify cosets gB ∈ G/B, and we want the standard flag E• to
identify with the identity coset, then to guarantee that a J2n-isotropic flag V• is in
the same SO2n orbit as E• we must add the additional condition that dim(Vn∩En) ≡
n mod 2 [28, p. 106]. The set of such flags is then an honest homogeneous space for
SO2n.

We must present a few more definitions before describing the process of obtaining
orbit-representative flags; see also [2].

Definition 3.1. Given an (n, n)-clan γ = c1 · · · c2n, one obtains the default signed
clan associated to γ by assigning to ci a “signature” of − and to cj a “signature” of +
whenever ci = cj ∈ N and i < j. We denote this default signed clan by γ̃ = c̃1 · · · c̃2n.

For instance, γ̃ = +1−2−1+2+− is the default signed clan of γ = +1212−. Note
that the signature of c̃i is just the symbol itself in case ci is + or −.

Definition 3.2. Given a default signed clan γ̃, define a permutation σ ∈ S2n which,
for i ≤ n:

• assigns σ(i) = i and σ(2n+ 1− i) = 2n+ 1− i if c̃i is a symbol with signature
+.

• assigns σ(i) = 2n+ 1− i and σ(2n+ 1− i) = i if c̃i is a symbol with signature
−.

We call σ the default permutation associated to γ.

Returning to our example, +1212− has default permutation 154326 (in one-line
notation). Note that σ is an involution, and it is the σ′ which results from choosing
σ′′ = id in the context of [32, Theorem 3.2.11].

3.2 Sects for DIII clans

Fix, as before, G = SO2n, B its Borel subgroup of upper triangular matrices, and
P and L as defined by (3.2). Next, we show how to obtain representative flags for
L-orbits in G/B from DIII (n, n)-clans using a variant of the methods in [32]. To
ensure that we obtain a complete set of representative flags for all DIII (n, n)-clans,
we apply the following instance of [28, Theorem 1.5.8].

Theorem 3.3. For the symmetric pair (G,L) = (SO2n, GLn) of type DIII, each
L-orbit of G/B is equal to the intersection of an S(GLn × GLn)-orbit in the flag
variety X ′ of SL2n with the isotropic flag variety, viewed as a subvariety X ⊆ X ′.
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This theorem accords with the view of DIII (n, n)-clans as a subset of all (n, n)-
clans whose elements satisfy extra conditions; the inclusion of sets of clans is reflected
in the containment of the respective orbits. Then for each DIII (n, n)-clan γ, to
obtain a representative flag for the L-orbit Qγ, it suffices to produce an isotropic flag
V•(γ) which satisfies

dim(Vn(γ) ∩ En) ≡ n mod 2

and can also be produced by [32, Theorem 2.2.14], as that theorem provides flags for
type AIII clans. This will give us a full set of representative flags on which we can
perform the sect analysis.

Theorem 3.4. Given a DIII (n, n)-clan γ = c1 · · · c2n with default permutation σ,
define a flag V•(γ) = 〈v1, . . . ,v2n〉 by making the following assignments.

• If ci = ±, set
vi = eσ(i).

• If ci = cj ∈ N where i < j, so that c2n+1−i = c2n+1−j as well, with i < 2n+1−j,
then set

vi =
1√
2
(eσ(i) + eσ(j)),

vj =
1√
2
(eσ(i) − eσ(j)),

v2n+1−i =
1√
2
(eσ(2n+1−i) + eσ(2n+1−j)),

v2n+1−j =
1√
2
(eσ(2n+1−i) − eσ(2n+1−j)).

Then V•(γ) is a representative flag for the L-orbit Qγ. Furthermore, if gγ is the
matrix defined by letting vi be its ith column, then Qγ = LgγB/B in G/B. Ma-
trices/flags obtained in this way from all DIII (n, n)-clans constitute a full set of
representative flags for L-orbits in G/B.

Proof. The verification that gγ ∈ SO2n is routine (if tedious) linear algebra. From
this it follows that V•(γ) is isotropic with respect to J2n.

Next we argue that
dim(Vn(γ) ∩ En) ≡ n mod 2.

If a − appears at ci, then vi = er for some r > n. Thus, for each − among the first n
symbols, dim(Vn(γ) ∩ En) is reduced by one (compared to when Vn = En). For each
ci = cj ∈ N, the vector subspace spanned by vi and vj is equal to span(eq, er) for
some q ≤ n and some r > n. Then, each pair of matching natural numbers among
c1, . . . , cn reduces dim(Vn(γ) ∩ En) by one as well. Since there are an even number
of −’s and pairs of matching natural numbers among the first n symbols,

dim(Vn(γ) ∩ En) = n− 2k ≡ n mod 2,
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for some natural number k.

Finally, we mention how to obtain this flag from [32, Theorem 2.2.14].

Definition 3.5. Let a family in γ = c1 · · · c2n mean a collection of symbols ci, cj,
c2n+1−j , c2n+1−i with ci = cj ∈ N, i < j, and i < 2n+ 1− j.

For each family in γ, modify the default signed clan by flipping the signatures of
c̃i and c̃j so that they are + and −, respectively. Denote the signed clan so obtained
by γ̃′. To reflect this adjustment, we also modify the default permutation σ by
swapping σ(i) and σ(j) for all such families. Denote the permutation so obtained by
σ′.

Then σ′ satisfies the conditions of [32, Theorem 2.2.14], and we claim the flag
produced by that theorem using γ̃′ and σ′, and denoted by V ′

•(γ) = 〈v′
1, . . . ,v

′
2n〉, is

the same flag as V•(γ) constructed above. Indeed, applying that theorem, one finds
v′
i = vi = eσ(i) whenever ci = ±, and for any family ci, cj, c2n+1−j, c2n+1−i, we get

vi = v′
i and vj = v′

j and v2n+1−j = −v′
2n+1−j and v2n+1−i = v′

2n+1−i.

Clearly, these generate the same flags. Thus, the theorem is proved.

For example, the matrix representative for the clan γ = +1212− from Theorem
3.4 is

gγ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 1√

2
0 1√

2
0

0 1√
2

0 − 1√
2

0 0

0 0 − 1√
2

0 1√
2

0

0 1√
2

0 1√
2

0 0

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Definition 3.6. Given an (n, n)-clan γ = c1 · · · c2n, one obtains the base clan asso-
ciated to γ by replacing each symbol c̃i of the default signed clan γ̃ by its signature.

For example, the base clan for −12334412+ is −−−−+−++++. Now we can
use the flags produced by Theorem 3.4 to form the sects.

Remark 3.7. A clan with no natural numbers is said to be matchless. The base clan
of a DIII clan is clearly a matchless DIII clan, and all matchless clans arise in this
manner. Matchless clans correspond to closed orbits, which are also of minimum
dimension.

Proposition 3.8. Let Qγ and Qτ be L-orbits in G/B corresponding to DIII (n, n)-
clans γ and τ . Then Qγ and Qτ lie in the same P -orbit of G/B if and only if γ and
τ have the same base clan.

Proof. Assume that γ has base clan τ , where γ = c1 · · · c2n and τ = t1 · · · t2n, and
let V•(γ) = 〈v1, . . . ,v2n〉 and V•(τ) = 〈u1, . . . ,u2n〉 be the corresponding flags con-
structed by Theorem 3.4. As each clan has the same signature at symbols of the
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same index, they have the same default permutation. Then, we have two kinds of
cases to examine.

Suppose we have a family, ci, cj , c2n+1−j, c2n+1−i. Then, Theorem 3.4 will yield
flag V•(γ) with

(vi,vj) = (
1√
2
(er + e2n+1−s),

1√
2
(er − e2n+1−s))

and

(v2n+1−j ,v2n+1−i) = (
1√
2
(−es + e2n+1−r),

1√
2
(es + e2n+1−r)),

where n < r = σ(i) and n < s = σ(2n+ 1− j). We also obtain the flag V•(τ) with

(ui,uj) = (er, e2n+1−s)

and
(u2n+1−j ,u2n+1−i) = (es, e2n+1−r).

Then define a linear map by

pr,s : er �−→ er + e2n+1−s,

es �−→ es − e2n+1−r,

ei �−→ ei for i 
= r, s.

It is again routine to check that this map defines an element of P , so pr,s · V•(τ) is a
flag in the same P -orbit. Also, this map takes ui to vi, and u2n+1−j to the span of
v2n+1−j , yielding pairs with the same span

(pr,s · ui, p
r,s · uj) and (vi,vj),

and
(pr,s · u2n+1−j , p

r,s · u2n+1−i) and (v2n+1−j ,v2n+1−i).

Now, after we act on the flag V•(τ) by the appropriate element of the form pr,s

for each family,
{ci = cj, c2n+1−j = c2n+1−i | j 
= 2n + 1− i},

then we obtain a flag which is an equivalent presentation of V•(γ). Thus Qγ is in the
same P -orbit as Qτ .

The proof of the converse is exactly as in type CI case, which can be found
in [1].

By flipping the L\G/B double cosets around and applying the map π, we obtain
the following corollary. See also [1, Proposition 5.6].

Corollary 3.9. Let Rγ and Rτ be B-orbits in G/L corresponding to clans γ and τ ,
and let π : G/L → G/P denote the canonical projection. Then π(Rγ) = π(Rτ ) if and
only if γ and τ have the same base clan.
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Schubert cells of SO2n/P are in bijection with subsets I ⊂ [2n] such that |I| = n
and if i ∈ I, then 2n + 1 − i 
∈ I [3, p. 34]. P stabilizes the maximal isotropic
subspace En, and in fact each B-orbit of G/P , denoted CI , is represented by the
isotropic subspace which is spanned by {ei | i ∈ I}. The subset I can be associated
to a matchless clan γI by assigning

ci =

{
+ if i ∈ I

− if i /∈ I,
(3.4)

and just as in [1], BgγIP= CI . Then we have the following analog of [1, Theorem
5.7], whose proof is identical to the one given there, except for the fact that in this
case g−1

γI
= gγI , since it is the matrix of an even involution.

Theorem 3.10. Let CI be the Schubert cell corresponding to I ⊂ [2n], and π :
G/L → G/P the natural projection. Associate to I a matchless clan γI as in equation
(3.4), and denote the set of clans with base clan γI by ΣI . If Rγ denotes the B-orbit
of G/L associated to the clan γ, then

π−1(CI) =
⊔
γ∈ΣI

Rγ. (3.5)

Consequently, each sect has a base clan which corresponds to a closed orbit, and
the sects are in correspondence with Schubert cells. Further, each sect contains a
unique maximal orbit, and the classes of closures of these orbits form a Z-linear basis
for the cohomology ring of G/L. We remark again that since π : G/L → G/P is
an affine bundle with fibers isomorphic to Ru(P ), each sect can also be viewed as a
decomposition of an affine space isomorphic to CI × Ru(P ) into B-orbits.

4 The weak order and its rank polynomial

4.1 The weak order on clans

We continue with B ⊂ SO2n as the Borel subgroup of upper triangular matrices, and
L ∼= GLn as in (3.2). Here we will describe the weak order on DIII (n, n)-clans and
calculate a recurrence for the rank polynomial of the weak order poset; see [25, 26, 28]
for further background and details on the weak order and its properties. We will first
describe the geometric content of the weak order in terms of the B-orbits of G/L
(denoted Rγ for clan γ), though one can also make a description for L-orbits of G/B
or B × L-orbits of G.

Let T ⊂ SO2n be the maximal torus of diagonal matrices with Lie algebra t. Note
that this torus is θ-stable and moreover is contained in L = Gθ. By the condition
defining the special orthogonal group, we have that

T = {diag(t1, . . . tn, t−1
n , . . . , t−1

1 ) | ti ∈ C
∗)},
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so that
t = {diag(a1, . . . , an,−an, . . . ,−a1) | ai ∈ C}.

We declare simple roots αi := Yi −Yi+1 for 1 ≤ i ≤ n− 1 and αn := Yn−1+ Yn where
Yi ∈ t∗ is given by Yi(diag(a1, . . . , an,−an, . . . ,−a1)) = ai.

Corresponding to each simple root αi, there is a simple reflection si in the Weyl
groupW = NG(T )/T and a minimal standard parabolic subgroup Psi. For any DIII
clan γ, Psi · Rγ contains a unique dense B-orbit Rγ′ . To capture this relationship
between B-orbits, we write si · Rγ = Rγ′ and view this as an action of the set of
simple reflections on the orbits. Note that if γ 
= γ′, then Rγ′ always has dimension
equal to dim(Rγ) + 1.

Under this action, it is clear that si · (si · Rγ) = si · Rγ for any i and γ. It is
also true that the simple reflections obey the same braid relations when acting on
B-orbits as they do in W in its presentation as a Coxeter system. Thus, we actually
have a monoid M(W ) which acts on the set of orbits and is generated by the simple
reflections {si}ni=1 with relations s2i = si plus braid relations. This monoid arises
naturally in a degeneration of the Hecke algebra associated to W as well [26, Section
7].

The weak order on DIII clans is then defined as the transitive closure of the
covering relations γ ≺ γ′ whenever there is an si such that si · Rγ = Rγ′ . In the
following discussion, we may also abuse notation and write si · γ = γ′ to mean
the same. As weak order covering relations are labelled by simple reflections, the
maximal chains of intervals in the weak order can be viewed as reduced expressions
for elements of the orbit set, or alternatively for the underlying involutions in W
or their corresponding elements in M(W ). For more on this perspective (in type A
symmetric spaces), see [5, 11, 12].

Indeed, the simple reflections effectively act upon a clan γ = c1 · · · c2n via its
underlying involution σγ through the following twisted action. Consider W as a
subgroup of S2n, so that we have si = (i (i+1))((2n− i)(2n+1− i)) for 1 ≤ i ≤ n−1
and sn = (n (n+ 2))((n− 1)(n+ 1)).

Proposition 4.1. Suppose siσγ is longer than σγ as an element of W for the DIII
clan γ = c1 · · · c2n. Then

1. if siσγsi 
= σγ, then si · γ is the permutation action of si on the symbols of γ
which results in underlying involution σγ′ = siσγsi;

2. if siσγsi = σγ for any 1 ≤ i ≤ n−1, and ci and ci+1 are opposite signs +/− (in
either order), then si · γ replaces the appropriate signed fixed points by natural
number pairs to achieve modified underlying involution σγ′ = siσγ;

3. if cn−1cncn+1cn+2 = ++−− or −−++, then sn ·γ replaces these symbols by the
pattern 1212, resulting in underlying involution σγ′ = snσγ.

Otherwise si · γ = γ.
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Proof. This is evident from [26, Theorem 5.4.1], which also applies to the AIII and
CI cases. Full translation of the action of simple reflections into DIII clan notation
is also worked out (with examples) in [28, Section 5.2.2].

Example 4.2. For the (4, 4)-clan γ = +−1122+−, from the rules above we obtain
s1 · γ = 11223344 and s2 · γ = +1−12+2−, while s3 · γ = γ and s4 · γ = γ. See also
Figure 4.1.

From this discussion, it follows that the weak order poset on DIII (n, n)-clans,
denoted (Δ(n),≺), is ranked (graded) by the length of underlying involutions in
terms of the twisted action indicated by Proposition 4.1. Note that this is often
different than the the length of the underlying involution as a Weyl group element.

Definition 4.3. We define the length L(γ) of a DIII (n, n)-clan γ as the length of
its underlying involution σγ under the twisted action.

See [25, Section 5] for various properties of the twisted action and this length func-
tion. As an example, matchless clans all have the identity as underlying involution,
and so they have length 0.

4.2 Rank polynomial

We will write An(t) to denote the rank polynomial of the weak order poset. That is,
An(t) is the polynomial in t for which the coefficient of tk is equal to the number of
DIII clans of length k. We may also call An(t) the length generating function for
DIII (n, n)-clans. In order to compute a recurrence for An(t), we shall make use of
a formula for the length of a clan given purely in terms of the string γ = c1 · · · c2n.

First, we need some auxiliary notation. We will partition the natural number
pairs of γ into two sets. Let

Π0 := {(ci, cj) | ci = cj ∈ N and 1 ≤ i ≤ n < j ≤ 2n},

and

Π1 := {(ci, cj) | ci = cj ∈ N and 1 ≤ i < j ≤ n or n + 1 ≤ i < j ≤ 2n}.

If a pair of mates (ci, cj) is in either one of these sets, then its opposing pair is in the
same set. Then we can write |Π0| = 2z and |Π1| = 2y for integers z and y.
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Figure 4.1: The weak and full closure orders on Δ(4).
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For a natural number a = ci = cj which appears in γ = c1 · · · c2n, the spread of a
is defined as the quantity s(a) := j − i. The weave of a will be the quantity

w(a) := #{b ∈ N | b = cu = ct and u < i < t < j}.
Proposition 4.4. In the notation above, the length of a clan γ is equal to

L(γ) =
1

2

⎛
⎝( ∑

a=ci=cj

s(a)− w(a)

)
− z

⎞
⎠ . (4.1)

Proof. The reader may verify that the formula is equivalent to the one that appears
at [22, p. 2724], after subtracting the dimension of a closed orbit.

Example 4.5. Take the DIII clan γ = ++1212−−. Each pair of mates contributes
a spread of 2, but only 2 = c4 = c6 has a weave of 1, and together these pairs are
the only Π0 family so z = 1. Thus, L(γ) = 1; see Figure 4.1.

Remark 4.6. The expression
∑

a=ci=cj
s(a)−w(a) computes the length for (n, n)-clans

in type AIII, as appears in [32].

Note that the inclusion poset of Borel orbit closures in SO2n/GLn contains all of
the weak order relations onDIII (n, n)-clans, possibly plus some additional relations.
The order relation of this poset is often called the (full) closure order or Bruhat order.
Thus, the length function also provides a grading of the closure containment poset.
It follows from the description of the weak order that the unique maximal clan in
both posets is of the form

γ0 = 12 . . . (n− 1)n(n− 1)n . . . 12 if n is even, and

(4.2)

γ0 = 12 . . . (n− 1)n+−(n− 1)n . . . 12 if n is odd.

Remark 4.7. If γ is the DIII clan corresponding to the Borel orbit Rγ, then the
dimension of Rγ is equal to L(γ)+c, where c is the dimension of any closed Borel orbit
in SO2n/GLn. Thus, studying L(γ) is equivalent to studying dimensions of Borel
orbits in the type DIII symmetric space (or GLn-orbits in SO2n/B). Moreover, the
dimension of all closed orbits is equal to the dimension of the flag variety of GLn (or

of Ru(P )), which is n(n−1)
2

.

Proposition 4.8. The length of γ0, the maximal element in the weak order poset, is
n(n−1)

2
.

Proof. SO2n has the dimension of its Lie algebra, which consists of skew-symmetric
2n× 2n matrices. This is 2n(2n−1)

2
dimensional. GLn has dimension n2, and so

dimSO2n/GLn = n(2n− 1)− n2 = n(n− 1).

The maximal element corresponds to a dense orbit Rγ0 ⊂ SO2n/GLn, so dimRγ0 =

n(n − 1) as well. By the preceding remark, this is also equal to L(γ0) +
n(n−1)

2
,

finishing the proof.
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As before, Δ(n) denotes the set of DIII (n, n)-clans. We now reintroduce An(t).

Definition 4.9. The length generating function of Δ(n) is defined by

An(t) =
∑

γ∈Δ(n)

tL(γ).

We also define the flip of γ = c1 · · · cncn+1 · · · c2n by

Flip(γ) := c1 · · · cn+1cn · · · c2n.
Now, we provide a recurrence relation for An(t).

Theorem 4.10. The length generating function An(t) satisfies the following recur-
rence for n ≥ 3:

An(t) = 2An−1(t) + (t+ t2 + · · · tn−2 + 2tn−1 + tn + · · ·+ t2n−3)An−2(t). (4.3)

Proof. We break this into two parts, one for each of the recursive terms.

Coefficient of An−1(t) : Let γ be an arbitrary clan from Δ(n−1). Then, we can
always create a new clan +γ− ∈ Δ(n) simply by inserting a + at the beginning of
the string and appending a − at the end of the string. It is clear that this procedure
does not affect the value of the length function.

We can create a different clan Flip(−γ+) ∈ Δ(n) similarly, where the flip is
required to ensure that there are an even number of−’s and Π1 pairs among the first n
symbols. In this situation, there are a few possibilities. Let γ = c2 · · · cncn+1 · · · c2n−1

for convenience.

[cncn+1 = ±∓] : Attaching the new symbols and flipping has no consequence for
any component of the length function computation of (4.1).

[γ = · · ·a · · ·ab · · ·b · · · ] : Attaching − and + has no effect. Upon flipping, s(a)
and s(b) both increase by one, but so does w(b) and z, so there is no net effect on
the length function.

[γ = · · ·a · · ·ba · · ·b · · · ] : Identical to the previous case, but change “increase”
to “decrease.”

We see that given an arbitrary (n − 1, n − 1)-clan, we can create two different
(n, n)-clans for which the length function evaluates the same, accounting for the first
term in the equation (4.3). These comprise all of the clans in Δ(n) which start and
end with + or −.

Coefficient of An−2(t) : Now let γ be an arbitrary clan from Δ(n − 2). We
obtain a new clan γ′ = c′1 · · · c′2n ∈ Δ(n) by inserting a ∈ N as c′1 and c′i and b ∈ N as
c′2n+1−i and c′2n. Observe that a and b each contribute a spread of i−1, and w(a) = 0
for any choice i.

If i ≤ n, then both a and b go in as Π1 pairs, so z is unchanged. If w(b) results
positive due to any natural number pair (c′u, c

′
t), this contribution will cancel in the

length formula by the fact that the first b at c′2n+1−i increases the spread of that pair
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by one, compared to its placement in γ. The insertion of b cannot affect the weave
of any other natural number because the last symbol is b. If a contributes to the
weave of any other natural number r, this is likewise cancelled out by an increase
of one in s(r). Thus, the length is only affected by the spreads of a and b, and
increases by i − 1 on balance. Since this holds for any choice of 2 ≤ i ≤ n, we see
that (t+ t2 + . . . tn−1)An−2(t) appears in the recurrence.

Now suppose i > n. Both a and b go in as Π0 pairs, so z increases by one. As with
the previous case, weave contributions of a and b cancel with spread contributions
to other numbers with one exception: the pair of a’s (c′1, c

′
i) contributes one to the

weave of b which is not compensated for in any other manner. Thus, compared to
the length of γ, L(γ′) is increased by i−1 from the spreads of a and b and diminished
by one from the change in z and w(b). In all, each choice of n < i ≤ 2n− 1 gives a
different clan whose length is i − 2 greater than L(γ), accounting for an additional
term of (tn−1 + tn + . . . t2n−3)An−2(t) in the recurrence formula.

Adding these cases together gives the claim.

For consideration, we mention that A1(t) = 1, A2(t) = t + 2, and, in view of
Figure 4.1, A4(t) = t6 +3t5 +4t4 + 7t3 + 7t2 + 8t+8. In that figure, the black edges
between γ ≺ γ′ are labelled with the index i such that si ·γ = γ′, while the red edges
are those from the full closure order on corresponding orbits (see [26, Proposition 4.2]
for how to obtain the the full closure order from the weak order). The closed orbits
in blue are represented by just their first four symbols due to space considerations.

The recurrence for An(t) yields the following statements about Δn, the number
of DIII (n, n)-clans. In the next section, we will give an explicit formula for Δn.

Corollary 4.11. For all n ≥ 3, the number of DIII clans satisfies the recurrence
relation

Δn = 2Δn−1 + (2n− 2)Δn−2, (4.4)

and assigning Δ0 = 1, Δn has exponential generating function

∞∑
n=0

Δn
xn

n!
=

1

2
(e2x+x2

+ 1). (4.5)

Proof. The recurrence follows by substituting t = 1 into equation (4.3). One can
check that y = 1

2
e2x+x2

solves the relevant second-order linear homogeneous ordinary
differential equation, y′′− 2(x+1)y′+2y = 0, and the addition of 1 is just to satisfy
the initial condition y(0) = 1 coming from Δ0 = 1.

5 Bijective combinatorics for DIII clans

5.1 A formula

Before exploring bijections of clans with other combinatorial families, we will record
an explicit formula for the number of DIII (n, n)-clans Δn.
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Recall from Section 4.2 that for any DIII clan, the sets Π0 and Π1 both have
even cardinality, as each pair of mates is half of a family where opposing pairs lie
in the same set. Let δr,n denote the number of DIII clans which contain r families,
or equivalently 2r pairs of mates. Throughout this section, we make use of the fact
that a DIII (n, n)-clan is determined by the symbols of its “first half” c1 · · · cn, plus
the knowledge of which Π0 pairs are opposing.

Lemma 5.1. With the above notation,

δr,n = 2n−2r−1

(
n

2r

)
2r!

r!
. (5.1)

Proof. There are
(
n
2r

)
choices for where to place natural numbers among c1 · · · cn.

There are (2r − 1)!! = 2r!
r!2r

ways to form r pairs from these, and 2r ways to decide
which of these pairs are in Π1 and which are first mates of distinct opposing Π0

pairs. Then there are 2n−2r−1 ways to place ± symbols at the remaining entries with
appropriate parity to satisfy condition 3 of Definition 2.5. Multiply.

The following results immediately from summing over possible values of r.

Proposition 5.2. The number of DIII (n, n)-clans is

Δn =

�n
2
�∑

r=0

2n−2r−1 n!

r!(n− 2r)!
. (5.2)

The first values of Δn, beginning with n = 1, are 1, 3, 10, 38, 156, 692,
3256,. . . This is in fact the number of inequivalent placements of 2n rooks on a 2n×2n
board having symmetry across each diagonal [23, A000902], as we will show next.

5.2 Rooks and Pyramids

The rook problem asks how many ways n rooks can be placed on on an n×n board so
that none can attack any other. Necessarily, each placement will exhibit exactly one
rook in each row and each column so rook placements correspond to permutation
matrices in an obvious way, giving the solution of n!. In [19], Lucas refines this
question to ask how many placements possess symmetry with respect to a given
subgroup of the dihedral group D8, which acts as the symmetry group of the board.
We are interested in rook placements which are invariant under reflection across each
main diagonal d and d′ as depicted in Figure 5.1.

Furthermore, we are only interested in these placements up to equivalence, where
two placements are said to be equivalent if there is an element of D8 that transforms
one to the other. The following statements on rook placements are given without
proof in [19], but we provide brief proofs for completeness.

Proposition 5.3. When n ≥ 2, there is no placement of n rooks on an n× n board
with symmetry group D8.

http://oeis.org/A000902
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d d′d d′

Figure 5.1: A diagonally invariant 6×6 rook placement and its rotational equivalent.

Proof. Recall that the dihedral group D8 is generated by reflection F across the
diagonal d and counter-clockwise rotation by π

2
denoted R, and we have R4 = F 2 =

(RF )2 = e where e is the identity element. It suffices to show that a rook placement
cannot be symmetric with respect to both F and R unless n = 1.

Consider a rook placement as an n × n permutation matrix v. Let w0 be the
permutation matrix with 1’s along the antidiagonal d′ and 0’s elsewhere. Then
R · v = w0v

−1 and since the transpose of a permutation matrix is its inverse, F · v =
v−1. Hence, if v is invariant under both R and F , we have

v = w0v
−1 and v = v−1,

which implies w0 = In, the n × n identity matrix. This is clearly impossible unless
n = 1.

Corollary 5.4. When n ≥ 2, every placement of n rooks on an n× n board that is
symmetric with respect to reflection across both diagonals is equivalent to exactly one
other arrangement.

Proof. Note that the reflection across d′ is given by R−1FR. Together, F and R−1FR
generate a subgroup V ofD8 isomorphic to the Klein four-group Z2×Z2. V has index
2 in D8, so it is a maximal proper subgroup. Then, by the previous proposition, any
rook placement stabilized by V has exactly V as its symmetry group, so by the orbit-
stabilizer theorem, the size of the orbit of a diagonally symmetric rook placement
under the action of D8 is just [D8 : V ] = |D8|

|V | = 8
4
= 2.

Remark 5.5. For a diagonally symmetric rook placement v, R·v is necessarily different
than (though equivalent to) v, so it is the other element of the orbit in the preceding
corollary.

From now on, let dn denote the number of inequivalent diagonally symmetric
arrangements of n non-attacking rooks on an n× n board.

Lemma 5.6. For all n ≥ 1, d2n = d2n+1.

Proof. Note that the center square must contain a rook in the odd case; the result
follows by deleting the middle row and column from a (2n + 1) × (2n + 1) rook
placement.
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Figure 5.2: The three 4× 4 and 5× 5 inequivalent diagonally symmetric rook place-
ments.

Figure 5.2 illustrates an instance of this correspondence, where n = 2.

Thus, one only really needs to count diagonally symmetric placements on even
side-length boards. We will prove that Δn = d2n by exhibiting an explicit bijection
between DIII clans and diagonally symmetric rook placements.

The diagonals of a 2n× 2n board divide it into four triangles, and one sees that
the information of a diagonally symmetric rook placement is captured within any
of these triangles. In identifying rook placements, we will then extract one of the
triangles of the board (rooks included), to obtain a pyramid. A diagonally symmetric
rook placement (equivalence class) actually produces two possible pyramids which
differ by a reflection; see Figure 5.3. It will be convenient to introduce coordinates on

Figure 5.3: The two possible pyramids of a diagonally symmetric rook placement.

the blocks of the pyramids by dividing them into left and right halves. The indices
on the left li,j increase moving up and to the right, while those on the right ri,j
increase as we move up and to the left (see Figure 5.4).

The following characterization is self-evident.
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Lemma 5.7. A pyramid corresponds to a diagonally symmetric rook placement if
and only if for each 1 ≤ k ≤ n, there is a unique block of the pyramid, li,j or ri,j, on
which a rook is placed and for which either i = k, or j = k, or both i = j = k.

Now we give an algorithm for obtaining a pyramid from a clan by reading the
symbols c1 through cn in reverse order, and placing rooks as we descend rows of the
pyramid. An auxiliary variable X acts as a “switch” between the left and right sides
of the pyramid; every time we encounter a − or the first mate of a Π1 pair, the switch
gets “flipped.”

Algorithm 5.8. Given a DIII (n, n)-clan γ, we construct a pyramid corresponding
to a diagonally symmetric 2n× 2n rook placement equivalence class as follows.

set i = n, X = l.

while i ≥ 1:

if ci = +:

place rook at Xi,i

if ci = −:

flip switch

place rook at Xi,i

if ci ∈ N:

find cj = ci in γ

if j > n and 2n+ 1− j > i: [second condition prevents redundacy]

place a rook atXi,2n+1−j [indices correspond to opposing Π0 pairs]

if i < j ≤ n: [positions of a Π1 pair]

flip switch

place rook at Xi,j

else:

pass

subtract 1 from i

It is easy to verify that this algorithm produces a pyramid that satisfies the
condition of Lemma 5.7, yielding a diagonally symmetric rook placement. As an
example, the blue pyramid in Figure 5.3 is obtained from the (4, 4)-clan, 1−1+−2+2.

Without trouble, this algorithm can be reversed to give a map from pyramids
to clans. However, exactly one of the two pyramids from a given rook placement
produces a DIII clan. For example, the pink pyramid in Figure 5.3 would yield
the clan 1−1−+2+2, which violates condition 3 of Definition 2.5. In general, if one
pyramid produces γ, then the other produces Flip(γ). So each diagonally symmetric
rook placement contains a unique pyramid which gives a DIII clan, completing the
bijection.

Theorem 5.9. Diagonally symmetric rook placements on a 2n×2n board and (n, n)-
clans of type DIII are in bijection, whence Δn = d2n.
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l1,1 l1,2 l1,3 l1,4 l1,5 l1,6

l2,2 l2,3 l2,4 l2,5 l2,6

l3,3 l3,4 l3,5 l3,6

l4,4 l4,5 l4,6

l5,5 l5,6

l6,6

r1,6 r1,5 r1,4 r1,3 r1,2 r1,1

r2,6 r2,5 r2,4 r2,3 r2,2

r3,6 r3,5 r3,4 r3,3

r4,6 r4,5 r4,4

r5,6 r5,5

r6,6

Figure 5.4: Coordinates on pyramids.

Remark 5.10. Consider a 2n × 2n rook placement as a permutation matrix v once
again. Symmetry across d implies that v is the matrix of an involution, while symme-
try across d′ implies that v is a signed permutation via the usual embedding into S2n.
Then, in the notation of Proposition 5.3, R · v = w0v, which is the involution that
takes i �→ 2n+ 1− v(i). In terms of signed permutations of [n], (R · v)(i) = −v(i).3

Thus, diagonally symmetric rook placements up to equivalence (and DIII clans) are
also in bijection with pairs of signed permutations {v, R · v} of order two. We thank
an anonymous referee for pointing this out to us.

One can produce an involution v of this pair from clan γ by a procedure similar
to Algorithm 5.8. Read the first n symbols of γ from left to right, and at each
occurrence of a − sign or the first mate of a Π1 pair, switch between assigning v(i)
according to the underlying involution σγ or its negation. As with the pyramids, at
each occurrence of a first mate ci, both of the indices of the pair ci = cj should be
assigned.

5.3 Minimally Intersecting Set Partitions

Consider partitions of the set [n] = {1, . . . , n} ordered by refinement. Two partitions
p and p′ are said to be minimally intersecting if the partition whose blocks are the
pairwise intersections of blocks from p and p′ is the minimal partition

pmin = {{1}, {2}, . . . , {n}}.
Lemma 2 of [24] says that the right hand side of the equation (4.5) is equal to ex

plus the exponential generating function for the number of ordered pairs of minimally
intersecting partitions (p, p′) of [n] such that p consists of exactly two blocks. In other
words, the number of DIII (n, n)-clans is one more than the number of such pairs
of partitions [23, A000902]. In this subsection, we present a map between pyramids
and partition pairs that demonstrates this equality.

Remark 5.11. There is a well-known bijection between n×n staircase rook placements
and partitions of [n + 1] (see, e.g., [18, pp. 77–78]). Observing that each pyramid

3This also implies that R2 · v = w0vw0 = v.

https://oeis.org/A000902
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consists of two staircase shapes with “complementary” rook placements, one could
also define a correspondence with pairs of partitions of [n+1] with certain properties.
We leave this description to the motivated reader.

Consider a pyramid that corresponds to an (n, n)-clan which is not + · · ·+− · · ·−.
First we describe how to obtain the two-block partition of the corresponding pair,
which we will write as p = {L,R}.

1. If there is a rook at li,i, then i ∈ L; if there is a rook at ri,i, then i ∈ R.

2. If there is a rook at li,j for i 
= j, then j ∈ L and i ∈ R. Similarly, if there is a
rook at ri,j, then j ∈ R and i ∈ L.

Then we construct p′ by taking {i, j} as a block for each rook at li,j or ri,j. Thus,
the blocks of p′ have maximum size two, and rooks at li,i or ri,i give blocks that are
singletons. It is clear that the pair (p, p′) is minimally intersecting.

Example 5.12. The blue pyramid of Figure 5.3 gives the pair (p, p′) with p =
{{3, 4}, {1, 2}} and p′ = {{1, 3}, {2}, {4}}.

Notice that reflecting a pyramid across the center line swaps the blocks L and R
of p, but (p, p′) is unchanged. Exclusion of the clan + · · ·+− · · ·− guarantees that
neither L nor R is empty.

Now we describe how to obtain a pyramid from a pair (p, p′), where p = {L,R}.
Observe that p′ cannot have any blocks of size greater than two.

1. If i ∈ L (respectively, in R) and i is a singleton in p′, then place a rook at li,i
(respectively, at ri,i).

2. If j ∈ L (respectively, in R) and {i, j} is a block of p′ with i < j, then place a
rook at li,j (respectively, at ri,j).

This recipe inverts the (partial) map from pyramids to partition pairs described
above, establishing the following.

Theorem 5.13. The set of DIII (n, n)-clans without the clan + · · ·+− · · ·− is
in bijection with the set of ordered pairs (p, p′) of minimally intersecting pairs of
partitions of [n], where p has exactly two blocks.

5.4 Lattice paths

Recall that an (n, n) Delannoy path is an integer lattice path from (0, 0) to (n, n)
in the plane R2 consisting only of single north, east, or diagonally northeast steps.
Alternatively, one can consider strings from the alphabet {N,E,D} such that the
number of N ’s plus the number of D’s is equal to the sum of the numbers of E’s
and D’s (which is equal to n). We will demonstrate a bijection between the set of
DIII (n, n)-clans and the set of (n, n) Delannoy paths with certain labels which are
defined as follows.
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Definition 5.14. By a labelled step we mean a pair (L, l), where L ∈ {N,E,D}
and l is a positive integer such that l = 1 if L = N or L = E. A weighted (n, n)
Delannoy path is a word of the form W := W1 . . .Wr, where the Wi’s are labeled
steps Wi = (Li, li) such that

1. L1 . . . Lr is an (n, n) Delannoy path;

2. Li = N if and only if Lr+1−i = E;

3. letting ki = #{j < i | lj 
= 1}, if Li = D then 2 ≤ li ≤ 2n + 1 − 2(i+ 2ki) for
1 ≤ i ≤ � r

2
�, and Wr+1−i = (D, 2n+ 3− 2(i+ 2ki)− li).

4. either L r
2
= E (so that L r

2
+1 = N) or W r

2
= (D, 3) (so that W r

2
+1 = (D, 2)).

Note that as a consequence of the first three properties, r is guaranteed to be even.

Theorem 5.15. There is a bijection between the set of weighted (n, n) Delannoy
paths and the set of DIII (n, n)-clans.

γ = +12213443−
γ(1) = 12213443

1

1

γ(1) = 12213443

γ(2) = 2424

1

1

5

4

γ(2) = 2424

γ(3) = ·

1

1

5

4
3
2

Figure 5.5: Algorithmic construction of the bijection onto weighted Delannoy paths.

Proof. We will indicate how to obtain a weighted (n, n) Delannoy path from a type
DIII clan γ = c1 · · · c2n. If c2n is a − sign, we draw an N -step from (n, n − 1) to
(n, n) and an E-step between (0, 0) and (1, 0). Then we remove c1 and c2n from γ to
obtain γ(1) = c2 · · · c2n−1.

In a similar manner, if c2n = +, we draw an E-step from (n− 1, n) to (n, n) and
an N -step between (0, 0) and (0, 1). Again we remove c1 and c2n from γ, but in this
case we then swap cn and cn+1 to obtain γ(1) = c2 · · · cn+1cn · · · c2n−1.
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If c2n is a natural number from Π0 pair (ci, c2n) (i ≤ n), we draw aD-step between
(n− 1, n− 1) and (n, n) and label this step i, and we draw another D-step between
(0, 0) and (1, 1) and label this step 2n + 1 − i. Then we remove all four symbols
c1, ci, c2n+1−i, and c2n from γ and call the resulting (n− 2, n− 2)-clan γ(1).

In case c2n is a natural number from Π1 pair (cj, c2n) (j > n) with opposing Π1

pair (c1, c2n+1−j), then we draw a D-step between (n− 1, n− 1) and (n, n) and label
this step j, and we draw another D-step between (0, 0) and (1, 1) and label this step
with 2n + 1 − j. We remove all four symbols c1, cj , c2n+1−j, and c2n from γ, then
swap cn and cn+1 and call the resulting (n− 2, n− 2)-clan γ(1).

After performing this first step, we iterate the same procedure upon γ(1) by
examining its last symbol, thereby obtaining γ(2) and so on, building the path from
the corners inwards.

This is clearly an injective construction. The complicated condition 3 of Def-
inition 5.14 on the weights (which give the placement of mates in the clan) just
guarantees that the construction can be reversed to obtain a skew-symmetric clan.
Condition 4 guarantees the parity condition of Definition 2.5, so we have a bijec-
tion.

Example 5.16. Let γ = +12213443−. The steps of our construction are shown in
Figure 5.5.

To supply further examples, we depict the weighted Delannoy paths correspond-
ing to DIII (3,3)-clans in Figure 5.6 in their weak order poset.

6 The big sect

In this section, we investigate the number of (n, n)-clans in the largest sect; we denote
this number by εn. These are the clans whose corresponding B-orbits comprise the
preimage of the dense Schubert cell under the map π : G/L → G/P . Since this sect
must include the dense B-orbit corresponding to the clan γ0 of (4.2), we see that this
sect has base clan

−− · · ·−−︸ ︷︷ ︸
first n spots

++ · · ·++ or −− · · ·−+︸ ︷︷ ︸
first n spots

−+ · · ·++

depending on whether n is even or odd, respectively. Consequently, a clan lies in the
largest sect only if

(a) it has natural number pairs only in Π0 when n is even,

(b) or it has at most two Π1 pairs at (ci, cn) and (c2n+1−i, cn+1) when n is odd.

If 2r is the number of pairs of matching natural numbers in a DIII clan γ =
c1 · · · c2n which lies in the largest sect, the clan is determined by pairing 2r of the
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3
2

2

5
3

2

4

3

3

4

5

2

Figure 5.6: Weak order on weighted (3, 3) Delannoy paths

symbols among c1 · · · cn. This can be done in
(
n
2r

) (2r)!
r!2r

many different ways. Summing
over possible values for r, we have

εn =

�n/2�∑
r=0

n!

(n− 2r)!r!2r
, (6.1)

which happens to be the number of involutions on n letters [23, A000085]. This
coincidence reveals the following.

Proposition 6.1. Taking ε0 = 1, the number of clans in the largest sect satisfies the
recurrence relation

εn = εn−1 + (n− 1)εn−2, (6.2)

and has exponential generating function

∞∑
n=0

εn
xn

n!
= ex+

x2

2 . (6.3)

Recall that a partial permutation is a map x : {1, . . . , m} −→ {0, . . . , n} satisfying
the condition that if x(i) = x(j) and x(i) 
= 0, then i = j. A partial permutation
x can be represented by an m × n matrix (xij), where xij is 1 if and only if x(i) =
j and is 0 otherwise. Note that under this convention we view our matrices as
acting on vectors from the right. Partial permutations are also sometimes called
rook placements, and in case m = n, they form a monoid under matrix multiplication
called the rook monoid and denoted Rn.

https://oeis.org/A000085
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Definition 6.2. A partial involution on n elements is a partial permutation which is
represented by a symmetric n× n matrix. A partial involution with no fixed points
is called a partial fixed-point-free involution, and the set of such partial involutions
is denoted PFn.

There is a bijection between PFn and the set of invertible involutions In as
follows: a partial involution matrix can be completed to the matrix of an involution
by placing a 1 on the diagonal of any row/column without a 1. However, we will
prove that εn = |PFn| by exhibiting an explicit bijection between the clans in the
largest sect and the partial fixed-point-free involutions.

Let γ = c1 · · · c2n lie in the largest sect. Construct the associated x ∈ PFn as
follows.

(i) If ci = ±, then take x(i) = 0 for all 1 ≤ i ≤ n.

(ii) If (ci, cj) ∈ Π0, then take x(i) = 2n + 1 − j and x(2n + 1− j) = i for all
1 ≤ i ≤ n < j ≤ 2n.

(iii) If (ci, cn) ∈ Π1, then take x(i) = n and x(n) = i.

It is easy to show that this map is invertible. Let us start with a partial fixed-
point-free involution x ∈ PFn and determine its associated (n, n)-clan by assigning
the first n symbols and then completing using skew-symmetry.

(i) If x(i) = 0, then take ci = − unless i = n and n is odd, in which case ci = +.

(ii) If x(i) = j and x(j) = i with i < j, then we take (ci, c2n+1−j) ∈ Π0 unless j = n
and n is odd in which case we take (ci, cn) ∈ Π1.

This completes proof of the following.

Theorem 6.3. Partial fixed-point-free involutions on n letters and DIII (n, n)-clans
in the largest sect are in bijection.

The elements of PFn also parameterize the congruence orbits of the invertible
upper triangular n×n matrices on the skew-symmetric n×n matrices (with complex
entries). This endows them with a poset structure which is the containment order
of the corresponding orbit closures, studied in [6, 7]. Let this poset be denoted
(PFn,≤con). The order relation ≤con admits a simple combinatorial description in
terms of rank-control matrices.

In [31], Wyser points out that the full closure (Bruhat) order on DIII (n, n)-
clans fails in general to be the restriction of the Bruhat order on all (n, n)-clans. In
particular, DIII clans 1+−12+−2 and 12341234 are not related in the Bruhat order
in type DIII (as can be observed in Figure 4.1), though they are related as AIII
clans.
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Nevertheless, as stated in the introduction, the closure order on DIII clans re-
stricted to the big sect does coincide with that of (PFn,≤con) via the bijection given
here. The poset (PFn,≤con) is itself the restriction of the closure order on Rn, which
describes the big sect closure poset in type AIII [2].

A combinatorial description of the closure order on allDIII (n, n)-clans (based on
the work [8]) will also appear in the first author’s Ph.D. thesis. From this description
it is apparent that the failure of the clan closure order to restrict from type AIII
to type DIII results from the failure of the Bruhat order on S2n to restrict to the
Bruhat order on the type Dn Coxeter group. But the clan order does restrict from
type AIII to type CI for similar reasons, answering part of [31, Conjecture 3.6]. It
would be of great interest to determine general geometric conditions which guarantee
the restriction of closure orders in similar settings; we leave the reader to consider
this question.
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