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Abstract

This article looks at the Bose representation of PG(2, q3) in PG(8, q)
which represents points of PG(2, q3) by planes of a regular 2-spread
S. This representation is also known as field reduction. We determine
the representation of conics, Fq-sublines, Fq-subplanes and Fq-conics of
PG(2, q3) in PG(8, q). The main focus is to study the interaction of
the corresponding varieties with the transversal planes of S in PG(8, q3)
and also in PG(8, q6), and to illustrate why the transversal planes play a
pivotal role in characterising objects in this representation.

1 Introduction

Bose [8] gave a construction to represent PG(2, q2) using a regular 1-spread in
PG(5, q). Bose’s construction generalises to the Bose representation of PG(2, qh)
using a regular (h − 1)-spread in PG(3h − 1, q). The Bose representation is an ex-
ample of the technique of field reduction. This idea goes back to Segre [21] who
introduced Desarguesian spreads arising from field reduction. The technique of field
reduction has been an area of much recent interest, see [18] for a survey.

The Bruck-Bose representation [1, 9, 10] of PG(2, q2) in PG(4, q) and the Bose
representation [8] of PG(2, q2) in PG(5, q) have been extensively studied, see [2] for
a survey. The Bruck-Bose representation uses a regular 1-spread S in the hyper-
plane at infinity Σ∞ ∼= PG(3, q) of PG(4, q); and the Bose representation uses a
regular 1-spread S in PG(5, q). The regular 1-spread S has two unique transversal
lines g, gq in the quadratic extension PG(4, q2), and the regular 1-spread S has two
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unique transversal planes in the quadratic extension PG(5, q2). The interaction of
varieties of PG(4, q) with the transversals lines of S (and varieties of PG(5, q) with
the transversal planes of S) is intrinsic to characterisations of the corresponding sets
in PG(2, q2). We list four examples in the Bruck-Bose representation in PG(4, q).
(A) A non-degenerate conic C in PG(4, q) corresponds to a Baer subline of PG(2, q2)
if and only if the extension of C to PG(4, q2) contains a point of g and a point of gq;
see [12].
(B) A ruled cubic surface V3

2 in PG(4, q) corresponds to a Baer subplane of PG(2, q2)
if and only if the extension of V3

2 to PG(4, q2) contains g and gq; see [12].
(C) An orthogonal cone U corresponds to a classical unital of PG(2, q2) if and only
if the extension of U to PG(4, q2) contains g and gq; see [20].
(D) A normal rational curve N in PG(4, q) corresponds to an Fq-conic of PG(2, q2)
if and only if N is 2-special: a notion which describes how the extension of N to
PG(4, q) meets the transversal lines g, gq; see [6, Theorem 6.2].
This last characterisation is more complex to prove than the others. The proof
uses the interplay between the Bruck-Bose representation of PG(2, q2) in PG(4, q),
and the Bose representation of PG(2, q2) in PG(5, q). Moreover, the first three of
these characterisations arise naturally when working in the Bose representation in
PG(5, q).

This article aims to generalise these ideas to PG(2, q3). The Bruck-Bose repre-
sentation of PG(2, q3) uses a regular 2-spread in the hyperplane at infinity Σ∞ ∼=
PG(5, q). This regular 2-spread has three unique transversal lines g, gq, gq

2
in the

cubic extension. These transversal lines again play a pivotal role in characterising
objects. For example: a twisted cubic N in PG(6, q) corresponds to a Baer subline
of PG(2, q3) if and only if the extension of N to PG(6, q3) meets the transversal
lines; see [3, Theorem 2.5]. A ruled quintic surface V5

2 in PG(6, q) corresponds to a
Baer subplane of PG(2, q3) if and only if the extension of V5

2 to PG(6, q3) contains
g, gq, gq

2
; see [4]. Further, in [5], the carriers and sublines of an exterior splash are

characterised using the transversals lines.

In this article we look at varieties in the Bose representation of PG(2, q3) in
PG(8, q), and investigate their relationship with the three transversal planes of the
associated regular 2-spread. In particular, we determine the representation of conics,
Fq-sublines, Fq-subplanes and Fq-conics of PG(2, q3) in PG(8, q). Further, by deter-
mining the extensions of the corresponding varieties to PG(8, q3) and PG(8, q6), we
look at their interplay with the transversal planes of the regular 2-spread. This inter-
play illustrates why the characterisations in the previous paragraph hold. In further
work [7], the authors use these varieties to characterise which normal rational curves
in PG(6, q) correspond to Fq-conics in the Bruck-Bose representation of PG(2, q3) in
PG(6, q).

The article is set out as follows. In Section 2, we describe the Bose representa-
tion of PG(2, q3) in PG(8, q) using a regular 2-spread S of PG(8, q). We introduce
coordinates for the Bose representation. In order to study the interaction of vari-
eties with transversal planes of the regular 2-spread S, we calculate coordinates for
the transversal planes. Further, we need a suitable coordinate description of certain
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points in PG(8, q3), and we determine these by looking at the conjugacy map with
respect to an Fq-subplane. Section 3 looks at a variety of PG(2, q3), and uses coordi-
nates to describe the corresponding variety in PG(8, q). We discuss the extension of
the variety to PG(8, q3), give a geometric description, and describe how the variety
meets the transversal planes of S. Section 3.3 describes a convention used in the lit-
erature when discussing extensions in the Bruck-Bose and Bose representations. In
Section 4, we discuss some well known geometrical objects, namely quadrics, scrolls,
and Segre varieties. These are essential objects in proving the remaining results of
the article. The machinery that has been developed in the article is then used to
look at substructures of PG(2, q3) in the PG(8, q) representation; to determine the
extension of the resulting varieties to PG(8, q3) and to PG(8, q6); and to describe
their interplay with the transversal planes of the regular 2-spread. Section 5 looks
at conics of PG(2, q3), Section 6 looks at Fq-sublines and Fq-subplanes of PG(2, q3),
and Section 7 looks at Fq-conics of PG(2, q3).

2 The Bose representation

2.1 Preliminaries

We denote the unique finite field of prime power order q by Fq, and let F∗
q = Fq\{0}.

We use uppercase letters to denote points of PG(n, q), and boldface to denote the
(vector) homogeneous coordinates of a point. That is, if X is a point of PG(n, q),
then X has homogenous coordinates X = (x0, . . . , xn) for some xi ∈ Fq, not all 0.
The Frobenius map x �→ xq for x ∈ Fqh gives rise to an automorphic collineation
X = (x0, . . . , xn) �−→ Xq = (xq

0, . . . , x
q
n) in PΓL(n, qh) of order h acting on

points of PG(n, qh) that fixes the points of PG(n, q) pointwise. We say the points
X,Xq . . . , Xqh−1 are conjugate points with respect to the conjugacy map X �→ Xq.

A 2-spread of PG(8, q) is a set of planes that partition the points of PG(8, q).
We use the following construction of a regular 2-spread of PG(8, q), see [11]. Embed
PG(8, q) in PG(8, q3) and consider the collineation X = (x0, . . . , x8) �−→ Xq =
(xq

0, . . . , x
q
8) acting on PG(8, q3). Let Γ be a plane in PG(8, q3) which is disjoint from

PG(8, q), such that Γ, Γq, Γq
2
span PG(8, q3) (so any two span a 5-space which is

disjoint from the third). For a point X ∈ Γ, the plane 〈X,Xq, Xq2〉 of PG(8, q3)
meets PG(8, q) in a plane. The planes 〈X,Xq, Xq2〉 ∩ PG(8, q) for X ∈ Γ form a
regular 2-spread of PG(8, q). The planes Γ, Γq and Γq

2
are called the three transversal

planes of the 2-spread. Conversely, any regular 2-spread of PG(8, q) has a unique set
of three transversal planes in PG(8, q3), and can be constructed in this way, see [11,
Theorem 6.1].

We need the following general result on planes in 8-dimensional projective space.

Lemma 2.1 Let α, β, γ be three planes which span PG(8, q). Let P be a point of
PG(8, q) not on a line meeting two of α, β, γ. Then P lies on a unique plane that
meets each of α, β, γ.
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Proof Let P be a point of PG(8, q) which is not on a line joining two of α, β, γ.
So 〈P, α〉 is a 3-space that does not meet β or γ. Hence Σ6 = 〈P, α, β〉 is a 6-space.
As α, β, γ span PG(8, q), Σ6 meets γ in a point we denote by Q. So Σ4 = 〈P,Q, α〉
is a 4-space contained in Σ6. As α, β span a 5-space contained in Σ6, Σ4 meets β in
a point denoted R. The two planes π = 〈P,Q,R〉 and α lie in the 4-space Σ4, and
so meet in a point S. That is, π meets α in the point S, meets β in the point R
and meets γ in the point Q. That is, P lies on at least one plane that meets each of
α, β, γ.

Suppose P lies in two distinct planes π1, π2 that meet each of α, β, γ, so 〈π1, π1〉
has dimension 3 or 4. Consider the set of six (possibly repeated) points K = {πi ∩
α, πi ∩ β, πi ∩ γ | i = 1, 2}. Suppose 〈π1, π2〉 is a 3-space, so π1 ∩ π2 = � is a line.
As P ∈ �, by assumption at most one of the planes α, β, γ meets �. Hence |K| ≥ 5,
so the 3-space 〈π1, π2〉 meets two of the planes α, β, γ in a line, and meets the other
in at least a point. This contradicts the three planes α, β, γ spanning PG(8, q). If
〈π1, π2〉 is a 4-space, then |K| = 6, and so 〈π1, π2〉 meets each of α, β, γ in a line,
contradicting the three planes α, β, γ spanning PG(8, q). Hence P lies on at most
one plane that meets each of α, β, γ. We conclude that P lies on exactly one plane
that meets each of α, β, γ. �

2.2 The Bose representation of PG(2, q3) in PG(8, q)

Let S be a regular 2-spread in PG(8, q), we use the term S-plane for a plane in S. Let
IBose be the incidence structure with points the q6+q3+1 S-planes; lines the 5-spaces
of PG(8, q) that contain two (and so q3+1) S-planes; and incidence is inclusion. The
5-spaces of PG(8, q) that meet S in q3+1 planes form a dual spread H (that is, each
7-space of PG(8, q) contains a unique 5-space in H). Then IBose

∼= PG(2, q3), and is
called the Bose representation of PG(2, q3) in PG(8, q). The three transversal planes
of S in PG(8, q3) are denoted by Γ, Γq, Γq

2
throughout this article.

We use the following notation. We use uppercase letters to denote points in
PG(8, q) and its extensions; and uppercase letters with a bar to denote points in
PG(2, q3). If Πr is an r-dimensional subspace of PG(8, q), then Π�

r denotes the natural
extension to an r-dimensional subspace of PG(8, q3), and Π�

r denotes the extension
to PG(8, q6). Moreover, if Σr is an r-dimensional subspace of PG(8, q3) (possibly
disjoint from PG(8, q)), then we use Σ�

r to denote the extension to PG(8, q6). Let
X̄ be a point of PG(2, q3), then the Bose representation of X̄ is an S-plane denoted
by �X�. In PG(8, q3), we have �X�� ∩ Γ = X and �X�� = 〈X,Xq, Xq2〉. Thus
X̄ corresponds to a unique point X of Γ, and the points of Γ and PG(2, q3) are in
one-to-one correspondence.

More generally, if K̄ is a set of points of PG(2, q3), then �K� = {�X� | X̄ ∈ K̄}
denotes the corresponding set of S-planes, and K = {�X�� ∩ Γ | X̄ ∈ K̄} denotes the
corresponding set of points of Γ. In particular, we have the following correspondences:

PG(2, q3) ∼= Γ ∼= IBose

X̄ ←→ X ←→ �X� = 〈X,Xq, Xq2〉 ∩ PG(8, q).
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We will need some properties of planes of PG(8, q3) that meet all three transversal
planes of the regular 2-spread S. We call a plane of PG(8, q3) that meets all three
transversal planes a T-plane; call a line of PG(8, q3) that meets two transversal planes
a T-line; and call a point of PG(8, q3) that lies in a transversal plane a T-point.

Corollary 2.2 Two T-planes of PG(8, q3) are either equal, disjoint, meet in a T-
point, or meet in a T-line.

Proof Let P be a point of PG(8, q3) which is not a T-point, and does not lie on
a T-line. As P is not on a T-line, by Lemma 2.1, P lies on a unique T-plane. The
result follows. �

Next we choose a basis and give coordinates to describe the representation of
PG(2, q3) in PG(8, q). This idea is not new and has been used in field reduction and
for coordinatising a regular 2-spread in PG(8, q). However, we need to formalise the
technique and notation we use to prove the later results in this article.

2.3 Coordinates for the Bose representation

If P̄ is a point in PG(2, q3), then P̄ has homogeneous coordinates P̄ = (x, y, z) for
some x, y, x ∈ Fq3, not all zero. Further, the homogeneous coordinates (x, y, z) ≡
λ(x, y, z) for any λ ∈ F

∗
q3 . If Q is a point in PG(8, q), then Q has homogeneous

coordinates Q = (x0, x1, x2, y0, y1, y2, z0, z1, z2) for some xi, yi, zi ∈ Fq, not all zero.
Further,

(x0, x1, x2, y0, y1, y2, z0, z1, z2) ≡ ρ(x0, x1, x2, y0, y1, y2, z0, z1, z2)

for any ρ ∈ F
∗
q.

The Bose representation maps a point P̄ in PG(2, q3) to an S-plane �P � in
PG(8, q). We introduce notation to describe this algebraically. Let τ be a primi-
tive element of Fq with primitive polynomial

x3 − t2x
2 − t1x− t0

for t0, t1, t2 ∈ Fq. If x, y, z ∈ Fq3, we can write x = x0+x1τ+x2τ
2, y = y0+y1τ+y2τ

2,
z = z0 + z1τ + z2τ

2 for unique xi, yi, zi ∈ Fq. Define the following two maps

θ : Fq3 −→ F
3
q

x �−→ (x0, x1, x2),

Θ: F3
q3 −→ F

9
q

(x, y, z) �−→ (θ(x), θ(y), θ(z)) = (x0, x1, x2, y0, y1, y2, z0, z1, z2).

Note that Θ maps the vector (x, y, z) which is one ‘coordinate representation’ of a
point in PG(2, q3) to a vector which is one ‘coordinate representation’ of a point
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in PG(8, q). The Bose representation maps the q3 − 1 ‘coordinate representations’
λ(x, y, z), λ ∈ F

∗
q3 to (q3 − 1)/(q − 1) = q2 + q + 1 distinct points of PG(8, q). That

is, if P̄ = (x, y, z) ≡ (λx, λy, λz), then the corresponding S-plane �P � is the set of
points

�P � = {Θ(λx, λy, λz) = (θ(λx), θ(λy), θ(λz)) | λ ∈ F
∗
q3}.

For reference, we compare our notation to the notation 〈v〉q3 and 〈v〉q used for field
reduction in [17]. For a point P̄ in PG(2, q3) with homogeneous coordinates P =
v = (x, y, z), we have

P = 〈v〉q3 = {(λx, λy, λz) | λ ∈ F
∗
q3}

�P � = 〈v〉q = {Θ(λx, λy, λz) | λ ∈ F
∗
q3}

2.4 Coordinates for S-planes

Let P be a point of PG(8, q). We can write the S-plane �P � in PG(8, q) as �P � =
〈P0, P1, P2〉 where P0, P1, P2 are the three non-collinear points of PG(8, q) whose
homogeneous coordinates are

P 0 = Θ(x, y, z),

P 1 = Θ(τx, τy, τz),

P 2 = Θ(τ 2x, τ 2y, τ 2z).

It is straightforward to expand and simplify these; the first coordinates θ(x), θ(τx)
and θ(τ 2x) are:

θ(x) = (x0, x1, x2),

θ(τx) = (x2t0, x0 + x2t1, x1 + x2t2),

θ(τ 2x) = (t0(x1 + t2x2), t0x2 + t1(x1 + t2x2), x0 + t1x2 + t2(x1 + t2x2) ).

Further, if ρ ∈ F
∗
q3, write ρ = p0+p1τ+p2τ

2 for unique p0, p1, p2 ∈ Fq. Straightforward
expanding and simplifying yields

Θ(ρx, ρy, ρz) = p0P 0 + p1P 1 + p2P 2.

2.5 Coordinates for the transversal planes of S

We determine the coordinates in PG(8, q3) of the three transversal planes of the
regular 2-spread S using the points P0, P1, P2 defined above. Define the following
constants a0, a1, a2 ∈ Fq3 and the points A0,A1,A2 ∈ PG(8, q3), as

a0 = t1 + t2τ − τ 2 = −τ qτ q2 , A0 = (a0, a1, a2, 0, 0, 0, 0, 0, 0),

a1 = t2 − τ = τ q + τ q
2
, A1 = (0, 0, 0, a0, a1, a2, 0, 0, 0),

a2 = −1, A2 = (0, 0, 0, 0, 0, 0, a0, a1, a2).
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Lemma 2.3 The three transversal planes of S are

Γ = 〈A0,A1,A2〉, Γq = 〈Aq
0,A

q
1,A

q
2〉, Γq

2

= 〈Aq2

0 ,Aq2

1 ,Aq2

2 〉.

Moreover, the point P̄ = (x, y, z) ∈ PG(2, q3) corresponds to the point P in Γ where
P = �P �� ∩ Γ and

P = a0P 0 + a1P 1 + a2P 2 = xA0 + yA1 + zA2.

Proof Let P̄ = (x, y, z) ∈ PG(2, q3), so �P � = 〈P0, P1, P2〉 with Pi as above.
Straightforward calculations show that in PG(8, q3) we have a0P 0 + a1P 1 + a2P 2 =
xA0 + yA1 + zA2. Hence these are the homogeneous coordinates of a point that lies
in the plane �P �� and in the plane 〈A0,A1,A2〉. Hence the extension of the S-plane
�P � to PG(8, q3) meets the plane 〈A0,A1,A2〉. As every extended S-plane meets the
plane 〈A0,A1,A2〉, it is one of the transversal planes, which we denote by Γ. The
other two transversal planes are hence Γq and Γq

2
. �

Note that the points A0,A1,A2 of the transversal plane Γ correspond to the fun-
damental triangle of PG(2, q2), namely Ā0 = (1, 0, 0), Ā1 = (0, 1, 0), Ā2 = (0, 0, 1).

We can now write �P � in terms of the point P ∈ Γ, namely

�P �� = 〈P, P q, P q2〉,

where
P = xA0 + yA1 + zA2 ∈ Γ
P q = xqA0

q + yqA1
q + zqA2

q ∈ Γq

P q2 = xq2A0
q2 + yq

2
A1

q2 + zq
2
A2

q2 ∈ Γq
2
.

In order to study Fq-subplanes later in this article, we need to develop a descrip-
tion of the plane in PG(8, q3) which contains the three points whose homogeneous

coordinates are: xA0 + yA1 + zA2, xA0
q + yA1

q + zA2
q and xA0

q2 + yA1
q2 + zA2

q2.
The next two subsections are devoted to carefully calculating a useful description of
these points.

2.6 Conjugacy with respect to an Fq-subplane in PG(2, q3)

An Fq-subplane of PG(2, q3) is a subplane which has order q, that is, a subplane
isomorphic to PG(2, q). An Fq-subline is a line of an Fq-subplane, so is isomorphic to
PG(1, q). We will define conjugacy with respect to an Fq-subplane and Fq-subline.

First consider the Fq-subplane π̄0 = {(x, y, z) | x, y, z ∈ Fq, not all 0} of PG(2, q3).
There are two collineations in PΓL(3, q3) which have order 3 and fix π̄0 pointwise,
namely c̄ and c̄2 where

c̄ : PG(2, q3) −→ PG(2, q3)

X̄ =

⎛
⎝
x
y
z

⎞
⎠ �−→ X̄

q
=

⎛
⎝
xq

yq

zq

⎞
⎠ .
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In fact, Ḡπ0 = 〈c̄〉 is the unique subgroup of PΓL(3, q3) which fixes π̄0 pointwise and
has order 3. For X̄ ∈ PG(2, q3)\π̄0, the three points X̄, X̄ c̄, X̄ c̄2 are called conjugate
with respect to π̄0.

If we embed PG(2, q3) in PG(2, q6), then c̄ has a natural extension to acting on
points of PG(2, q6). We denote the extension of c̄ to PΓL(3, q6) by c̄ as well. That
is, for a point X̄ ∈ PG(2, q6), we have c̄(X̄) = X̄q, and c̄ has order 6 when acting on
PG(2, q6). Under the collineation c̄, a point X̄ ∈ PG(2, q6) lies in an orbit of size:
1 if X̄ ∈ π̄0; 3 if X̄ ∈ PG(2, q3)\π̄0; 2 or 6 if X̄ ∈ PG(2, q6)\PG(2, q3), depending
on whether X̄ belongs to the Fq2-subplane PG(2, q2) that contains π̄0 = PG(2, q), or
not.

More generally, let π̄ be any Fq-subplane of PG(2, q3). Acting on the points of
PG(2, q3) is a unique collineation group Ḡπ ⊆ PΓL(3, q3) which fixes π̄ pointwise
and has order 3. We wish to distinguish between the two non-identity collineations
in Ḡπ, and do so as follows. Consider any homography that maps π̄ to π̄0, and
denote its 3× 3 non-singular matrix over Fq3 by A, so if X̄ ∈ π̄, then the point with
coordinates AX̄ is in the Fq-subplane π̄0. Let c̄π(X̄) = A−1 c̄(AX̄). As c̄π has order
3 and fixes π̄ pointwise, we have Ḡπ = 〈c̄π〉. We expand c̄π, and to avoid confusion
use the following notation. For a 3 × 3 matrix A = (aij), i, j = 1, 2, 3, we let the
matrix Aσ = (aqij), i, j = 1, 2, 3. Thus c̄π(X̄) = A−1AσX̄

q
, or writing B = A−1Aσ,

we have c̄π(X̄) = BX̄
q
. That is, we can without loss of generality write Ḡπ = 〈c̄π〉

with

c̄π : PG(2, q3) −→ PG(2, q3)

X̄ �−→ BX̄
q

(1)

with B a 3× 3 non-singular matrix over Fq3 . For X̄ ∈ PG(2, q3)\π̄, the three points

X̄, X̄ c̄π , X̄ c̄2π are called conjugate with respect to π̄. Note that X̄, X̄ c̄π , X̄ c̄2π are
collinear if and only if X̄ lies on an extended line of π̄. As above, the collineation
c̄π ∈ PΓL(3, q3) has a natural extension to a collineation of PΓL(3, q6) acting on
points of PG(2, q6).

Similarly, if b̄ is an Fq-subline of a line �̄b of PG(2, q3), then acting on the points of
�̄b is a unique collineation group Ḡb ⊆ PΓL(2, q3) of order 3 which fixes b̄ pointwise.
Moreover, Ḡπ restricted to acting on �̄b is isomorphic to Ḡb if and only if b̄ is a line
of π̄. Without loss of generality we can write Ḡb = 〈c̄b〉 where for a point X̄ ∈ �̄b,

c̄b(X̄) = DX̄
q

(2)

with D a non-singular matrix over Fq3 . Further, we can extend c̄b to act on points
of the quadratic extension of �̄b.
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2.7 Conjugacy of PG(2, q3) in the Bose representation

We now return to the Fq-subplane π̄0 = PG(2, q) of PG(2, q3) and look in more detail
at the collineation c̄ ∈ PΓL(3, q3) defined by

c̄ : PG(2, q3) −→ PG(2, q3)

X̄ = (x, y, z) �−→ X̄
c
= X̄

q
= (xq, yq, zq).

We have Ḡπ0 = {id, c̄, c̄2} where for X̄ = (x, y, z) ∈ PG(2, q3),

X̄
c̄
= (xq, yq, zq) and X̄

c̄2
= (xq2 , yq

2

, zq
2

).

The collineation c̄ induces a map denoted c which acts on the points of the transversal
plane Γ in PG(8, q3). That is, π is an Fq-subplane of Γ, and c fixes π pointwise and
has orbit size 3 on the points of Γ\π. Note that c is not a collineation of PG(8, q3).
By Lemma 2.3, a point X ∈ Γ has coordinates

X = xA0 + yA1 + zA2 ∈ Γ

for some x, y, z ∈ Fq3 not all zero. So

Xc = xqA0 + yqA1 + zqA2 ∈ Γ,

Xc2 = xq2A0 + yq
2
A1 + zq

2
A2 ∈ Γ.

We will be interested in the images of these points under the map X �→ Xq of
PG(8, q3), in particular, we work with the following points:

(Xc2)q = xA0
q + yA1

q + zA2
q ∈ Γq,

(Xc)q
2

= xA0
q2 + yA1

q2 + zA2
q2 ∈ Γq

2
.

For X = xA0 + yA1 + zA2 ∈ Γ, we will be interested in the plane

〈 xA0 + yA1 + zA2, xA0
q + yA1

q + zA2
q, xA0

q2 + yA1
q2 + zA2

q2〉
= 〈X, (Xc2)q, (Xc)q

2 〉. (3)

Consider the extension to PG(8, q6). Let e ∈ PΓL(9, q6) be the unique involution
acting on points of PG(8, q6) fixing PG(8, q3) pointwise. We say the points X,Xe

are conjugate with respect to the quadratic extension from PG(8, q3) to PG(8, q6),
and have

X = (x0, . . . , x8) �−→ Xe = (xq3

0 , . . . , xq3

8 ).

As e fixes PG(8, q3) pointwise, it fixes Γ pointwise. A point X ∈ Γ� has coordinates
xA0 + yA1 + zA2 for some x, y, z ∈ Fq6 , not all zero, and

(xA0 + yA1 + zA2)
e = xq3A0 + yq

3

A1 + zq
3

A2.



S.G. BARWICK ET AL. /AUSTRALAS. J. COMBIN. 79 (1) (2021), 31–54 40

Hence for a point X ∈ Γ�\Γ, we have Xe = Xq3 = Xc3 . It is straightforward to
verify that

(Xc2e)q = (Xc5)q = xA0
q + yA1

q + zA2
q ∈ Γq

(Xce)q
2

= (Xc4)q
2

= xA0
q2 + yA1

q2 + zA2
q2 ∈ Γq

2
.

For a point X ∈ Γ� with coordinates X = xA0 + yA1 + zA2, we will be interested in
the plane

〈 xA0 + yA1 + zA2, xA0
q + yA1

q + zA2
q, xA0

q2 + yA1
q2 + zA2

q2〉
= 〈X, (Xc2e)q, (Xce)q

2 〉. (4)

Note that if X ∈ Γ, then this is the same plane as in (3).

2.8 Coordinates in the Bruck-Bose representation

We can construct the Bruck-Bose representation of PG(2, q3) in PG(6, q) by in-
tersecting the Bose representation with a 6-space Σ6,q of PG(8, q) which contains
a unique 5-space that meets S in q3 + 1 planes. To obtain the same coordinates
for the Bruck-Bose representation as that used in [3, Section 2.2], we take the
line at infinity in PG(2, q3) to have equation z = 0, which contains the points
X̄ = (1, 0, 0), Ȳ = (0, 1, 0). In PG(8, q3), this corresponds to the line g in the
transversal plane Γ where g = 〈A0,A1〉. Take Σ6,q as the 6-space of PG(8, q) consisting
of the points (x0, x1, x2, x3, x4, x5, x6, 0, 0), xi ∈ Fq, not all 0. Then Σ�

∞ = 〈g, gq, gq2〉
and contains all points of form (x0, x1, x2, x3, x4, x5, 0, 0, 0). Further, g, g

q, gq
2
are the

transversal lines of the regular 2-spread S in Σ∞. An affine point P̄ with coordinates
P̄ = (x, y, 1) = (x0 + x1τ +x2τ

2, y0+ y1τ + y2τ
2, 1) of PG(2, q3) corresponds to the

affine point �P �∩Σ6,q of Σ6,q\Σ∞ which has coordinates (x0, x1, x2, y0, y1, y2, 1, 0, 0).

3 Varieties

3.1 Definitions

We define varieties over a finite field following the notation in [15, Section 2.7]. A
form f ∈ Fq[x0, . . . , xn] is a homogeneous polynomial f(x0, . . . , xn) in indeterminants
x0, . . . , xn whose coefficients are in Fq. Let f1, . . . , fk be k forms in Fq[x0, . . . , xn].
Let I be the ideal of Fq[x0, . . . , xn] generated by f1, . . . , fk, that is, I = (f1, . . . , fk) =
{a1f1+ · · · akfk | ai ∈ Fq}. Let V (f1, . . . , fk) be the set of points P in PG(n, q) which
satisfy f1(P ) = · · · = fk(P ) = 0. Then the pair v(f1, . . . , fk) = (V (f1, . . . , fk), I) is
a called a variety, or an Fq-variety of PG(n, q).

A point P in PG(n, q) is called an Fq-rational point of the variety v(f1, . . . , fk)
if f1(P ) = · · · = fk(P ) = 0. More generally, a point P in PG(n, qh) is called an
Fqh-rational point of the variety v(f1, . . . , fk) if f1(P ) = · · · = fk(P ) = 0. Further,
if F is the algebraic closure of Fq, then an F-rational point of v(f1, . . . , fk) is a point
P in PG(n,F) which satisfies f1(P ) = · · · = fk(P ) = 0. Note that V (f1, . . . , fk) =
V (f1) ∩ · · · ∩ V (fk), and we use the notation v(f1, . . . , fk) = v(f1) ∩ · · · ∩ v(fk).
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3.2 Varieties in the Bose representation

In this section we use coordinates to study varieties of PG(2, q3) and their corre-
sponding structure in PG(8, q). Note that the following Theorem 3.1 holds more
generally, and can be used to study varieties of PG(2, qh) and their corresponding
structure in the Bose representation PG(3h − 1, q). We are interested in the case
PG(8, q), and the extensions to PG(8, q3) and PG(8, q6). In order to establish our
notation, we state and prove the results in this setting. In particular, we will prove
the following result.

Theorem 3.1 Let F̄ (x, y, z) be a homogeneous equation of degree k over Fq3, and
let K̄ ⊂ PG(2, q3) be the set of Fq3-rational points of the variety v(F̄ ). Write x =
x0 + τx1 + τ 2x2, y = y0 + τy1 + τ 2y2, z = z0 + τz1 + τ 2z2 for indeterminants
xi, yi, zi ∈ Fq. Expanding and simplifying yields

F̄ (x, y, z) = G(x0, x1, x2, y0, y1, y2, z0, z1, z2) = f0 + τf1 + τ 2f2

where fi = fi(x0, x1, x2, y0, y1, y2, z0, z1, z2) is a homogeneous equation of degree k
over Fq, i = 0, 1, 2. Consider the Bose representation of PG(2, q3).

1. In PG(8, q), the pointset of �K� coincides with the set of Fq-rational points of
the variety v(f0, f1, f2).

2. In PG(8, q3), the following three pointsets coincide.

(a) the set of Fq3-rational points of the Fq-variety v(f0, f1, f2),

(b) the set of Fq3-rational points of the Fq3-variety v(G,Gq, Gq2).

(c) the pointset of the planes {〈X, Y q, Zq2〉 |X, Y, Z ∈ K}.

Hence the set of Fq3-rational points of v(G,Gq, Gq2) which lie in Γ are precisely
the points of K.

The proof is given in a series of lemmas and proceeds as follows. First, Lemma 3.2
takes a form in Fq3 [x, y, z] and converts it to a form in Fq[x0, . . . , x8]. Next, in
Lemma 3.3, we look at a set K̄ in PG(2, q3) which is the set of Fq3-rational points of
a variety. We use the calculations from Lemma 3.2 to show that the corresponding
set of points in the Bose representation in PG(8, q) are the Fq-rational points of a
variety. We next determine the Fq3-rational points of this variety in Lemma 3.4.
Lemma 3.5 is a stepping stone to Lemma 3.6 which gives a geometric description of
the variety.

Lemma 3.2 Let F̄ (x, y, z) be a homogeneous equation of degree k over Fq3 in inde-
terminants x, y, z. Write x = x0+τx1+τ 2x2, y = y0+τy1+τ 2y2, z = z0+τz1+τ 2z2
for indeterminants xi, yi, zi ∈ Fq. Expanding and simplifying yields

F̄ (x, y, z) = G(x0, x1, x2, y0, y1, y2, z0, z1, z2) = f0 + τf1 + τ 2f2

where fi = fi(x0, x1, x2, y0, y1, y2, z0, z1, z2) is a homogeneous equation of degree k
over Fq, i = 0, 1, 2.
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Proof Recall from Section 2.3, τ is a primitive element in Fq3 satisfying τ 3 = t0 +
t1τ + t2τ

2 for some t0, t1, t2 ∈ Fq. Let F̄ = F̄ (x, y, z) be a homogeneous form over Fq3

of degree k in indeterminants x, y, z. For indeterminants x0, x1, x2, y0, y1, y2, z0, z1, z2,
substitute x = x0 + x1τ + x2τ

2, y = y0 + y1τ + y2τ
2, z = z0 + z1τ + z2τ

2 in F̄ to
obtain the homogeneous form G(x0, x1, x2, y0, y1, y2, z0, z1, z2) of degree k. For each
coefficient a ∈ Fq3 of G, rewrite as a = a0 + a1τ + a2τ

2 for unique a0, a1, a2 ∈ Fq.
Then using τ 3 = t0 + t1τ + t2τ

2, we may write

G = f0 + f1τ + f2τ
2 (5)

for unique homogeneous forms f0, f1, f2 ∈ Fq[x0, x1, x2, y0, y1, y2, z0, z1, z2] of degree k.
�

Now f0, f1 and f2 are homogeneous equations with coefficients in Fq, so v(f0),
v(f1) and v(f2) are Fq-varieties of PG(8, q). Further, G is a homogeneous equation
with coefficients in Fq3 , so v(G) is an Fq3-variety. The natural geometric setting for
the variety v(G) is PG(8, q3), however, we can still determine whether any points of
PG(8, q) satisfy the equation G. Formally, an Fq-rational point of v(G) is an Fq3-
rational point of v(G) that is fixed by the semilinear transformation X �→ Xq. The
next result shows that a point P ∈ PG(8, q) is an Fq-rational point of the variety
v(G) if and only if P is an Fq-rational point of the varieties v(f0), v(f1) and v(f2).

Lemma 3.3 Using the notation in Lemma 3.2, let K̄ be the set of Fq3-rational points
of the variety v(F̄ ). Then the pointset of �K� in PG(8, q) coincides with the set of
Fq-rational points of the variety v(f0, f1, f2).

Proof A point Q ∈ PG(8, q) with homogenous coordinates Q = (a0, a1, a2, b0, b1, b2,
c0, c1, c2) corresponds to the point X̄Q = (a0+a1τ +a2τ

2, b0+ b1τ + b2τ
2, c0+ c1τ +

c2τ
2) of PG(2, q3). By Lemma 3.2, G(Q) = F̄ (X̄Q), so G(Q) = 0 if and only if

F̄ (X̄Q) = 0. By (5), G(Q) = 0 if and only if f0(Q) = f1(Q) = f2(Q) = 0. Hence a
point Q ∈ PG(8, q) is an Fq-rational point of the variety v(f0, f1, f2) if and only if
the corresponding point X̄Q ∈ PG(2, q3) is an Fq3-rational point of the variety v(F̄ ).

We now consider the converse, a point P̄ in PG(2, q3) corresponds to an S-plane
�P �, which contains q2 + q + 1 points of PG(8, q). We want to show that if P̄ is an
Fq3-rational point of the variety v(F̄ ), then in PG(8, q), every point Y ∈ �P � is an
Fq-rational point of the variety v(f0, f1, f2). Let P̄ have homogeneous coordinates
P̄ = (x, y, z) ≡ ρ(x, y, z), for any ρ ∈ F

∗
q3, then as discussed in Section 2.3, the single

point in �P � corresponding to the single coordinate representation (ρx, ρy, ρz) is the
point Yρ with coordinates Yρ = Θ(ρx, ρy, ρz). Moreover, �P � = {Yρ | ρ ∈ F

∗
q3}. So

F̄ (P̄ ) = F̄ (ρx, ρy, ρz) = 0 for all ρ ∈ F
∗
q3 if and only if G(Yρ) = 0 for all ρ ∈ F

∗
q3 if

and only if f0(Yρ) = f1(Yρ) = f2(Yρ) = 0 for all ρ ∈ F
∗
q3 . This completes the proof.

�

We have shown that the Fq-rational points of the Fq3-variety v(G) and the Fq-
rational points of the Fq-variety v(f0, f1, f2) coincide. Next, we look at the Fq3-
rational points of each variety, we show that they do not coincide, but determine
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how they are related. As G is a homogeneous equation with coefficients in Fq3 , the

homogeneous equations Gq and Gq2 have coefficients in Fq3. So v(G,Gq, Gq2) =

v(G) ∩ v(Gq) ∩ v(Gq2) is an Fq3-variety.

Lemma 3.4 The set of Fq3-rational points of the variety v(f0, f1, f2) is precisely the

set of Fq3-rational points of the variety v(G,Gq, Gq2).

Proof The set of Fq3-rational points of the variety v(f0, f1, f2) is the set of points
P of PG(8, q3) satisfying the three equations f0(P ) = 0, f1(P ) = 0, f2(P ) = 0.
This set is equivalent to the set of points satisfying any three linearly independent
equations of form λ0f0 + λ1f1 + λ2f2 = 0 where λ1, λ2, λ3 ∈ Fq3 . Recalling that
f0, f1, f2 are equations over Fq, we consider the three linearly independent equations

G = f0 + τf1 + τ 2f2, Gq = f0 + τ qf1 + τ 2qf2, Gq2 = f0 + τ q
2

f1 + τ 2q
2

f2.

So a point P ∈ PG(8, q3) satisfies f0(P ) = f1(P ) = f2(P ) = 0 if and only if
G(P ) = Gq(P ) = Gq2(P ) = 0, as required. �

Lemma 3.5 The set of Fq3-rational points of the variety v(G) form a cone with base

K in the transversal plane Γ and vertex 〈Γq, Γq2〉.

Proof We first determine the set of Fq3-rational points of v(G) which lie in the
transversal plane Γ. By Lemma 2.3, a point Q in the transversal plane Γ has coordi-
nates

Q = xA0 + yA1 + zA2 = (xa0, xa1, xa2, ya0, ya1, ya2, za0, za1, za2)

for some x, y, z ∈ Fq3. Moreover, the points of Γ are in one-to-one correspondence
with the points of PG(2, q3): the point Q ∈ Γ corresponds to the point Q̄ ∈ PG(2, q3)
where

Q̄ = (x, y, z).

By Lemma 3.2, G(Q) = F̄ (Q̄). So the point Q ∈ Γ is an Fq3-rational point of v(G)
if and only if the point Q̄ ∈ PG(2, q3) is an Fq3-rational point of the variety v(F̄ ), if
and only if Q̄ ∈ K̄.

We now determine the singular space of the variety v(G). Let V denote the set
of Fq3-rational points of v(G). As the plane Γ is not contained in V, the maximum

dimension of the singular space of v(G) is five. We show that the 5-space 〈Γq, Γq2〉
is the singular space of v(G) by showing that every point in V lies on a line joining
a point Q ∈ K to a point R ∈ 〈Γq, Γq2〉. Let Q ∈ K, R ∈ 〈Γq, Γq2〉 and P ∈ QR. By

Lemma 2.3, Γ = 〈A0,A1,A2〉, Γq = 〈Aq
0,A

q
1,A

q
2〉 and Γq

2
= 〈Aq2

0 ,Aq2

1 ,Aq2

2 〉. So P has
homogeneous coordinates of form

P = xA0 + yA1 + zA2 + rA0
q + sA1

q + tA2
q + uA0

q2 + vA1
q2 + wA2

q2 ,
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for some x, y, z, r, s, t, u, v, w ∈ Fq3 . Simplifying P (using the coordinates for Ai and
ai as in Section 2.5) we calculate the first three coordinates of P are

(xa0 + raq0 + uaq
2

0 , xa1 + raq1 + uaq
2

1 , xa2 + raq2 + uaq
2

2 ).

As in the proof of Lemma 3.3, recall that P corresponds to a unique point of PG(2, q3)
which we denote by X̄P , and the first coordinate of X̄P is

xa0 + raq0 + uaq
2

0 + (xa1 + raq1 + uaq
2

1 )τ + (xa2 + raq2 + uaq
2

2 )τ 2.

Straightforward manipulation shows that

aq0 + τaq1 + τ 2aq2 = aq
2

0 + τaq
2

1 + τ 2aq
2

2 = 0,

and using this we simplify the first coordinate of X̄P to (a0+τa1+τ 2a2) x. Similarly
we calculate the other coordinates of P , and the coordinates of X̄P are

X̄P = (a0 + τa1 + τ 2a2)
(
x, y, z

)
≡ (x, y, z) = Q̄.

By Lemma 3.2, G(P ) = F̄ (X̄P ), so P lies in V if and only if the point X̄P = Q̄ lies
in K̄. Hence if P is on a line joining Q ∈ Γ with a point R of 〈Γq, Γq2〉, then G(P ) = 0
if and only if F̄ (Q̄) = 0. That is, P ∈ V if and only if Q̄ ∈ K̄ if and only if Q ∈ K.
Hence v(G) is a cone with base K and vertex 〈Γq, Γq2〉. �

Lemma 3.6 The set of Fq3-rational points of the variety v(f0, f1, f2) is equivalent

to the pointset of the planes in {〈X, Y q, Zq2〉 |X, Y, Z ∈ K}.

Proof By Lemma 3.5, v(G) is a cone in PG(8, q3) with base K in Γ and vertex
〈Γq, Γq2〉. Hence v(Gq) is a cone with base Kq2 in Γq

2
and vertex 〈Γq, Γ〉; and v(Gq2)

is a cone with base Kq and vertex 〈Γ, Γq2〉. Note that each of the three cones is a set
of T-planes. Hence the intersection of the three cones v(G), v(Gq), v(Gq2) is the set
of points lying on the T-planes

{〈X, Y q, Zq2〉 |X, Y, Z ∈ K}

as required. �

This completes the proof of Theorem 3.1. We will apply Theorem 3.1 to look
at the following varieties of PG(2, q3) in the Bose representation: we look at conics
in Section 5; Fq-sublines and Fq-subplanes in Section 6; and Fq-conics in Section 7.
In each case, we determine the corresponding varieties of PG(8, q), then look at the
extensions to PG(8, q3) and PG(8, q6), and determine their relationship with the
transversal planes of the regular 2-spread S. First, we discuss why it is important to
carefully describe the variety of PG(8, q) that we extend, and highlight an important
convention used in the literature.
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3.3 A Bose representation convention regarding variety extensions

Using the notation of Theorem 3.1, let K̄ be the set of Fq3-rational points of a variety
v(F̄ ) of PG(2, q3), so the points of �K� coincide with the Fq-rational points of the
variety v(f0, f1, f2) of PG(8, q). The set of points in �K� may be the set of Fq-rational
points of more than one variety of PG(8, q). In particular, as xq = x for all x ∈ Fq,
if the form fi of degree d contains terms having an indeterminant raised to a power
greater than or equal to q, then we can reduce these exponents by q − 1 to yield a
homogeneous form gi of degree d − q + 1; such that the Fq-rational points of v(fi)
and v(gi) coincide. That is, the Fq-rational points of the two varieties v(f0, f1, f2)
and v(g0, g1, g2) coincide. However, the Fq3-rational points of the two varieties may
not coincide.

The Bruck-Bose and Bose representations of PG(2, q2) have been well studied,
and the literature has used this reduction of degree technique. As this is an impor-
tant notion, we illustrate the convention the literature has used by looking at two
examples in the Bose representation of PG(2, q2) in PG(5, q). We use the following
notation here. Let S denote the regular 1-spread in PG(5, q), and let Γ, Γq denote
the transversal planes of S in PG(5, q2). If Ā is a set of points in PG(2, q2), then the
corresponding a set of points in the transversal plane Γ is denoted A.

Example 3.7 Let Ū be a classical unital of PG(2, q2). So Ū is projectively equiv-
alent to the variety v(F̄ ) where F̄ (x, y, z) = xq+1 + yq+1 + zq+1. Let τ ∈ Fq2 have
minimal polynomial x2 − t1x − t0. Let x0, x1, y0, y1, z0, z1 be indeterminants and
substitute x = x0 + x1τ, y = y0 + y1τ, z = z0 + z1τ in F̄ to obtain the form

G(x0, x1, y0, y1, z0, z1) = (x0 + x1τ)
q+1 + (y0 + y1τ)

q+1 + (z0 + z1τ)
q+1.

As τ q = t1 − τ and ττ q = −t0, this becomes G(x0, x1, y0, y1, z0, z1) = xq+1
0 + τxq

0x1 +
(t1 − τ)x0x

q
1 − t0x

q+1
1 + yq+1

0 + τyq0y1 + (t1 − τ)y0y
q
1)− t0y

q+1
1 + zq+1

0 + τzq0z1 + (t1 −
τ)z0z

q
1)− t0z

q+1
1 . It follows that

f0(x0, x1, y0, y1, z0, z1) =

xq+1
0 + t1x0x

q
1 − t0x

q+1
1 + yq+1

0 + t1y0y
q
1 − t0y

q+1
1 + zq+1

0 + t1z0z
q
1 − t0z

q+1
1

and
f1(x0, x1, y0, y1, z0, z1) = −x0x

q
1 + xq

0x1 − y0y
q
1 + yq0y1 − z0z

q
1 + zq0z1.

We now consider the corresponding forms gi where the exponents of the forms fi are
reduced by q − 1, giving

g0(x0, x1, y0, y1, z0, z1) = x2
0 + t1x0x1 − t0x

2
1 + y20 − t0y

2
1 + z20 − t0z

2
1

and
g1(x0, x1, y0, y1, z0, z1) = 0.

The forms f0, f1 have degree q+1, while the form g0 has degree 2 and g1 is identically
zero. The two varieties Q = v(g0, g1) = v(g0) and V = v(f0, f1) have the same set
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of Fq-rational points, that is, they have the same pointset in PG(5, q). However,
their Fq2-rational points do not coincide. The variety Q is an elliptic quadric whose
extension to PG(5, q2) is a hyperbolic quadric that contains the transversal planes
Γ, Γq. Adapting Theorem 3.1 to this case, the set of Fq2-rational points of the variety
V = v(f0, f1) is the set of points of PG(5, q2) which lie on the lines XY q for points
X, Y ∈ U . Comparing these two varieties: the set of Fq2-rational points of v(g0)
contains Γ, and the set of Fq2-rational points of v(f0, f1) meets Γ in a unital. The
standard convention used in the literature in this example is to reduce exponents
in the forms, and define the variety of PG(5, q) corresponding to a unital to be the
elliptic quadric Q = v(g0, g1) = v(g0), not the variety V = v(f0, f1); see [2].

Example 3.8 Consider the Bose representation of the Baer subplane π̄0 = PG(2, q)
of PG(2, q2). Let F̄0(x, y, z) = xyq − xqy, F̄1(x, y, z) = yzq − yqz, F̄2(x, y, z) =
zxq − zqx, then π̄0 may be described as the variety v(F̄0, F̄1, F̄2). A similar analysis
to Example 1 yields varieties v(fi,j), i = 0, 1, 2, j = 0, 1, with f0,0 = x0y

q
0 − xq

0y0 +
t1(x0y

q
1 − x1y

q
0) − t0(x1y

q
1 − xq

1y1), f0,1 = x0y
q
1 + xq

1y0 + x1y
q
0 − xq

0y1, and so on.
Reducing the exponents gives varieties v(gi,j), i = 0, 1, 2, j = 0, 1, with g0,0 =
t1(x0y1 − x1y0), g0,1 = −2(x0y1 − x1y0), and so on. The forms defining the variety
K = v(f0,0, f0,1, f1,0, f1,1, f2,0, f2,1) have degree q+1, and the forms defining the variety
K′ = v(g0,0, g0,1, g1,0, g1,1, g2,0, g2,1) are quadrics. The Fq-rational points of the two
varieties coincide, but the Fq2-rational points do not. The Fq2-rational points of K
form a set of points in PG(5, q2) which meets the transversal plane Γ in the Baer
subplane π0. The Fq2-rational points of K′ form a set of points in PG(5, q2) that
contains the transversal plane Γ. The standard convention used in the literature
in this example is to reduce exponents in the forms and use the variety K′ when
considering the extension to PG(5, q2); see [2].

4 Quadrics

4.1 Quadrics in PG(8, q) and their extension to PG(8, q3)

In the next three sections, we work with varieties which are the intersections of
quadrics in PG(8, q). We want to look at their extensions to PG(8, q3) and PG(8, q6).
Rather than continue with the formal variety notation, we use the following simpler
notation, generalising the star notation we use for subspaces. A quadricQ in PG(8, q)
is the set of Fq-rational points of an Fq-variety v(f) where f ∈ Fq[x0, . . . , x8] is a
homogeneous equation of degree two. The extension of Q to PG(8, q3) is denoted
Q� and is the set of Fq3-rational points of v(f), that is, Q� is the set of points P in
PG(8, q3) satisfying f(P ) = 0. Similarly, the extension of Q to PG(8, q6) is denoted
Q� and is the set of points P in PG(8, q6) that satisfy f(P ) = 0.

More generally, for i = 1, . . . , k, let Qi be a quadric in PG(8, q) with homogeneous
equation fi ∈ Fq[x0, . . . , x8] of degree two. Let V = Q1 ∩ · · · ∩Qk be the intersection
of these k quadrics, so V is the set of points of P ∈ PG(8, q) which satisfy f1(P ) =
· · · = fk(P ) = 0. We use the notation V� to refer to the set of points in the cubic
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extension PG(8, q3) which satisfy f1, . . . , fk, that is, V
� = Q�

1 ∩ . . . ∩ Q�

k . Similarly,
V� = Q�

1 ∩ · · · ∩ Q�

k denotes the extension to PG(8, q6), so is the set of points
P ∈ PG(8, q6) with f1(P ) = · · · = fk(P ) = 0.

4.2 Segre varieties

We define the Segre variety S2;2 following [16, Section 25.5]. Consider the projective
spaces P1 = {(X0, X1, X2) |Xi ∈ Fq}, P2 = {(Y0, Y1, Y2) | Yi ∈ Fq}. Then the Segre
variety S2;2 of P1 and P2 is the set of points with coordinates

(x0, . . . , x8) = (X0Y0, X0Y1, X0Y2, X1Y0, X1Y1, X1Y2, X2Y0, X2Y1, X2Y2)

in PG(8, q). The variety S2;2 contains two maximal systems of subspace which are
planes, denote these R,R′. The system R contains q2+q+1 pairwise disjoint planes,
and R′ contains q2+ q+1 pairwise disjoint planes. Each point of S2;2 lies in a unique
plane in R and a unique plane in R′.

The variety S2;2 is the intersection of the nine quadrics with equations x0x4 =
x1x3, x0x5 = x2x3, x0x7 = x1x6, x0x8 = x2x6, x1x5 = x2x4, x1x8 = x2x7, x3x7 =
x4x6, x3x8 = x5x6, and x4x8 = x5x7. In fact, these nine quadrics are not linearly
independent, and a suitable choice of six quadrics suffices to uniquely determine S2;2.
That is, we can define the Segre variety S2;2 in PG(8, q) as the intersection of six
quadrics Q1∩· · ·∩Q6 with associated forms f1, . . . , f6 ∈ Fq[x0, . . . , x8]. We use these
quadrics to define the extension of S2;2 as follows. Let V be the set of points on the
Segre variety in PG(8, q), so V = Q1 ∩ · · · ∩ Q6. Let V

� = Q�

1 ∩ · · · ∩ Q�

6 denote the
set of points in the extension of V to PG(8, q3), that is, the set of points of PG(8, q3)
which satisfy f1, . . . , f6. Similarly, V� = Q�

1 ∩ · · · ∩Q�

6 denotes the set of points of V
lying in the extension of V to PG(8, q6).

4.3 Scrolls in PG(8, q)

We define scrolls in PG(8, q). For a more general definition of a rational normal k-
fold scroll in PG(n, q), see [14, p93]. Let π1, π2, π3 be three planes in PG(8, q) which
are pairwise disjoint, and together span PG(8, q). Let Ci be a non-degenerate conic
in πi, i = 1, 2, 3. Let φi ∈ PGL(2, q) be a projectivity mapping C1 to Ci, i = 2, 3.
Then the set of planes

S(C1, C2, C3) = {〈P, P φ2, P φ3〉 |P ∈ C1}

form a rational normal 3-fold scroll. Any two scrolls of PG(8, q) constructed from
three conics is this way are projectively equivalent. Without loss of generality, we
can coordinatise as follows:

C1 = {P r,s = (r2, rs, s2, 0, 0, 0, 0, 0, 0) | r, s ∈ Fq, not both 0},
C2 = {P ′

r,s = (0, 0, 0, r2, rs, s2, 0, 0, 0) | r, s ∈ Fq, not both 0},
C3 = {P ′′

r,s = (0, 0, 0, 0, 0, 0, r2, rs, s2) | r, s ∈ Fq, not both 0},
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so the homographies φ2, φ3 are essentially the identity and the scroll S(C1, C2, C3)
consists of the q + 1 planes 〈Pr,s, P ′

r,s, P ′′
r,s〉.

The pointset of the scroll S(C1, C2, C3) coincides with the Fq-rational points of
a variety V6

3 of dimension 3 and degree 6, see [14, p93, p256]. We consider two
ways to look at the extension of the scroll S(C1, C2, C3) to PG(8, q3). Firstly, in the
variety setting, the variety extension is the set of Fq3-rational points of the variety
V6
3. Secondly, embed PG(8, q) in PG(8, q3), so πi has a natural extension to a plane

π�

i of PG(8, q3), Ci has a natural extension to a conic C�

i of π�

i , and φi has a natural
extension to the projectivity φ�

i acting on the points of C�

1 . We define the scroll-
extension of S(C1, C2, C3) to PG(8, q3) to be the set of q3 +1 planes 〈P, P φ�

2 , P φ�
3 〉 for

P ∈ C�

1 . It is not immediately obvious whether the pointsets of these two extensions
coincide, we prove in Theorem 7.1 that they do coincide.

We generalise this to define a scroll which rules the three planes π1, π2, π3 in
PG(8, q). Let φi ∈ PGL(3, q) map π1 to πi, i = 2, 3. Then a plane 3-fold scroll is
the set of planes

S(π1, π2, π3) = {〈P, P φ2, P φ3〉 |P ∈ π1}.
It is well known that this set of planes is one system of maximal subspaces of the
Segre variety S2;2. Further, each system of maximal subspaces of S2;2 form a scroll.

5 Conics of PG(2, q3) in the Bose representation

In this section, we use Theorem 3.1 to show that a non-degenerate conic of PG(2, q3)
corresponds to the intersection of three quadrics in PG(8, q). Further, we describe
the extension to PG(8, q3) and PG(8, q6). We note that Gill [13] looks at conics of
PG(2, q3) using field reduction, by taking the polarity of a conic and generating one
related form in PG(8, q). Our approach is different, we take the equation of a conic
and generate three related forms in PG(8, q).

Theorem 5.1 Let Ō be a non-degenerate conic in PG(2, q3). Consider the Bose
representation.

1. In PG(8, q), the pointset of �O� coincides with the pointset of a variety Q0 ∩
Q1 ∩ Q2, where Q1,Q2,Q3 are quadrics of PG(8, q).

2. In PG(8, q3), the extension Q�

0 ∩Q�

1 ∩Q�

2 has pointset which coincides with the
points on the planes {〈X, Y q, Zq2〉 |X, Y, Z ∈ O}.

3. In PG(8, q6), the extension Q�

0 ∩Q�

1 ∩Q�

2 has pointset which coincides with the
points on the planes {〈X, Y q, Zq2〉 |X, Y, Z ∈ O�}, where O� is the quadratic
extension of the conic O to Γ� ⊂ PG(8, q6).

Proof Let Ō be a non-degenerate conic in PG(2, q3), so Ō is the set of points
satisfying a homogeneous equation F (x, y, z) = 0 of degree 2 over Fq3 . As in Theo-
rem 3.1, we can write F (x, y, z) = f(x0, x1, x2, y0, y1, y2, z0, z1, z2) = f0 + f1τ + f2τ

2
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where f0, f1, f2 are homogeneous equations of degree 2 over Fq. The set of points of
PG(8, q) satisfying fi = 0 form a quadric denoted Qi, i = 0, 1, 2, and the pointset of
�O� is the intersection of the three quadrics Q0 ∩ Q1 ∩Q2.

The extension to PG(8, q3) is the set of points P ∈ PG(8, q3) with fi(P ) = 0,
i = 0, 1, 2; this is denoted Q�

0 ∩ Q�

1 ∩ Q�

2 . We can equivalently define this as the set
of points on the intersection of three quadrics with linearly independent polynomials
λ0f0 + λ1f1 + λ2f2 for some λ0, λ1, λ2 ∈ Fq3 . Let T0 be the quadric of PG(8, q3)
with homogeneous polynomials h = f0 + τf1 + τ 2f2. Let T1 be the quadric with
homogeneous equation hq = 0 and T2 be the quadric with homogeneous equation
hq2 = 0. Then Q�

0 ∩Q�

1 ∩Q�

2 = T0 ∩T1 ∩T2. By Theorem 3.1, T0 is a cone with base
O in Γ and vertex 〈Γq, Γq2〉. Similarly T1 is a cone with base Oq and vertex 〈Γ, Γq2〉
and T2 is a cone with base Oq2 and vertex 〈Γ, Γq〉. The intersection of these three
cones is the set of T-planes that contain a point of O, a point of Oq and a point of
Oq2, proving part 2.

In PG(8, q3), we have Q�

0 ∩ Q�

1 ∩ Q�

2 = T0 ∩ T1 ∩ T2, so in PG(8, q6) we have
Q�

0 ∩Q�

1 ∩Q�

2 = T0� ∩ T1� ∩ T2�. In PG(8, q3), the quadric T0 is a cone with base O
in Γ and vertex 〈Γq, Γq2〉. Hence in PG(8, q6), T0� is a cone with base O� in Γ� and
vertex 〈Γq, Γq2〉� = 〈(Γq)�, (Γq

2
)�〉. We can similarly describe the quadrics T1�, T2�

as cones. The intersection of these three cones is the set of T-planes that contain a
point of O�, a point of (Oq)� = (O�)q and a point of (Oq2)� = (O�)q

2
. That is, the

set of planes of form 〈X, Y q, Zq2〉 where X, Y, Z ∈ O�, proving part 3. �

6 Sublines and subplanes of PG(2, q3)

The representation of Fq-subplanes and Fq-sublines of PG(2, q3) in the Bose repre-
sentation in PG(8, q) is known. For example, it is proved in [19] and also in [18,
Theorem 2.6] using field reduction techniques.

Result 6.1 1. Let π̄ be an Fq-subplane of PG(2, q3) then in PG(8, q), the planes
{�X� |X ∈ π} of the Bose representation �π� form one system of maximal
spaces of a Segre variety S2;2.

2. Let b̄ be an Fq-subline lying on the line �̄b of PG(2, q3), then the planes of �b�

form a 2-regulus of the 5-space Πb = 〈�b, �qb, �
q2

b 〉 ∩ PG(8, q).

Remark 6.2 Note that this result follows the convention described in Example 3.8.
Let π̄ be an Fq-subplane of PG(2, q3), so π is a variety whose forms in Fq3 [x, y, z]
have degree q + 1. Using Theorem 3.1, this corresponds to a variety v(fi,j) with
forms in fi,j ∈ Fq[x0, . . . , x8] of degree q + 1. As in Example 3.8, we reduce these
exponents to get forms gi,j ∈ Fq[x0, . . . , x8] of degree 2. In PG(8, q), the intersection
of the quadrics v(gi,j) is a Segre variety S2;2, as described in Result 6.1.

Let π̄ be an Fq-subplane of PG(2, q3), so by Result 6.1, �π� is a Segre variety. As
discussed in Section 4.2, this is the intersection of six quadrics Q1 ∩ · · · ∩ Q6 where
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Qi has form fi ∈ Fq[x0, . . . , x8] of degree two, i = 1, . . . , 6. We use the notation
Vπ = Q1∩· · ·∩Q6 and look at the extension of this to PG(8, q3) and PG(8, q6). We use
the two collineations of PG(8, q6) defined in Section 2.7, namelyX = (x0, . . . , x8) �−→
Xq = (xq

0, . . . , x
q
8) and e : X = (x0, . . . , x8) �→Xe = (xq3

0 , . . . , xq3

8 ).

Theorem 6.3 Let π̄ be an Fq-subplane of PG(2, q3). In the Bose representation, let
cπ be the collineation of order 3 acting on the points of Γ which fixes π pointwise as
defined in (1). Let Vπ = Q1 ∩ · · · ∩ Q6 denote the Segre variety S2;2 whose pointset
coincides with the pointset of �π�.

1. In PG(8, q3), V�

π = Q�

1 ∩ · · · ∩ Q�

6 is a Segre variety S2;2, with one system of
maximal spaces the planes {�X�π |X ∈ Γ} where

�X�π = 〈X, (Xc2π)q, (Xcπ)q
2 〉.

2. In PG(8, q6), V�

π = Q�

1 ∩ · · · ∩ Q�

6 is a Segre variety S2;2, with one system of
maximal spaces the planes {�X�π |X ∈ Γ�} where

�X�π =
〈
X, (Xc2πe)q, (Xcπe)q

2 〉
=

〈
X, (Xc5π)q, (Xc4π)q

2 〉
.

Proof Let π̄ be an Fq-subplane of PG(2, q3), so �π� is a Segre variety Vπ = Q1 ∩
· · · ∩ Q6 where Qi has form fi ∈ Fq[x0, . . . , x8] of degree two, i = 1, . . . , 6. The
points of Vπ lie on two systems of planes denoted R = {αi, i = 0, . . . , q2 + q},
R′ = {α′

i, i = 0, . . . , q2 + q}. The extension of this variety is V�

π = Q�

1 ∩ · · · ∩ Q�

6 ,
that is, V�

π is the set of points P of PG(8, q3) which satisfy f1(P ) = · · · = f6(P ) = 0.
Further, V�

π is a Segre variety S2;2, so the points of V�

π lie on two systems of planes
T , T ′ each of size q6 + q3 + 1. Note that αi

� ∈ T , i = 0, . . . , q2 + q and α′
i

� ∈ T ′,
i = 0, . . . , q2 + q.

As discussed in Section 4.3, the planes of R form a scroll. That is, without
loss of generality suppose that the three planes α′

0, α
′
1, α

′
2 of R′ do not lie in a 5-

space. Then there are homographies φi ∈ PGL(3, q), φi : α
′
0 → α′

i, i = 1, 2, and
S(α′

0, α
′
1, α

′
2) = R = {〈P, P φ1, P φ2〉 |P ∈ α′

0}. The scroll-extension is the set of
q6 + q3 + 1 planes {〈P, P φ�

1 , P φ�
2 〉 |P ∈ α′

0
�}. The planes of the Segre variety V�

π

in T also form a scroll. As a homography is uniquely determine by the image of
a quadrangle, the planes in the scroll-extension of S(α′

0, α
′
1, α

′
2) coincides with the

planes of T . Hence to describe the planes of T , we determine the planes of the scroll.

Without loss of generality, let π̄ = PG(2, q) = {(x, y, z) | x, y, z ∈ Fq, not all 0}.
In the Bose representation,

π = {xA0 + yA1 + zA2 | x, y, z ∈ Fq, not all 0}

is an Fq-subplane of the transversal plane Γ. The planes of �π� have form {�X� |X ∈
π}. Using the notation of Section 2.3, for a point X = xA0 + yA1 + zA2 ∈ π, (so
x, y, z ∈ Fq) we have �X� = �X�� ∩ PG(8, q) where

�X�� = 〈X, Xq, Xq2〉 = 〈xA0+yA1+zA2, xA0
q+yA1

q+zA2
q, xA0

q2+yA1
q2+zA2

q2〉.
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Note that φi : xA0 + yA1+ zA2 �→ xA0
qi + yA1

qi + zA2
qi, i = 1, 2, so φi is essentially

the identity in PGL(3, q). The scroll-extension to PG(8, q3) is the set of planes

{〈xA0+yA1+zA2, xA0
q+yA1

q+zA2
q, xA0

q2+yA1
q2+zA2

q2〉 | x, y, z∈ Fq3 , not all 0}.

Using the calculations from (3) in Section 2.6, this is the set of planes

{〈X, (Xc2π)q, (Xcπ)q
2 〉 |X ∈ Γ}.

Hence the Segre variety V�

π has as one system of maximal spaces the planes
{�X�π |X ∈ Γ}, with �X�π = 〈X, (Xc2π)q, (Xcπ)q

2 〉, proving part 1.

The proof of part 2 is similar. The scroll-extension of Sπ to PG(8, q6) is the set
of planes

{〈xA0+yA1+zA2, xA0
q+yA1

q+zA2
q, xA0

q2+yA1
q2+zA2

q2〉 | x, y, z ∈ Fq6 not all 0}.

Using the calculations from (4), this is the set of planes

{〈X, (Xc2πe)q, (Xcπe)q
2 〉 |X ∈ Γ�}.

Hence the Segre variety V�

π has as one system of maximal spaces the planes
{�X�π |X ∈ Γ�} with �X�π = 〈X, (Xc2πe)q, (Xcπe)q

2 〉, proving part 2. �

Note that for a point X ∈ π, Xcπ = X and �X�π = �X��, which meets PG(8, q)
in a plane �X�. However, if X ∈ Γ\π, then by Corollary 2.2, the plane �X�π does not
meet any plane of {�X� |X ∈ Γ}. As the planes in the set {�X� |X ∈ Γ} partition
the points of PG(8, q), it follows that �X�π is disjoint from PG(8, q) for X ∈ Γ\π.

We use Theorem 6.3 to look at an Fq-subline b̄, and describe the planes of the
extension of the 2-regulus �b� to PG(8, q3) and PG(8, q6).

Corollary 6.4 Let b̄ be an Fq-subline lying on the line �̄b of PG(2, q3). In the Bose
representation, let cb be the collineation of order 3 acting on the points of �b which
fixes b pointwise as defined in (2). The 2-regulus �b� can be extended to a unique
2-regulus of PG(8, q3) with planes {�X�b |X ∈ �b}; and to a unique 2-regulus of
PG(8, q6) with planes {�X�b |X ∈ �

�

b } where

�X�b =
〈
X, (Xc5b )q, (Xc4b )q

2 〉
.

Proof Note that if X ∈ �b, then Xc5b = Xc2b and Xc4b = Xcb . Further, if X ∈ b, then
Xc5b = Xc4b = X. If π is an Fq-subplane of Γ, then cb coincides with cπ restricted
to �b if and only if b is a line of π. Hence letting π be an Fq-subplane of Γ such
that b is a line of π, we can intersect the results of Theorem 6.3 with the 5-space

Πb = 〈�b, �qb, �
q2

b 〉 to obtain the required result. �
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7 Fq-conics of PG(2, q3) in the Bose representation

We define an Fq-conic of PG(2, q3) to be a non-degenerate conic in an Fq-subplane
of PG(2, q3). That is, an Fq-conic is projectively equivalent to a set of points in
PG(2, q) that satisfy a non-degenerate homogeneous quadratic equation over Fq. We
determine the Bose representation of an Fq-conic C̄ of PG(2, q3). An Fq-conic C̄
of PG(2, q3) corresponds to an Fq-conic in the transversal plane Γ denoted C. Let
C+++ denote the unique Fq3-conic of Γ containing C. The quadratic extension of the
non-degenerate conic C+++ ⊂ Γ to the extended transversal plane Γ� ∼= PG(2, q6) is a
non-degenerate conic which we denote by C++.

Theorem 7.1 Let C̄ be an Fq-conic in the Fq-subplane π̄ of PG(2, q3), and consider
the Bose representation of PG(2, q3) in PG(8, q).

1. In PG(8, q), the planes of �C� form a scroll of PG(8, q), and the pointset of
�C� forms a variety VC of dimension 3 and degree 6 which is the intersection
of nine quadrics, VC = Q1 ∩ · · ·Q9.

2. In PG(8, q3), the points of the variety V�

C = Q�

1 ∩ · · · ∩ Q�

9 coincide with the
points on the planes {�X�π |X ∈ C+++}, which form a scroll.

3. In PG(8, q6), the points of the variety V�

C = Q�

1 ∩ · · · ∩ Q�

9 coincide with the
points on the planes {�X�π |X ∈ C++}, which form a scroll.

Proof Let C be an Fq-conic in an Fq-subplane π of Γ, so C = π ∩ C+++. By defini-
tion, in PG(8, q), �C� = {〈X,Xq, Xq2〉 ∩ PG(8, q) |X ∈ C}, �π� = {〈X,Xq, Xq2〉 ∩
PG(8, q) |X ∈ π} and �C+++� = {〈X,Xq, Xq2〉 ∩ PG(8, q) |X ∈ C+++}, so

�C� = �C+++� ∩ �π�. (6)

By Result 6.1, the planes of �π� form one system of maximal subspaces of a Segre
variety S2;2, and so form a scroll. As the planes of �C� are a subset of the planes of
�π�, the planes of �C� form a scroll, ruled by the same homography as for the scroll
�π�. Recall from Section 4.3, the pointset of �C� forms a variety V6

3. By Theorem 5.1,
the pointset of �C+++� forms a variety VC+++ = Q1 ∩Q2 ∩Q3 where Qi is a quadric with
homogenous equation fi = 0 of degree two over Fq, i = 1, 2, 3. As in Section 4.2, the
Segre variety S2;2 is the intersection of six quadrics, so by Result 6.1, the pointset
of �π� forms a variety Vπ = Q4 ∩ · · · ∩ Q9 where Qi is a quadric with homogenous
equation fi = 0 of degree two over Fq, i = 4, . . . , 9. So by (6), the pointset of �C�
coincides with the pointset of a variety VC which is the intersection of nine quadrics,
namely VC = (Q1 ∩Q2 ∩ Q3) ∩ (Q4 ∩ · · · ∩ Q9).

The set of points P in PG(8, q3) which satisfy fi(P ) = 0, i = 1, . . . , 9 is denoted
V�

C = Q�

1 ∩ · · · ∩ Q�

9 , so in particular,

V�

C = V�

C+++ ∩ V�

π. (7)
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We now determine the points of V�

C . By Theorem 5.1, the points of V�

C+++ are the
points of PG(8, q3) on the planes

{〈X, Y q, Zq2〉 |X, Y, Z ∈ C+++}. (8)

By Theorem 6.3, the points of V�

π are the points of PG(8, q3) on the planes

{�X�π |X ∈ π}. (9)

The planes in (8) and (9) are T-planes, so by Corollary 2.2, two planes in (8) and
(9) either coincide, are disjoint, or meet in a T-point or a T-line. Thus by (7), V�

C
consists of points on the set of planes which are in both (8) and (9). That is, V�

C
consists of the points of PG(8, q3) on the planes {�X�π |X ∈ C+++}. Further, as in the
proof of Theorem 6.3, the planes {�X�π |X ∈ C+++} form a scroll. This completes the
proof of part 2. Part 3 is similar. �
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