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Abstract

A matching M in a graph G is said to be extendable if there is a perfect
matching in G which contains M . It has been known for some time
that if the matching M has the property that the edges it contains are
mutually far enough apart, it is more likely that M will extend. In
previous studies, ensuring that edges were suitably far apart was achieved
by fixing a distance d and requiring that each pair of edges in a set
to be extended was at least distance d apart. In the present paper we
study extending matchings in which the edges to be extended are pairwise
at different distances one from the other. We call this an asymmetric
matching extension. In particular, we focus on improving existing results
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by applying such an asymmetric distance restriction in which we single
out one particular edge from M and require that it is at least a certain
distance from the other edges in M while the remaining edges in the given
matching are left unrestricted as to mutual distance. We shall confine
ourselves to 5-connected even planar triangulations in order to guarantee
that the graphs under study actually contain perfect matchings.

1 Introduction

In [11], Plummer introduced the notion of extendability in graphs. A graph G on at
least 2m+2 vertices is said to be m-extendable if for each matching M of size m, there
is a perfect matching PM of G such that M ⊂ PM . In the original paper, it was shown
that an m-extendable graph must be m+1-connected, and in the many investigations
that followed, connectivity has proved to be an important factor in determining
whether a class of graphs is m-extendable. Other fruitful considerations have involved
regularity and genus. In [12], it was shown that no planar graph is 3-extendable.
This remarkable result puts an upper bound on extendability for planar graphs well
short of that imposed by connectivity considerations. A considerable number of
papers have since appeared in the literature related to extendability and the reader
is directed to surveys [13, 14, 15] as well as the book [18] for more information.

In 1996 Porteous and Aldred [17] asked about extending one matching to a perfect
matching while completely avoiding a second disjoint matching. More precisely, a
graph G with at least 2m+ 2n+ 2 vertices which contains a perfect matching is said
to satisfy property E(m,n) (or simply “G is E(m,n)”) if, for every pair of matchings
M and N in G with |M | = m and |N | = n such that M ∩N = ∅, there is a perfect
matching F in G such that M ⊆ F and N ∩F = ∅. This property is a generalization
of the widely studied concept of matching extension in that a graph is m-extendable
if and only if it is E(m, 0).

In [17], certain implications and non-implications were shown to exist among
the E(m,n) properties for different values of m and n. This generalized notion of
extendability also inspired a number of papers some of which are surveyed in [16]
and [18].

The present paper deals with E(m,n) as it relates to certain planar graphs; more
particularly, we shall focus on plane triangulations with an even number of vertices.

Let us briefly summarize what is known heretofore about the property E(m,n)
for plane triangulations. In general, no planar graph, triangulation or not, is E(3, 0)
([12]), nor even E(2, 1) ([1]). If a planar even triangulation is only 3-connected, it
may not even contain a perfect matching as is evidenced, for example, by the graph
(called a “Kleetope”) shown in the following figure.

So we may proceed immediately to the case when the graph is (at least) 4-
connected.

If G is a 4-connected planar even triangulation, it is E(1, 1) ([1]), but not neces-



R.E.L. ALDRED ET AL. /AUSTRALAS. J. COMBIN. 79 (1) (2021), 1–14 3

Figure 1: A 3-connected even planar triangulation with no perfect matching.

sarily E(1, 2) ([3]). It is also E(0, 3) ([1]), and hence by [17], also E(0, 2) and E(0, 1).
But it is not necessarily E(0, 4) ([3]).

For 5-connected planar even triangulations the known results are combined in
the next theorem.

Theorem 1.1. Let G be a 5-connected planar even triangulation. Then:

(i) G is E(2, 0) ([9], [13]);

(ii) G is E(1, 3) ([2] Corollary 3.3); and

(iii) G is E(0, 7) ([2] Theorem 3.4).

Each of these results is known to be sharp. In particular, parts (ii) and (iii) have
sharpness examples in which the matchings to be avoided consist of edges which are
pairwise distance 2 apart.

In [2] the authors first showed that the distance between edges to be matched
could affect whether or not they could be extended to a perfect matching. In par-
ticular, three independent edges in a planar 5-connected even triangulation do not
necessarily extend to a perfect matching, but if each of the three edges lies at distance
at least 2 from each of the other two, then the three do in fact so extend.

Later in [3] we defined the property Ed(m,n) as follows. Let d be a positive
integer and m and n, non-negative integers. A graph G is said to have the property
Ed(m,n) (or simply “G is Ed(m,n)”) if given any two disjoint matchings M with
|M | = m and N with |N | = n in G, where the distance between every two edges in
M is at least d and the distance between every two edges in N is at least d, there
is a perfect matching F in G such that M ⊆ F and N ∩ F = ∅. If we apply the
distance d to the matching L = M ∪ N , then the distance restriction is said to be
universal and we say G is Edu(m,n).

Applying distance restrictions in the manner described in the preceding paragraph
has led to many results in matching extension theory (see, for example, [1, 2, 3, 4,
5, 6, 8]).
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If we apply distance restrictions to our specified matchings we have the following
improvements over the results in Theorem 1.1.

Theorem 1.2. Let G be a 5-connected planar even triangulation. Then:

(i) G is E2(3, 0) ([2] Theorem 2.1);

(ii) G is E2(2, 1) ([3] Theorem 4.1);

(iii) G is E2u(1, 5) ([3] Theorem 5.1);

(iv) G is E3(1, n), for all non-negative integers n ([3] Theorem 5.2); and

(v) G is E3(0, n), for all non-negative integers n ([3] Corollary 6.1).

Work in the present paper is motivated by the question: What is the effect of
modifying the distance condition in an asymmetric way for the edges to be matched?
This new approach means that we no longer specify a single distance, d, and require
that all edges to be extended are pairwise at least distance d apart. Instead we allow
that the specified distance may differ depending on which pair of edges we choose
from the set to be extended. In particular, we are able to show that all of the results
in Theorem 1.1 can be improved by applying such an asymmetric distance restriction
in which we single out just one particular edge from M ∪N and require that it is at
least a certain distance from other edges in the given matching while the remaining
edges in the given matching are left unrestricted as to mutual distance.

For general graph theoretic terminology, the reader is referred to [7] and in par-
ticular for more on matching theory, to [10]. In addition, however, we shall need the
following concepts. Suppose a graph G contains two disjoint matchings E and F ,
such that G contains no perfect matching containing all edges in M while containing
none of the edges in N . This is equivalent to saying that the graph G′ = G−V (E)−F
does not contain a perfect matching. But then it follows by Tutte’s classical result
on matchings that G′ must contain a set of vertices S (usually called a Tutte set or
barrier) such that the number of odd components of G′ − S exceeds |S|.

We shall make use of the idea of the bipartite distillation G∗ obtained from G
via G′ based upon E, S and F . This concept was first introduced in [1] and named
‘bipartite distillation’ in [2]. It is defined as follows: (1) Contract each odd component
of G′−S to a separate singleton and delete any multiple edges and loops thus formed,
(2) delete all even components of G′ − S, and (3) delete all edges in G[V (E) ∪ S] as
well as those in F . Then let G∗ be the bipartite graph thus obtained having S∪V (E)
as the vertices of one partite set and the contracted components of G′ − S as the
vertices in the other partite set. Clearly, G∗ will be planar if the original graph G is
planar.
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2 Main Results

As mentioned above, a 5-connected planar even triangulation must have property
E2(3, 0), but not necessarily E(3, 0). Our first result below shows that in such a
triangulation, requiring d ≥ 2 among all pairs of the three edges in order to extend
to a perfect matching is stronger than we need. In fact, suppose we have three
independent edges such that one of them lies at distance at least 2 from each of the
other two. Then the following theorem guarantees that the three given edges will
always extend to a perfect matching.

Theorem 2.1. Let G be a 5-connected even planar triangulation. Suppose e, f, g ∈
E(G) are such that d(e, f) ≥ 2, d(e, g) ≥ 2 and {e, f, g} is a matching in G. Then
G contains a perfect matching which contains all of e, f and g.

Proof. Let G, e, f and g be as in the statement of the theorem and suppose there
is no matching containing all of e, f and g. That is, the graph G′ = G − V (e) −
V (f)− V (g) has no perfect matching. By Tutte’s theorem, we have a set of vertices
S = {s1, . . . , sk} ⊆ V (G′) such that H = G′−S contains at least |S|+ 2 = k+ 2 odd
components. (Note, the number of odd components in H must be the same parity
as |S| = k, since |V (G)| is even.) Moreover, since G is E(2, 0), H contains exactly
k + 2 odd components. To see this, suppose H has more than |S| + 2 = k + 2 odd
components. By parity, this means there are at least k + 4 odd components in H.
Now consider G′′ = G − V (e) − V (f) and S ′ = S ∪ V (g). Then H = G′′ − S ′ has
at least k + 4 = |S ′|+ 2 odd components and thus, G has no perfect matching that
includes both the edges e and f , contradicting the fact that G is E(2, 0). In addition,
by Theorem 1.2(i), if d(f, g) ≥ 2, there is a perfect matching containing all three of
e, f and g.

So let us suppose that d(f, g) = 1.

Now let G∗ denote the bipartite distillation obtained from G via G′ based on
E = {e, f, g}, S = {s1, . . . , sk} and F = ∅. Then |V (G∗)| = k + 6 + k + 2 = 2k + 8.
Moreover, by Euler’s Formula for planar bipartite graphs, 2|V (G∗)| − 4 = 4k + 12 ≥
|E(G∗)| ≥ 5(k + 2) (since G is 5-connected), and hence k ≤ 2.

Now in G contract edge e to a single vertex ve. Then, since G is E(2, 0), ve has
neighbours in at least two of the odd components of H. Let C1, . . . , Ck, Ck+1, Ck+2

be the odd components of H and, without loss of generality, we may suppose ve has
neighbours in both C1 and C2.

In a fixed plane representation of graph G with edge e contracted to the single
vertex ve, let us scan about vertex ve in a clockwise direction starting with a vertex
u1 ∈ V (C1) and eventually reaching a vertex uj, the last neighbour of ve ∈ C1.

Then uj+1 must lie in V (f)∪V (g)∪S (since it is not in C1 and, being a neighbour
of ui, it cannot belong to another odd component of H). Continuing this clockwise
scan, we must encounter neighbours of ve ∈ V (C2). Let vi be the last such neighbour
so that vi+1 /∈ V (C2). So vi+1 ∈ V (f) ∪ V (g) ∪ S. (See Figure 2.)
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By our distance hypothesis, neither uj+1 nor vi+1 can lie in V (f) ∪ V (g). Thus
uj+1 and vi+1 both lie in S = {s1, . . . sk}.
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Figure 2: Scanning the neighbourhood of ve.

Note that uj+1 6= vi+1, or else we would have a vertex cut of size 3 in G, formed
by the two endvertices of e together with uj+1. Consequently ve is adjacent to two
distinct vertices in S. Thus |S| ≥ 2. From our earlier observation that |S| = k ≤ 2,
we must conclude that k = 2, S = {s1, s2} and ve is adjacent to both s1 and s2.

We can perform a similar exercise for each of the edges f and g. Since f and g are
similar, we shall only detail the process for f . In G we contract f to a single vertex
vf , noting vf has neighbours in at least two odd components of H. Scanning the
neighbours of vf clockwise reveals that vf has at least two neighbours in S ∪ V (g).
Since G is 5-connected, at most one of these neighbours of vf can be in V (g). Thus
each of the vertices vf and vg has a neighbour in S = {s1, s2}.

Let L = G[V (e) ∪ V (f) ∪ V (g) ∪ {s1, s2}]. Then L is connected and, with the
embedding inherited from G, L is a plane graph with NL = |V (L)| = eight vertices,
EL edges and FL faces.

Since G is a 5-connected planar triangulation and H = G−V (L) has at least four
odd components, L has at least four faces of size at least 5 in order to accommodate
these odd components. By Euler’s formula we have NL −EL + FL = 2, which yields
EL − FL = 6.

Now 2EL =
∑

i≥3 iFL,i and FL =
∑

i≥3 FL,i, where FL,i denotes the number of
faces of size i in L. Thus 12 = 2EL − 2FL =

∑
i≥3(i − 2)FL,i from which we may

conclude that FL,i = 0 for all i 6= 5, FL,5 = 4 and thus EL = 10 and FL = 4. So each
face in L is bounded by a 5-cycle and every edge of L belongs to two pentagonal
faces. Hence L has no vertices of degree 1, no 3-cycles and no 4-cycles.

Let us denote e = v1v2, f = w1w2 and g = x1x2. We recall from earlier that
d(f, g) = 1 so we have a path w1w2x1x2, without loss of generality. Also, each of
v1 and v2 has degree in L at least 2, and since d(e, f) ≥ 2 and d(e, g) ≥ 2, and
e has both s1 and s2 as neighbours, we have a path s1v1v2s2, again without loss
of generality. The remaining four edges in L can only join {s1, s2} to vertices in
{w1, w2, x1, x2}. Since L has no 3-cycles or 4-cycles, neither s1 nor s2 can have more
than two neighbours in {w1, w2, x1, x2}. Thus each of s1 and s2 has exactly two such
neighbours and these must be w1 and x2. These edges are shown as dashed edges in
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Figure 3. But then s1w1s2x2s1 is a separating 4-cycle in G, a contradiction.
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Figure 3: The subgraph L.

We note that Theorem 2.1 is sharp as the graph in Figure 2.2 of [2] is a 5-connected
even planar triangulation which is not E2(4, 0).

Next let us recall that by Theorem 2.1 of [1], no planar graph (and therefore,
no plane triangulation) satisfies property E(2, 1). But by Theorem 4.1 of [3], every
planar triangulation does satisfy E2(2, 1). The next theorem shows that the same
asymmetric distance restriction assumed in Theorem 2.1 when applied to all three
edges involved, again guarantees the desired extension.

Theorem 2.2. Let G be a 5-connected even planar triangulation. Suppose e, f, g ∈
E(G) are such that d(e, f) ≥ 2, d(e, g) ≥ 2 and {e, f, g} is a matching in G. Then
G contains a perfect matching which contains any pair of edges in {e, f, g}, while
avoiding the third.

Proof. Let G, e, f and g be as described in the statement of the theorem. Theorem
1.2(ii) guarantees that G contains a perfect matching which includes e and f , but
not g, and a perfect matching including e and g, but not f . To establish the present
theorem, we must now show that G also has a perfect matching including edges f
and g, while avoiding e. Moreover, we may again assume by Theorem 1.2 (ii) that
d(f, g) = 1, for otherwise we may conclude that the desired matching exists.

So, assuming that the desired matching does not exist, by Tutte’s Theorem we
have a set of vertices S ⊆ V (G)−(V (f)∪V (g)) such that H = G−V (f)−V (g)−S−e
contains at least |S| + 2 odd components. Moreover, since G is E(2, 0), we have
precisely |S|+ 2 odd components in H and the edge e joins vertices in two different
odd components of H (see Figure 4).

Let G∗ denote the bipartite distillation of G based on E = {f, g}, S and F = {e}.
We now use the standard count on edges in G∗ to obtain

4|S|+ 8 ≥ |E(G∗)| ≥ 5|S|+ 8

and hence |S| = 0.

But G is a triangulation, so the edge e lies in the boundary cycles of two triangular
faces. Thus the endvertices of e must have two common neighbours neither of which
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Figure 4:

can be in V (f) ∪ V (g) by our distance hypothesis, nor can they be in any of the
components of H, since they must be adjacent to both endvertices of e and these
endvertices lie in different odd components of H. This leaves only S available to
contain the common neighbours of both endvertices of e. But we have already shown
that S = ∅ and hence we have a contradiction.

Theorem 2.2 is sharp. The sharpness is indicated by the graph in Figure 9 of [3],
a 5-connected even planar triangulation which is not E2u(2, 2).

We know from [2] that if G is a 5-connected planar even triangulation, then G
satisfies E(1, 3), but not necessarily E(1, 4). The sharpness example given there has
the edge to be included at distance 1 from each of the four edges to be excluded,
while the four edges to be avoided are pairwise distance 2 apart (i.e the graph is not
E2(1, 4)). (This sharpness example readily extends to an infinite family.)

In the next theorem we see that there are various asymmetric distance restrictions
we can apply to the edges considered to give the desired matching.

Theorem 2.3. Let G be a 5-connected planar even triangulation and let
{e} and N = {, f1, f2, f3, f4} ⊆ E(G) be two disjoint matchings in G.

If either

(i) d(e, fi) ≥ 2 for i = 1, 2, 3, 4,

(ii) d(f1, fi) ≥ 3 for i = 2, 3, 4, or

(iii) f1 ∈ N has d(f1, e) ≥ 2, d(f1, fi) ≥ 2, i = 2, 3, 4,

then G has a perfect matching that includes e, but none of the edges of N .

Proof. Suppose G, e, f1, . . . , f4 are as in the statement of the theorem, but no perfect
matching includes e while avoiding N . Then by Tutte’s theorem there is a set
S ⊆ V (G) − V (e) such that H = G − V (e) − N − S has at least |S| + 2 odd
components. Moreover, since G is E(1, 3), we have exactly |S|+ 2 odd components
and each fi ∈ N has its endvertices in two distinct odd components of H. Now, since
G is a triangulation of the plane, we may conclude that each edge fi = xiyi ∈ N has
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two vertices in S ∪ V (e) adjacent to both xi and yi forming the two triangular faces
including fi.

Form G∗, the bipartite distillation of G based on e,N and S. By the 5-connect-
ivity of G, there are at least 5(|S|+ 2)− (2× 4) = 5|S|+ 2 edges joining vertices in
odd components of H to vertices in S ∪ V (e). This gives

|E(G∗)| ≥ 5|S|+ 2.

On the other hand, G∗ is a bipartite planar graph on |S| + 2 + |S| + 2 vertices,
so by Euler’s formula,

|E(G∗)| ≤ 2|V (G∗)| − 4 = 4|S|+ 4.

Consequently, |S| ≤ 2.

To this point in our analysis we have not used the distance conditions applied to
the edges in our matchings. In the following we consider each of the cases listed in
the statement of the theorem in turn.

(i) Contract each edge fi to a single vertex ui for i = 1, 2, 3, 4. Let U =
{u1, u2, u3, u4}. Since d(e, fi) ≥ 2 for i = 1, 2, 3, 4, each edge fi ∈ N lies in the bound-
aries of two triangular faces using two distinct vertices in S. Let G′ be a graph with
V (G′) = U ∪ S and each vertex ui ∈ U is adjacent to those two vertices in S each of
which forms a triangular face with fi. Then |V (G′)| = 4+|S|, |E(G′)| = 4×2 = 8 and
G′ has FG′ faces. By Euler’s formula (4+|S|)−8+FG′ = 2 which implies FG′ = 6−|S|.
If each cycle in G′ has length at least 6, then 6(6 − |S|) ≤ 2|E(G′)| = 2 × 8 = 16.
Thus 6− |S| ≤ 2 and so |S| ≥ 4, a contradiction. Consequently G′ has a 4-cycle and
hence G has a separating 4-cycle which is a contradiction.

(ii) Now consider the two triangular faces containing f1. Potentially both common
neighbours of x1 and y1 are endvertices of e, but this would force the existence of a
separating triangle. Thus at most one endvertex of e lies in a triangle containing f1.

If neither endvertex of e forms a triangle with f1, then x1 and y1 have two
common neighbours in S. Consequently, each of f2, f3 and f4 lies in two triangular
faces including endvertices of e. But again, this forces the existence of a separating
triangle in G.

Thus we may assume that each edge fi ∈ N lies in one triangle containing an
endvertex of e and another triangle containing a vertex in S. Moreover, by our
assumption that d(f1, fi) ≥ 3 for i = 2, 3, 4, the triangulating vertices associated
with f1 are distinct from those associated with fi, i = 2, 3, 4. Since |S| ≤ 2, each
of f2, f3 and f4 belongs to two triangles, one including one endvertex of e (which is
not a neighbour of x1 or x2) and the other containing one vertex in S (also not a
neighbour of x1 or x2). But this forces the existence of a separating 4-cycle in G.

(iii) Finally, we note that, since d(f1, e) ≥ 2, the two triangular faces containing
the edge f1 must each be completed by a vertex in S adjacent to both endvertices of
f1. Consequently, |S| = 2. Moreover, since d(f1, fi) ≥ 2 for each i = 2, 3, 4, neither
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of the two vertices in S can complete a triangular face containing the edge fi. Thus,
if e = uv, for each fi = xiyi, i = 2, 3, 4 we have uxi, uyi, vxi and vyi ∈ E(G). But
this is impossible since G is 5-connected. This final contradiction establishes the
result.

Parts (ii) and (iii) of Theorem 2.3 can be seen to be sharp in the following sense.
We cannot increase the size of N under the given distance restrictions and hope to
guarantee the existence of a perfect matching that includes e and avoids N . Examples
of this can be readily obtained using straightforward modifications of the 5-connected
even planar triangulation which is not E2(1, 4) in Figure 3.1 of [2]. Part (i), however,
can be strengthened as seen in the next theorem.

Theorem 2.4. Let G be a 5-connected planar even triangulation and let {e, f1, f2, f3,
f4, f5} ⊆ E(G). If d(e, fi) ≥ 2 for each i = 1, 2, 3, 4, 5, and N = {f1, f2, f3, f4, f5} is
a matching, then G has a perfect matching that includes e and avoids N .

Proof. Suppose G, e, f1, . . . , f5 are as in the statement of the theorem, but no perfect
matching of G includes e while avoiding N . Then by Tutte’s theorem on perfect
matchings there is a set S ⊆ V (G) − V (e) such that H = G − V (e) − N − S
has at least |S| + 2 odd components. By Theorem 2.3, if we let Ni denote N − fi,
i = 1, 2, . . . , 5, there is a perfect matching in G including e and avoiding Ni. Thus we
must have exactly |S|+ 2 odd components in H and each fi ∈ N has its endvertices
in two distinct odd components of H.

Form G∗, the bipartite distillation of G based on E = {e}, S and N . By the 5-
connectivity of G, there are at least 5(|S|+ 2)− (2× 5) = 5|S| edges joining vertices
in odd components of H to vertices in S ∪ V (e). This gives

|E(G∗)| ≥ 5|S|.

On the other hand, G∗ is a bipartite planar graph on |S| + 2 + |S| + 2 vertices,
so by Euler’s formula,

5|S| ≤ |E(G∗)| ≤ 2|V (G∗)| − 4 = 4|S|+ 4.

Consequently, |S| ≤ 4.

Now, since G is a triangulation of the plane, we may conclude that each edge
fi = xiyi ∈ N has two vertices in S ∪ V (e) adjacent to both xi and yi forming the
two triangular faces which include fi. By our distance restrictions (i.e. d(e, fi) ≥
2, i = 1, 2 . . . , 5) we see that these triangulating vertices are in S. Contract each
edge fi to a single vertex ui for i = 1, 2, 3, 4, 5.

Let U = {u1, u2, u3, u4, u5} and let G′ be the bipartite graph with V (G′) = U ∪S
and in which each vertex ui ∈ U is adjacent in G′ to the two vertices in S which form
triangles with the edge fi in G. Note that G′ inherits a plane embedding from G. Let
FG′ denote the number of faces in G′. Then |V (G′)| = 5 + |S|, |E(G′)| = 5× 2 = 10,
G′ has FG′ faces and each vertex in U has degree 2 in G′. By Euler’s formula,



R.E.L. ALDRED ET AL. /AUSTRALAS. J. COMBIN. 79 (1) (2021), 1–14 11

(5 + |S|)− 10 + FG′ = 2 which implies FG′ = 7− |S|. Since G is 5-connected, there
cannot be any 4-cycles in G′ as these would translate into separating 4-cycles in G.
Since G′ is bipartite, this means that all cycles in G′ have length 6 or more. If each
cycle in G′ has length at least 6, then 6(7 − |S|) ≤ 2|E(G′)| = 2 × 10 = 20. Thus
7− |S| ≤ 3 and so |S| ≥ 4. Hence, |S| = 4.

From this we may deduce that |V (G′)| = 9, |E(G′)| = 10 and FG′ = 3. Now
20 = 2|E(G′)| =

∑
i≥6 iFG′,i, where FG′,i denotes the number of faces of size i in G′.

Thus we have one 8-face and two 6-faces in G′. Suppose that S = {s1, s2, s3, s4}.
Then G′ is isomorphic to the graph in Figure 5.
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Figure 5: The graph G′.

Having established that |S| = 4, there are six odd components in H. Let e = xy.
Then e lies in the interior of one of the three faces of G′, and the only neighbours
of e in G′ are vertices in S. G′ together with e = xy and the edges joining x and
y to their neighbours in S ⊂ V (G′) must produce a plane graph with at least six
faces of size at least 5 to accommodate the six odd components in H. Moreover,
there cannot be any 4-cycles in this graph as these would correspond to separating
cycles in G which is 5-connected. Clearly, e and hence both x and y must lie in the
same face of G′ and e together with edges joining x and y to vertices in S on the
boundary of this face must divide the face into at least four faces of size at least 5.
Suppose that e is in one of the two 6-faces. Then it is straightforward to see that
any permissible adjacencies for x and y can only result in dividing this 6-face into
two faces of size at least 5.

So we may assume that e is in the 8-face. Clearly, if neither x nor y has more
than one neighbour on the boundary of the 8-face, then we cannot divide this face
sufficiently to produce the required number of faces of size at least 5. Consequently
we may assume that x, say, has at least two such neighbours and is thus adjacent to
antipodal vertices on the boundary of the 8-face. Since there are no 4-cycles allowed,
x can have no other neighbours on the boundary of the 8-face. Now y lies in one
of the two 6-faces resulting from the previous observation. But, while y may be
adjacent to the two neighbours of x in S, if either of these adjacencies occurs, then
y can have no further neighbours in S as such an additional adjacency would result
in a separating 4-cycle in G. Thus the only other neighbour of y allowed to belong
to the boundary of this face divides the face into two 5-faces giving just five faces of
size at least 5 overall. This contradiction establishes the result.
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We note that Theorem 2.4 is sharp in that there are 5-connected even planar
triangulations in which there are sets of seven edges, pairwise distance at least 2
apart and, having selected one of these edges, there is no perfect matching that
contains this edge while avoiding all six remaining edges in the set. A family of such
graphs was shown in Figure 36 of [3].

Theorem 3.4 of [2] is shown to be sharp by an example of a 5-connected even
planar triangulation in which there is a set of eight edges, pairwise distance 2 apart,
which cannot be completely avoided by any perfect matching of the graph. In the
following theorem we show that by demanding that one edge in a matching of size 8
is distance at least 3 from all of the others, we can then find a perfect matching that
avoids all eight edges.

Theorem 2.5. Let G be a 5-connected planar even triangulation. Suppose N =
{f1, f2, . . . , f8} is a matching such that d(f1, fi) ≥ 3 for each i = 2, 3, . . . , 8. Then
G−N has a perfect matching.

Proof. Let G and N be as in the statement of the theorem and suppose that G−N has
no perfect matching. Then by Tutte’s 1-factor theorem, there is a set S ⊂ V (G−N)
such that H = G − N − S has at least |S| + 2 odd components. Since G is E(0, 7)
(see Theorem 1.1(iii)), H has precisely |S| + 2 odd components. Moreover, each
fi ∈ N has its endvertices in two distinct odd components of H. Now, since G is
a triangulation of the plane, we may conclude that each edge fi = xiyi ∈ N has
two vertices in S adjacent to both xi and yi forming the two triangular faces which
include fi.

Form G∗, the bipartite distillation of G based on N and S. By the 5-connectivity
of G, there are at least 5(|S|+ 2)− (2× 8) edges joining vertices in odd components
of H to vertices in S. This gives |E(G∗)| ≥ 5|S|+ 10− 16 = 5|S| − 6.

On the other hand, G∗ is a bipartite planar graph on |S|+ 2 + |S| vertices, so by
Euler’s formula, |E(G∗)| ≤ 2|V (G∗)| − 4 = 4|S|. Consequently, |S| ≤ 6.

Now each edge fi ∈ N lies in the boundaries of two triangular faces of G. Each
triangular face containing fi must also contain a vertex from S. Suppose that the
triangular faces containing f1, say F1 and F2, contain s1 and s2 ∈ S, respectively.
Since d(f1, fi) ≥ 3 for each i = 2, 3, . . . , 8, it follows that f1 and fi cannot have a
common neighbour in S.

Contract each edge fi to a single vertex ui for i = 2, 3, . . . , 8. Let U = {u2, u3, . . . ,
u8} and S ′ = S − {s1, s2}.

Let |S ′| = s′ and G′ be a graph with V (G′) = U ∪ S ′ with each vertex ui ∈ U
adjacent to the two vertices in S ′ that form triangles with fi, i = 2, 3, 4. Then
|V (G′)| = 7 + s′ and |E(G′)| = 7× 2 = 14 and G′ has FG′ faces. By Euler’s formula
(7 + s′) − 14 + FG′ = 2 which implies FG′ = 9 − s′. If each cycle in G′ has length
at least 6, then 6(9− s′) ≤ 2|E(G′)| = 14× 2 = 28. Thus 9− s′ ≤ 4 and so s′ ≥ 5,
a contradiction. Consequently, since G′ is bipartite, it must contain a 4-cycle and
hence G has a separating 4-cycle which is a contradiction.
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Theorem 2.5 is seen to be sharp in the sense that a straightforward modification
of the example in Figure 3.4 of [2] gives a 5-connected even planar triangulation with
a matching of size 9 in which one edge is as far away from the other eight as desired,
but no perfect matching of the graph can avoid all nine of the edges in this matching.

3 Concluding remarks

We have seen that specifying one edge to be well distant from other edges in the
matchings considered has been sufficient to strengthen the conclusions of Theorem
1.1. In applying more and varied distance restrictions to other edges in the matchings
we may well be able to strengthen the conclusions further. We also believe that
similar results may be obtained for classes of graphs embedded on other sufaces.
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