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Abstract

The metric dimension μq of the incidence graph of a projective plane of
order q is known for q ≥ 23 and q ≤ 5. The first result uses theoreti-
cal (combinatorial and geometric) arguments; the second is provided by
computer search. In this paper we determine μq for all q ≥ 2 by combin-
ing theoretical methods and computer search based on integer (linear)
programming. We also determine the metric dimension of the incidence
graphs of finite affine planes.

1 Introduction

A resolving set for a graph G is a set S = {v1, . . . , vk} of vertices such that for
any two distinct vertices x and y of G, there exists some v ∈ S for which the
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distances d(x, v) and d(y, v) are different; in other words, for every vertex z of G,
its distance list (d(z, v1), . . . , d(z, vk)) with respect to S is unique. The size of a
smallest resolving set is called the metric dimension of G, and we denote it by μ(G).
A resolving set of size μ(G) is called a metric basis. Metric dimension was introduced
to graph theory in [12, 18], and we also refer the reader to the excellent paper [5]
of R. F. Bailey and P. J. Cameron, where the metric dimension of a graph is related
to other parameters (the base size of a group, for example); also, its bibliography is
a valuable guide to further information on the topic. In this latter paper, distance
regular graphs were found particularly interesting to investigate from this viewpoint.
Bailey started the systematic study of the metric dimension of imprimitive distance
regular graphs [3]. He developed methods to trace back the metric dimension of
imprimitive distance regular graphs to that of primitive ones. However, there happen
to be a few families for which no meaningful result could be obtained in that way, one
of them being the incidence graphs of projective planes. Therefore, Bailey proposed
to study this particular case of the general question separately [1]. This was done
in [13], where it was shown that any projective plane of order q ≥ 23 has metric
dimension 4q − 4; moreover, all metric bases are described. Subsequently, studying
the metric dimension of graphs related to different finite geometric structures became
somewhat prevalent [4, 6, 7, 8]. Bailey also computed the metric dimension of small
distance regular graphs [2], and his results (some of which are also covered in [13])
show that the metric dimension of the incidence graphs of projective planes of order
2, 4 and 5 do not follow the general pattern. Motivated by these results, we decided
to find the metric dimension of the incidence graphs of projective planes for all the
missing cases, and we have obtained the following result, giving a complete answer
to the problem.

Theorem 1.1. The metric dimension μq of the incidence graph of a projective plane
of order q is

q 2 3 4 5 7 ≥ 8
μq 4q − 3 = 5 4q − 4 = 8 4q − 6 = 10 4q − 5 = 15 4q − 5 = 23 4q − 4

Mainly as a corollary of the above theorem, we were able to deduce that the
metric dimension of the incidence graph of an affine plane is 3q− 4 except for q = 2,
when it is 3 (Theorem 5.2). For q ≥ 13, this result was already proved in [7].

For the sake of completeness, we include the proof of all cases. The methods we
apply here include combinatorial arguments and frequent use of computer search as
well. Regarding the latter, we used integer programming models and the MIP solvers
GLPK [15] and Gurobi [11]. GLPK was used for modelling in MathProg language,
which is very close to writing math formulae, and to solve smaller models (in partic-
ular, systems of Diophantine equations and inequalities arising from combinatorial
investigations and case analysis), while the much better performance of Gurobi was
in store for the harder instances (search for metric bases). We found this approach
very comfortable as it requires basically no programming, yet effective enough ([17]
and [20], for example, also promote applying LP/IP solvers for certain combinatorial
problems).
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From now on, we will identify a projective plane with its incidence graph, and
hence we may use geometrical and graph theoretical language simultaneously. For
basic facts about projective planes we refer the reader to [14]. PG(2, q) and Πq

denote the Desarguesian and an arbitrary projective plane of order q, respectively.
A resolving set S for Πq clearly consists of a subset PS of the point set P of Πq and
a subset LS of the line set L of Πq; this will be our standard notation.

The guideline for our study is the following. All projective planes of order at most
nine are known and there is no projective plane of order ten; however, for q ≥ 11
we only know some orders for which no projective plane exists and in no other case
we have a complete list of projective planes of a given order (not even for q = 11).
Hence a complete computer search for the metric bases for projective planes of order
11 or more is not possible, so we need a theoretical approach in this case. Based on
the methods of [13], the point sets of metric bases for Πq tend to have long secants if
q is large enough, which is crucial structural information. Thus we will enhance the
methods of [13] in order to push down the lower bound to q ≥ 11 (let us note that
in the second author’s Bachelor’s Thesis [19], the lower bound was pushed down to
q ≥ 13). This is done in Section 3, where many arguments are refinements of those in
[13] and [19]. Quite surprisingly, at one point of the proof it was quite helpful to solve
an IP model. For q ≤ 9, trying simply an exhaustive search with Gurobi in itself
was disappointingly slow for q ∈ {7, 8, 9}. Since for small values of q the presence of
long enough secants cannot be proven (in fact, there are some metric bases based on
ovals), we had to implement meticulous case studies and many ad hoc arguments to
progress, but we also made great use of solving IP models. The details are written in
Section 4. The corollary on the metric dimension of affine planes is derived in Section
5. We start with Section 2 containing general combinatorial results and some key
lemmas that will be used later on.

2 General arguments

Let us fix some notation and terminology. For a line � and a point P , [�] and
[P ] denote the set of points incident with � and the set of lines incident with P ,
respectively. For distinct points P and Q, let PQ be the line connecting P and Q.
Given a resolving set S = PS ∪ LS , a point or a line will be called inner if it is an
element of S and outer otherwise. Furthermore, ni will denote the total number of
i-secant lines to PS (that is, the number of lines containing exactly i points of PS ;
clearly, 0 ≤ i ≤ q + 1).

In the incidence graph of a projective plane, the distance of two distinct points is
always two (as they have a unique line joining them), as well as the distance of two
distinct lines (they admit a unique point of intersection). The distance of a point and
a line is one or three, depending on whether they are incident or not, respectively.
Hence the distance list of a point P is unique with respect to the resolving set S if
({P} ∪ [P ]) ∩ S is unique; that is, either P ∈ S, or [P ] ∩ S �= [Q] ∩ S for any point
Q /∈ (S ∪ {P}). The analogous statements holds for lines as well. Hence the next
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two observations are straightforward; their proofs are written in [13].

Lemma 2.1. Let S = PS ∪ LS be a set of vertices in the incidence graph of a finite
projective plane. Then any line � intersecting PS in at least two points (that is,
|[�] ∩ PS| ≥ 2) has a unique distance list w.r.t. S. Dually, if a point P is covered by
at least two lines of LS (that is, |[P ] ∩ LS| ≥ 2), then P has a unique distance list
w.r.t. S.
Proposition 2.2. S = PS ∪ LS is a resolving set in a finite projective plane if and
only if the following properties hold for S:

(P1) There is at most one outer line skew to PS.

(P1’) There is at most one outer point not covered by LS.

(P2) Through every inner point there is at most one outer line tangent to PS.

(P2’) On every inner line there is at most one outer point that is 1-covered by LS.

From now on, S = PS ∪ LS will always denote an arbitrary resolving set. Let us
briefly give the construction of a resolving set of size 4q − 4. Details can be found
in [13].

Proposition 2.3. Any projective plane of order q ≥ 3 admits a resolving set of size
4q − 4.

Proof. Let P , Q and R be three points not on a line. Let PS = ([PQ] ∪ [PR]) \
{P,Q,R}, LS = ([P ] ∪ [R]) \ {PQ, PR,RQ}. Then S = PS ∪ LS is a resolving set
of size 4q − 4.

According to Proposition 2.3, in some of the upcoming propositions we assume
that |S| ≤ 4q − 5 in favor of an indirect proof.

Proposition 2.4. We have n0 ≤ |LS |+ 1 and n0 + n1 ≤ |S|+ 1.

Proof. By Proposition 2.2, we may have one outer skew line and at most |LS | inner
skew lines. On each inner point we may have one outer tangent line, so the number
of outer skew and outer tangent lines together is at most 1+ |PS |, while the number
of inner skew and inner tangent lines together is at most |LS |.

We give two quick lower bounds on |S| first. The first one is a direct adaptation
of [13, Proposition 10].

Proposition 2.5. |PS| ≥ 2q+2−	2|S|/q
 and |LS | ≥ 2q+2−	2|S|/q
, and hence
|S| ≥ 4q + 4− 2	2|S|/q
.



T. HIÉGER ET AL. /AUSTRALAS. J. COMBIN. 78 (3) (2020), 352–375 356

Proof. The number of lines intersecting PS in at least two points is q2+q+1−n0−n1.
Using double counting for

Γ = {(P, �) : P ∈ PS, P ∈ [�], |[�] ∩ PS| ≥ 2},
we get

2(q2 + q + 1− n0 − n1) ≤ |Γ| ≤ |PS|(q + 1)− n1,

whence

q|PS| ≥ 2q2 + 2q + 2− 2n0 − n1 − |PS |
≥ 2q2 + 2q + 2− (|S|+ |LS |+ 2)− |PS |
= 2q2 + 2q − 2|S|,

thus

|PS| ≥ 2q + 2− 2|S|
q

.

As |PS | is an integer, the first assertion is proved. By duality, the second assertion
holds as well.

Corollary 2.6. If |S| ≤ 4q − 5, then |PS | ≥ 2q − 5 and |LS | ≥ 2q − 5 (and hence
|S| ≥ 4q − 10), furthermore, |PS | ≤ 2q, |LS | ≤ 2q.

Proposition 2.7. Suppose that |S| ≤ 4q − 5 and q ≥ 8. Then |PS| ≥ 2q − 4 and
|LS | ≥ 2q − 4, and hence |S| ≥ 4q − 8, |PS | ≤ 2q − 1 and |LS | ≤ 2q − 1.

Proof. For an outer point P , let n0(P ) and n1(P ) denote the number of skew and
tangent lines to PS through P , and let �(P ) = max{|� ∩ PS | : P ∈ � ∈ L}. Clearly,

∑

P /∈PS

n0(P ) = (q + 1)n0,

∑

P /∈PS

n1(P ) = qn1.

Let P /∈ PS be an arbitrary point. Considering all lines through P , we obtain
|PS | ≥ �(P ) + n1(P ) + 2(q − n0(P )− n1(P )), equivalently,

�(P ) ≤ |PS | − 2q + n1(P ) + 2n0(P ). (1)

Note that if �(P ) ≤ 1, then we immediately get |PS | ≤ q + 1, which contradicts
Corollary 2.6 under q ≥ 7, thus for all points P , �(P ) ≥ 2. Thus by (1) we get

2(q2 + q + 1− |PS |) ≤
∑

P /∈PS

�(P ) ≤ (q2 + q +1− |PS |)(|PS | − 2q) + qn1 + 2(q+ 1)n0.

Dividing by q2 + q + 1− |PS | and rearranging we obtain

|PS | ≥ 2q + 2− qn1 + 2(q + 1)n0

q2 + q + 1− |PS | .
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By Proposition 2.4, n0 ≤ |LS | + 1 and n0 + n1 ≤ |S| + 1, and by Corollary 2.6,
|PS | ≤ 2q, |LS | ≤ 2q. These yield q2+q+1−|PS | ≥ q2−q+1, and qn1+2(q+1)n0 =
q(n0 + n1) + (q + 2)n0 ≤ q(4q − 4) + (q + 2)(2q + 1) = 6(q2 − q + 1) + 7q − 4, thus

|PS | ≥ 2q + 2− 6− 7q − 4

q2 − q + 1
> 2q − 5,

provided that q ≥ 8. By duality, the analogous result for |LS | is also delivered.

We shall see later that usually most points of S are contained in two lines, hence
the following notation and lemma will be useful.

Notation 2.8. Suppose that e and f are two arbitrarily chosen lines that both
intersect PS in at least two points, and let P = e ∩ f (see Figure 1 for a guide).
Let Ei = [e] ∩ (PS \ {P}), Fi = [f ] ∩ (PS \ {P}), Eo = [e] \ (PS ∪ {P}), Fo =
[f ] \ (PS ∪ {P}) (these are the inner and the outer points on e and f , apart from
P ), Z = PS \ ([e] ∪ [f ]). Define k and l by l = |Eo| and k = |Fo|. Let r =
|{� ∈ L : � ∩ e ∈ Eo, � ∩ f ∈ Fo, � ∩ Z �= ∅}|. Denote by τ(Z) the total number of
lines that intersect Z. Finally, we define the indicator IP of P ∈ PS , and assign to
it the value one if P ∈ PS and zero otherwise.

e

f
P

Ei

Eo

Fi Fo

k

l

Z

Figure 1: A rough sketch of the structure of PS with respect to two lines.

Lemma 2.9. Using Notation 2.8, the following estimates hold:

|LS | ≥ (k + l − 1)q + k + l − kl − IP − 2− (k + l + 1)|Z|+ r, and (2)

|LS | ≥ (k + l − 1)q + k + l − kl − IP − 2− τ(Z), (3)

In case of equality in (2) or (3), there is an outer skew line to PS , and there is an
outer tangent line to PS on each inner point.
In case of equality in (2), every line containing a point of Eo ∪ Fo ∪ {P} intersects
Z in at most one point.
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In case of equality in (3), Z does not intersect any line joining a point of Ei with a
point of Fi. Furthermore,

τ(Z) = |Z|q + 1 if and only if Z is contained in a line, and (4)

τ(Z) ≥ (q − 1)|Z|+ 3 if Z is not contained in a line. (5)

Proof. As ‘most’ inner points are in [e] ∪ [f ], we consider Z as if not present for
a moment and accumulate all ‘possibly problematic’ lines with respect to (P1) and
(P2) of Proposition 2.2 (tangents and skew lines) into the set Lprob; that is, the lines
that contain at least one point of {P} ∪ Eo ∪ Fo, different from e and f . Clearly,
|Lprob| = q − 1 + kq + lq − kl. Let τ ′(Z) denote the number of lines of Lprob that
intersect Z. Then there are at least |Lprob| − τ ′(Z) lines in Lprob that are either
tangents or skew lines to PS . There may be one outer skew line altogether, and
one outer tangent line on each inner point in e ∪ f , thus there may be at most
1 + (q − k) + (q − l) + IP outer lines in Lprob. Hence

|LS | ≥ q − 1 + kq + lq − kl − τ ′(Z)− (1 + (q − k) + (q − l) + IP )

= (k + l − 1)q + k + l − kl − 2− IP − τ ′(Z)

and, in case of equality, there must be an outer skew line and an outer tangent line
on each point of ({P} ∪ Ei ∪ Fi) ∩ PS . As Z may intersect at most |Z| lines from a
pencil [X] for any point X ∈ Eo ∪ Fo ∪ {P}, we see that τ ′(Z) ≤ (k + l + 1)|Z| − r,
hence the first estimate holds and, in case of equality, Z must intersect exactly |Z|
lines of each of the k + l + 1 pencils.

However, τ ′(Z) ≤ τ(Z) clearly holds, and in case of equality, every line that
intersects Z is in Lprob. If we choose X ∈ Z, we see that X blocks q + 1 lines (in
total, not only of Lprob), and other points Y ∈ Z block at most q new lines (XY is
already blocked); hence τ(Z) ≤ q+1+(|Z|−1)q = |Z|q+1 with equality if and only
if Z is contained in a line. If Z is not contained in a line, choose X1, X2, X3 ∈ Z such
that they are not collinear. Clearly, these three points block 3q lines, and for all other
point Y ∈ Z, there are at least two different lines among X1Y , X2Y and X3Y , so Y
blocks at most q−1 new lines, hence τ(Z) ≤ 3q+(|Z|−3)(q−1) = |Z|(q−1)+3.

Note that
|Z| = |PS | − (2q − k − l)− IP . (6)

Proposition 2.10. Suppose that |S| ≤ 4q−5 and |PS | ≤ 2q−3. Then nq+1 = nq = 0.
If q ≥ 3, then nq−1 = 0.

Proof. Let e be a line intersecting PS in m points. On each inner point of e there
are at least q − (|PS | − m) tangents to PS , one of which may be outer for each
point. Similarly, there are at least q − (|PS | −m) skew lines on each outer point of
e, one of which may be outer (in total). Hence for the number of inner lines we have
|LS | ≥ (q + 1)(q +m− |PS |)−m − 1 ≥ (q + 1)(m − q + 3) −m − 1. If m ≥ q, we
obtain |LS | > 2q, in contradiction with 2.6. If m = q − 1 and |PS | ≤ 2q − 4, we get
a contradiction as well. If m = q − 1 and |PS | = 2q − 3 then, as q ≥ 3, |PS | ≥ q
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follows, hence we find a line f intersecting � in an inner point and containing another
inner point. We use Lemma 2.9 (and Notation 2.8) for these two lines; hence k = 2,
2 ≤ l ≤ q − 1, IP = 1, |Z| = l − 2. Substituting these and τ(Z) ≤ |Z|q + 1 into (3)
we obtain 2q − 2 ≥ |LS | ≥ 2q − 1, a contradiction.

Let us formulate the so-called and well-known standard equations.

Lemma 2.11.
q+1∑

i=0

ni = q2 + q + 1, (7)

q+1∑

i=0

ini = (q + 1)|PS |, (8)

q+1∑

i=0

i(i− 1)ni = |PS |(|PS | − 1). (9)

Proof. The first one is trivial; for the second and the third count the size of the sets
{(P, �) : P ∈ PS , � ∈ [P ]} and {(P,Q, �) : P ∈ PS , Q ∈ PS , P �= Q, � = PQ} in two
different ways.

Finally, let us define an IP model to be referred to as the BASIC IP. It relies on
the Diophantine system of equations given by the standard equations and some of
the theoretical results. We suppose that q ≥ 3, |PS | and |LS | are given, and consider
the nis as non-negative integer variables (0 ≤ i ≤ q + 1). We add the following
constraints arising from Lemma 2.11, Proposition 2.4 and Proposition 2.10:

q+1∑

i=0

ni = q2 + q + 1,

q+1∑

i=0

ini = (q + 1)|PS |,
q+1∑

i=0

i(i− 1)ni = |PS |(|PS | − 1),

n0 ≤ |LS |+ 1,

n0 + n1 ≤ |S| + 1,

nq−1 + nq + nq+1 = 0.

The objective function can be chosen in different ways to obtain the information we
need1; for example, if we need a contradiction, then the model should be infeasible
with an arbitrary objective function, or if we need, say, a lower bound on n0, it
should be minn0.

1Certainly, many calculations where we chose to solve BASIC IP with a computer may be carried
out by hand, but we found that using GLPK for this task speeds up the process remarkably, as
typing and modifying the model appropriately is very easy, and the required computer time was
always less than 0.1 seconds.
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3 Improvements for q ≥ 11

General assumptions. We want to prove μ(Πq) = 4q − 4 for q ≥ 11 by con-
tradiction. Hence, throughout this section, we assume that S = PS ∪ LS is a re-
solving set of size |S| ≤ 4q − 5. By duality and Proposition 2.7, we may assume
2q − 4 ≤ |PS | ≤ |LS | ≤ 2q − 1, and hence |PS | ≤ 2q − 3. The next two propositions
are the refinements of [13, Propositions 12 and 13].

Proposition 3.1. Let q ≥ 11. If |S| ≤ 4q−5, then every line intersects PS in either
at most 4 or at least q − 5 points.

Proof. Suppose that for a line �, |[�] ∩ PS| = x, 2 ≤ x ≤ q. For a point P ∈ [�] \ PS,
let n0(P ) and n1(P ) denote the number of all (outer and inner as well) skew or
tangent lines to PS through P , respectively; moreover, let t denote the total number
of tangents (outer and inner as well) intersecting � outside PS. Counting the points
of PS on � and the other lines through P we get

|PS| ≥ x+ t(P ) + 2(q − n1(P )− n0(P )), (10)

equivalently, 2q + x ≤ |PS | + 2n0(P ) + n1(P ). Adding up the inequalities for all
P ∈ [�] \ PS, we obtain

(q + 1− x)(2q + x) ≤ (q + 1− x)|PS |+ 2n0 + t.

Recall n0 ≤ |LS+1| (Proposition 2.4) and, as there can be at most one outer tangent
on each point of PS \ [�] (Proposition 2.2), we have

n0 + t ≤ 1 + (|PS| − x) + |LS| (11)

(here we estimate the number of outer skew / tangent lines in question first, then the
number of inner ones), whence 2n0 + t ≤ 2|LS|+ |PS| − x+ 2 = 2|S| − |PS | − x+ 2.
Combined with the previous inequality we obtain

(q + 1− x)(2q + x) ≤ (q− x)|PS |+ 8q− x− 8 ≤ (q − x)(2q − 3) + 8q − x− 8, (12)

whence
x2 − (q − 1)x+ 3q − 8 ≥ 0

follows. The value of the left hand side is 22−2q for x = 5 and x = q−6. Therefore,
as x is an integer, we conclude that for q ≥ 12, x ≤ 4 or x ≥ q− 5 holds. It remains
to show that for q = 11, we cannot have a five-secant line.

Suppose to the contrary that q = 11 and |� ∩ PS | = 5 for a line �. In this case,
equality holds in all estimates above, thus by (10), every line intersecting � in an
outer point intersects PS in 0, 1 or 2 points; by n0 = |LS | + 1, every line of LS is
skew to PS , and there exists an outer skew line; by (11), every inner point not on �
is incident with exactly one outer tangent line; and by (12), |PS | = 2q − 3 = 19 and
|LS | = 2q − 2 = 20. Suppose that there is a line �′ �= � such that |�′ ∩ PS | = m ≥ 3.
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Then � ∩ �′ =: Q ∈ PS . Looking around from Q, as every line of [Q] is outer (of
which only one may be a tangent to PS), we see that 19 = |PS | ≥ m+ 4 + (11− 2),
hence m ≤ 6. Thus the following constraints are applicable: n0 = 21, n5 ≥ 1, ni = 0
(7 ≤ i ≤ 12). If we add these to BASIC IP, GLPK immediately shows it to be
infeasible.

Proposition 3.2. Let q ≥ 11. If |S| ≤ 4q−5, then there exist two lines intersecting
PS in at least q − 5 points.

Proof. By Proposition 3.1 every line intersects S in either at most 4 or at least q− 5
points. Let � be the longest secant to S and x = |[�] ∩ PS|. Suppose to the contrary
that every line other than � intersects PS in at most 4 points. Clearly x ≥ 2; note
that x ≤ 4 is also possible. By Proposition 2.10, x ≤ q − 2. For this proof, let ni

denote the number of i-secants to PS different from �. For notational convenience,
let n0 = s and n1 = t, and let b = |PS|. Then the standard equations (adapted to
this situation) yield

4∑

i=2

ni = q2 + q + 1− s− t− 1 = q2 + q − (s+ t),

4∑

i=2

ini = (q + 1)b− t− x,

4∑

i=2

i(i− 1)ni = b(b− 1)− x(x− 1).

Thus

0 ≤
4∑

i=2

(i− 2)(4− i)ni = −
4∑

i=2

i(i− 1)ni + 5
4∑

i=2

ini − 8
4∑

i=2

ni

= −b2 + (5q + 6)b+ x(x− 6) + 3(s+ t) + 5s− 8(q2 + q).

We recall x ≤ q−2 and the estimates of Proposition 2.4: s ≤ |LS |+1 ≤ 4q−4−|PS |;
s + t ≤ |S|+ 1 ≤ 4q − 4. Then

0 ≤ −b2 + (5q + 6)b+ x(x− 6) + 3(s+ t) + 5s− 8(q2 + q)

≤ −b2 + (5q + 6)b+ (q − 2)(q − 8) + 3(4q − 4) + 5(4q − 4− b)− 8(q2 + q)

= −b2 + (5q + 1)b− 7q2 + 14q − 16.

As the right-hand side expression is increasing in b under b ≤ (5q + 1)/2, by substi-
tuting b = 2q − 3 we obtain 0 ≤ −q2 + 13q − 28, a contradiction for q ≥ 11.

Lemma 3.3. Let e and f be two lines intersecting PS in at least two points. Then,
with Notation 2.8,

r ≥ kl − (k + l)− (|S| − 3q)− 2.
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Proof. There are kl− r lines joining Eo and Fo skew to PS . Through P , there are at
least q− 1− |Z| tangent or skew lines to PS (depending on whether or not P ∈ PS).
As there can be only one outer skew line and at most one outer tangent on P (if
P ∈ PS), we get |LS | ≥ kl−r+q−1−|Z|−1−IP . We obtain the asserted inequality
using |Z| = |PS | − (2q− k− l)− IP (see (6)), |S| = |PS |+ |LS | and rearranging.

In the upcoming part of this section, as any superset of a resolving set is clearly
a resolving set, we assume |S| = 4q−5, hence either |PS | = 2q−4 and |LS | = 2q−1,
or |PS | = 2q − 3 and |LS | = 2q − 2. As |S| = 4q − 5, we have |PS | = |S| − |LS | =
4q − 5− |LS |. Recall |Z| = |PS | − (2q − k − l)− IP (6). Thus we get

|Z| = 2q + k + l − |LS | − 5− IP . (13)

Since |Z| ≥ 0 and |LS | ≥ 2q − 2, we obtain

k + l ≥ 3 + IP ≥ 3. (14)

Lemma 3.4. Assume |S| = 4q − 5, q ≥ 11, and let e and f be two lines both
intersecting PS in at least q− 5 points. Then, with Notation 2.8, we have one of the
following possibilities:

• P /∈ PS , k = 4, l = 5, q = 11 and |LS | = 2q − 2, or

• P /∈ PS , k = l = 5, q ∈ {11, 12} and |LS | = 2q − 2, or

• P ∈ PS , k = 5, l = 6, q = 11 and |LS | = 2q − 2, or

• P ∈ PS , k = l = 6, q ∈ {11, 12} and if q = 12, then |LS | = 2q − 2.

Proof. Clearly, k, l ≤ 6 − IP and, by interchanging the roles of e and f , we may
suppose k ≤ l. Let us recall (2) from Lemma 2.9:

|LS | ≥ (k + l − 1)q + k + l − kl − 2− IP − (k + l + 1)|Z|+ r.

Let |LS | = 2q−2+ε (where ε ∈ {0, 1}). By (13), |Z| = 2q+(k+ l)−|LS |−5−IP =
k + l − 3− IP − ε. Substituting these we easily obtain

(k + l − 3)q ≤ (k + l − 3)(k + l) + kl − 3− (ε+ IP )(k + l)− r − 2ε. (15)

Recall that (14) claims k + l ≥ 3. Note that k + l = 3 is not possible as in this
case kl − 3 < 0, hence the right-hand side would be negative. Thus we may assume
k + l ≥ 4.

As kl ≤ (k + l)2/4 and r ≥ 0, we get

(k + l − 3)q

≤ (k + l − 3)(k + l) +
(k + l)2

4
− 3− (ε+ IP )(k + l)− 2ε

= (k + l − 3)(k + l) +
(k + l + 3)(k + l − 3)

4
+

9

4
− 3− (ε+ IP )(k + l)− 2ε,
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so

q ≤ 5(k + l) + 3

4
− 3

4(k + l − 3)
− (ε+ IP )(k + l) + 2ε

k + l − 3
.

If k+ l ≤ 8, this contradicts q ≥ 11. If k+ l = 9, it is trivial to calculate that q = 11
and ε = IP = 0 must hold. We suppose k + l ≥ 10 in what follows. Substitute
r ≥ kl + 3− k − l − q (cf. Lemma 3.3) into (15) to obtain

(k + l − 4)q ≤ (k + l)(k + l − 2)− 6− (ε+ IP )(k + l)− 2ε. (16)

If k + l = 10 we get 6q ≤ 74 − 10(ε + IP ) − 2ε, which yields q ∈ {11, 12} and
ε = IP = 0. If k + l ≥ 11, then l = 6, whence P ∈ PS follows; that is, IP = 1.
Substituting k+ l = 11 and IP = 1 into (16) we get 7q ≤ 82− 13ε, hence q = 11 and
ε = 0. Repeating this with k + l = 12 we get 8q ≤ 102 − 14ε, hence either q = 12
and ε = 0, or q = 11.

Theorem 3.5. The metric dimension of any projective plane of order q ≥ 11 is
4q − 4.

Proof. Suppose to the contrary that S is a resolving set of size 4q− 5. Then Propo-
sition 3.2 assures the existence of two ‘long’ secants (with at least q− 5 inner points
on each). Lemma 3.4 immediately gives a contradiction for q ≥ 13, so we assume
q ∈ {11, 12}.

We examine the case q = 11 first. Considering the possible cases according to
Lemma 3.4, we see that there can be at most one 7-secant and all other ‘long’ secants
(if there are any) are 6-secants. Consider BASIC IP extended with n6 + n7 ≥ 2
(Proposition 3.2), n5 = 0 (Proposition 3.1), n7 ≤ 1 (Lemma 3.4), n8 = n9 = 0
(Lemma 3.4) with the objective function minn6 + n7, where either |LS | = 2q − 2 or
|LS | = 2q − 1. For |LS | = 2q − 1 the model is infeasible, while for |LS | = 2q − 2
the minimum of n6 + n7 is 5. Counting the points of PS on these lines we get
2q − 3 = 19 = |PS | ≥ 6 + (6− 1) + (6− 2) + (6− 3) + (6− 4) = 20, a contradiction.

Let us now examine q = 12. Then |LS | = 2q − 2 = 22, |PS | = 2q − 3 = 21, and
Proposition 3.4 yields that there can be at most one 8-secant and all other ‘long’ lines
are 7-secants. Similarly as in the previous case, we solve BASIC IP extended with the
constraints n7+n8 ≥ 2, n5 = n6 = 0, n8 ≤ 1, n9 = n10 = 0 for the objective function
min n7+n8. This gives n7+n8 ≥ 4, whence 21 = |PS | ≥ 7+7−1+7−2+7−3 = 22,
a contradiction.

4 Planes of very small order: 2 ≤ q ≤ 9

Let us recall that the general construction of size 4q − 4 works for q ≥ 3, and that
Proposition 2.5 yields |S| ≥ 4q + 4 − 2	2|S|/q
. If Πq is a given projective plane of
order q, one may try to compute the metric dimension of the incidence graph G of
Πq using a simple IP model as follows. Let P and L be the set of points and lines on
Πq, respectively. Let S be a resolving set for G. As seen at the beginning of Section
2, the distance lists of two distinct points P and P ′ with respect to S are different if
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and only if P ∈ S or P ′ ∈ S or S contains a line from ([P ] ∪ [P ′]) \ {PP ′}; dually,
the analogous statement holds for lines.

Define the binary variables xv for all v ∈ V = P∪L, which shall indicate whether
or not v is in the resolving set. For all P, P ′ ∈ P, P �= P ′ and �, �′ ∈ L, � �= �′ add
the constraints

xP + xP ′ +
∑

�∈([P ]∪[P ′])\PP ′
x� ≥ 1,

x� + x�′ +
∑

P∈([�]∪[�′])\�∩�′
xP ≥ 1.

Then the metric dimension of Πq is min
∑

v∈V xv (this is the objective function). We
will refer to this model as RESSET IP in the following. Let us remark that an IP
formulation for finding the metric dimension of a general graph is used in [10]. If we
apply it to the incidence graph of projective planes and remove the constraints that
are trivially satisfied due to our graph being bipartite, we obtain RESSET IP.

Observe that RESSET IP contains 2(q2+q+1) variables and 2
(
q2+q+1

2

)
constraints

(plus 4(q2 + q + 1) more due the the variables being binary), which both grow very
quickly in q. Also, RESSET IP makes no use of the symmetries of the plane. PG(2, q)
as a cyclic projective plane may be constructed via perfect difference sets, which can
be found in [9]. Non-Desarguesian planes of small order can be found on the web
page of Eric Moorhouse [16], where the planes are given by listing the lines as subsets
of the point set identified with {0, 1, . . . , q2 + q}.

Next we give the results in detail. In some cases, we added some notes just to
complement the computer results. Let us note that we have used a standard PC for
the computations.

4.1 μ(PG(2, 2)) = 5 = 4q − 3

We leave the proof of μ(PG(2, 2)) = 5 to the interested reader. It is fast both by
hand and by computer.

4.2 μ(PG(2, 3)) = 8 = 4q − 4

Gurobi solves RESSET IP in much less than a second; however, it can be proved
quickly by hand as well, as for |S| = 4q − 5 = 7, Proposition 2.5 gives 7 ≥ 16 −
2	14/3
 = 8, a contradiction.

4.3 μ(PG(2, 4)) = 10 = 4q − 6

It took only 0.17 seconds for Gurobi to solve RESSET IP; however, the lower bound
is quick again. For |S| = 4q − 7 = 9, Proposition 2.5 gives 9 ≥ 20 − 2	18/4
 = 12,
a contradiction. As for an upper bound, we give an attractive construction using
hyperovals.
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An oval (or hyperoval) in a projective plane of order q is a set of q + 1 (or q + 2)
points in general position; that is, no three of them are collinear. In PG(2, q), ovals
exist for every value of q, while hyperovals exist if and only if q is even. Clearly,
all the q + 1 lines through a point of a hyperoval O must contain exactly one other
point of O, so hyperovals do not admit tangents. Hence on a point P /∈ O, there
are (q+2)/2 two-secants and hence q/2 skew lines to O, and there are exactly

(
q+2
2

)

two-secants to O.

Thus a hyperoval O in PG(2, 4) has six points,
(
6
2

)
= 15 secants and 42 + 4 +

1 − 15 = 6 skew lines, through any point P /∈ O there pass exactly two skew lines;
thus the set Od of skew lines form a dual hyperoval. Now let P ∈ O and � ∈ Od be
arbitrary, and let PS = O \ {P}, LS = Od \ {�}, S = PS ∪LS. Clearly, � is the only
outer skew line to PS, and there is precisely one tangent line on every point R ∈ PS

(namely PR). Thus P1 and P2 hold. Dually, P1’ and P2’ also hold, thus S is a
resolving set of size ten.

4.4 μ(PG(2, 5)) = 15 = 4q − 5.

Gurobi solved RESSET IP in 15 seconds. In this case, Proposition 2.5 gives only
|S| ≥ 4q − 6, so to prove the lower bound, the computer search is much more
effective than trying to improve it theoretically. As for the upper bound, we give
a construction based on ovals in detail, since we also find it reasonably simple and
attractive.

Take an oval O. Then O contains six points, and there are six tangents,
(
6
2

)
= 15

two-secants and 31−6−15 = 10 skew lines to O. Through a point of O, there is one
tangent and five 2-secants, through an internal point of O, there are three skew lines
and three 2-secants, and through an external point of O, there are two tangents, two
skew lines and two 2-secants (with respect to O). Let � be a tangent to O, let P be
one of the five external points to O on e, and let Q be an internal point of O on one
of the skew lines through P . We define PS and LS to be O∪ {Q} and the set of the
eight skew lines on the external points of e different from P , respectively.

Let us now check the requirements of Proposition 2.2 to see that PS ∪ LS is a
resolving set for PG(2, 5) of size 15. (P1): Clearly, there is one outer skew line to PS ;
namely, PQ. (P1’): On each point not in O∪ [�] there are at least two skew lines to
O, and each intersects � in an external point of O. Hence at most one of these skew
lines is not in LS , thus the only outer point not covered by LS is P . (P2): On a point
of O, there is precisely one tangent to PS (the unique tangent to O); on Q, there are
three tangents to O, but two of them are in LS . (P2’): As all inner lines are skew to
O, they contain three internal and three external points of O. Let e ∈ LS . Then the
internal points of e are covered by at least two lines of LS , as well as the external
point �∩ e. Hence the only problem could be if the remaining two external points on
e both laid on the skew lines through P (and so the only line of LS covering them
would be e). In this case, each of the three lines joining P to an internal point on e
would be a 2-secant to O (recall that there are two skew lines on P , and a tangent
line cannot contain an internal point), hence the number of 2-secants on P would be
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three; but it is two, a contradiction.

4.5 μ(PG(2, 7)) = 23 = 4q − 5.

When trying to solve RESSET IP, Gurobi found a construction of size 23 in about
five minutes, but the best lower bound it could obtain after running for 332 hours
was 20. Proposition 2.5 gives only |S| > 4q − 8 = 20, so we need another approach
to suffice. One possible way is to use combinatorial arguments and symmetries of
the plane to reduce the search space.

Suppose now that S is a resolving set of size 4q − 6 = 22. Proposition 2.5 gives
|PS | ≥ 2q + 2 − 	2|S|/q
 = 10. BASIC IP (with arbitrary objective function) is
infeasible with |PS | = 10, |LS | = 12, hence we may assume |PS | = |LS | = 11 =
2q − 3. Let � be a longest secant to PS with t = |� ∩ PS |. Proposition 2.10 assures
n6 = n7 = n8 = 0, so t ≤ 5. As BASIC IP is infeasible if we add the constraint
n4 + n5 = 0, we obtain t ≥ 4.

Suppose that every line joining a point of PS \ [�] to a point of [�]\PS is a tangent
to PS . Then we find (11− t)(8− t) tangents, from which at most 11− t may be outer
(by (P2) of Proposition 2.2), thus we find 11 = |LS | ≥ (11 − t)(8 − t) − (11 − t) =
77 − 18t + t2 ≥ 12 (recall t ∈ {4, 5}), a contradiction. Hence we find a line �′

which contains at least two inner points X and Y , and meets � in an outer point
O. Let A and B be two outer points of [�] \ {O}. As the group of collineations
of PG(2, q) is transitive on quadruples in general position, we may fix any such
quadruple to take the role of (X, Y,A,B), which also fixes O = XY ∩ AB; so we
may add the constraints xX + xY = 2, xA + xB + xO = 0 to RESSET IP. Let
C,D,E, F,G denote the five further points of �. There are four collineations which
setwise stabilize both {X, Y } and {A,B}, hence � as well, and their only non-trivial
action on {C,D,E, F,G} is, after suitable re-labelling, ϕ = (C)(DE)(FG) in cycle
notation. As t ≥ 4, we may add the constraint xC+xD+xE+xF +xG ≥ 4. Applying
ϕ, we may assume D ∈ PS and F ∈ PS , thus we may add the constraints xD = 1
and xF = 1. Moreover, as � is a longest secant to PS , for each line r we may add
the constraint

∑
P∈r xP ≤ ∑

P∈� xP . By the assumption |PS | = |LS | = 11, we may
also add

∑
P∈P xP = 11 and

∑
�∈L x� = 11. Then RESSET IP extended with these

additional constraints is proved infeasible by Gurobi in about 110 minutes.

As for the upper bound, we give the construction of size 23 found by Gurobi,
where (x, y), (m) and (∞) denote the affine point with coordinates x and y, the
common point of the lines of slope m and that of the vertical lines, respectively, and
[m, b], [c] and �∞ denote the lines of equation y = mx + b, x = c, and the line at
infinity, respectively:

PS = {(0, 0), (0, 1), (0, 3), (0, 6), (2, 0), (2, 4), (6, 4), (2, 5), (3, 5), (0), (1)},
LS = {[2, 2], [2, 4], [2, 5], [3, 2], [3, 4], [4, 2], [4, 5], [5, 5], [6, 4], [6, 5], [4], [5]}.

Let us note that there is one line (namely [0]) which intersects PS in four points, all
other lines contain at most three inner points; there are six but no seven points in
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PS in general position; n0 = 13 = |LS |+1, so all lines of LS are skew to PS ; n1 = 10
and n3 = 8. We do not know of a resolving set of size 23 with a more straightforward
structure.

4.6 μ(PG(2, 8)) = 28 = 4q − 4.

In this case, we found it easier to enhance the theoretical methods and perform
detailed case analysis than to reduce the search space in due extent. Let us formulate
a detailed and actualized version of Lemma 2.9 with no restrictions on the order of
the plane (for the sake of future use).

Lemma 4.1. Suppose that |PS | = 2q− 3. Let e and f be two lines, both intersecting
|PS | in at least two points. Then, with Notation 2.8,

|Z| = k + l − 3− IP , (17)

0 ≤ |LS |+ (k + l)2 + kl + q − (q + 3 + IP )(k + l)− 1− r, (18)

0 ≤ |LS |+ (k + l)2 + |S| − 2q + 1− (q + 2 + IP )(k + l), (19)

0 ≤ |LS |+ kl − (k + l)− (2 + IP )q + IP + 3, and (20)

0 ≤ |LS |+ kl − 2(k + l)− (2 + IP )q + 2IP + 8 if Z is not contained in a line.(21)

Proof. We simply substitute |PS | = 2q− 3 into |Z| = |PS | − (2q− k − l)− IP (6) to
obtain (17). |PS | = 2q − 3 and (17) applied for (2) of Lemma 2.9 yields (18). Then
(19) follows from (18) and r ≥ kl − (k + l) − (|S| − 3q) − 2 (Lemma 3.3). Finally,
(20) and (21) follow from |PS | = 2q− 3 and (17) applied for (3), taking into account
(4) and (5) (which also yield τ(Z) ≤ |Z|q + 1).

Note that e and f are q + IP − k and q + IP − l secants.

Throughout the proofs we will obtain or assume more and more restrictions on
the nis which then can be added to BASIC IP. We will refer to BASIC IP extended
with all appropriate new constraints by the term BASIC IP+.

Let us now fix q = 8. Suppose to the contrary that S is a resolving set with
|S| = 4q − 5 = 27. Proposition 2.5 gives |PS | ≥ 12. BASIC IP with |PS | = 12 has a
unique integer solution, namely n0 = 16, n1 = 11, n2 = 45, n3 = n4 = n5 = n6 = 0,
n7 = 1. Let � be the 7-secant line, let W = PS \ [�], |W | = 5. Then W cannot
have three or more collinear points as there are no other three or longer secants.
Looking around from a point of W , among the four lines containing another point
of W there are some intersecting � in an inner point, hence resulting in a 3-secant, a
contradiction. Thus |PS | = 13 = 2q − 3, |LS | = 14 = 2q − 2.

Let us substitute q = 8 and |LS | = 14 into (18) and (20) of Lemma 4.1 to obtain

0 ≤ 21 + (k + l)2 + kl − (11 + IP )(k + l)− r, and (22)

0 ≤ 1 + kl − (k + l)− 7IP . (23)

(24)

Recall that Proposition 2.10 assures n7 = n8 = n9 = 0.
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Case 1: n6 ≥ 1.

Let us assume n6 ≥ 1, and let e be a 6-secant. Choose an arbitrary line f that is a
t-secant to PS , 2 ≤ t ≤ 6. Suppose first e ∩ f /∈ PS ; thus IP = 0, k = 2, l = 8 − t.
Then (22) with r ≥ 0 gives (l− 4)(l− 1)− 1 ≥ 0, whence l ≥ 5 and so t ≤ 3 follows.
Suppose now e ∩ f ∈ PS ; thus IP = 1, k = 3, l = 9 − t. Then (23) gives 2l − 9 ≥ 0,
whence l ≥ 5 and so t ≤ 4 follows. Furthermore, (21) yields l ≥ 6, that is, t ≤ 3.
Summing up, we conclude that t ≤ 4, and if t = 4, then f intersects e in an inner
point and Z is collinear. This also yields that we have n6 = 1 and n5 = 0.

Suppose now that n4 ≥ 1, and let f be a 4-secant. Then IP = 1, k = 3, l = 5 by
the previous observations yield, and the |Z| = 4 points outside e∪f are contained in
a line, say, h. As h cannot intersect e or f in an inner point (it would be a 5-secant
then), it must intersect both in an outer point, and hence it is a 4-secant intersecting
e in an outer point, a contradiction. Thus n4 = 0.

The above arguments show that, under the assumption n6 ≥ 1, n4 ≤ 73(1− n6),
n5 ≤ 73(1 − n6) and n6 = 1 can be added to BASIC IP+ Minimizing the objective
function n0 gives minn0 = 15 = |LS |+ 1, so all lines of LS must be skew to PS . Let
W be an outer point on e. As n4 = 0 and |PS \ [e]| = 7 is not divisible by three,
there must be a line g through W intersecting |PS | \ [e] in t points, t ∈ {1, 2}. Let
U ∈ PS ∩ [h]. Then the three lines joining U with an outer point of e may cover at
most six points of PS \ [e], hence there is a line f through U that intersects PS in
at least, and thus exactly three points. In this case |Z| = 5, hence there are at least
two lines on the inner point P that are tangents to PS ; at most one of them may be
outer, so LS should contain a tangent line, a contradiction, and thus n6 = 0 must
hold.

Case 2: n6 = 0.

Adding this single constraint to BASIC IP+, we get n5 ≤ 3 and n0 ≥ 13.

Case 2.1: n5 = 3. Suppose n5 = 3, and let e1, e2 and e3 be the 5-secants to
PS . Suppose that e1 ∩ e2 /∈ PS . Then, as |PS | = 13 = 2 · 5 + 3, e3 must intersect
both e1 and e2 in an inner point; say, R1 and R2, respectively. Then there are three
tangents to PS through R1 (the three lines joining R1 with the three outer points on
e2 different from e1 ∩ e2), at most one of which may be outer; hence there are two
inner tangents on R1. The same is true for R2, whence 14 = |LS | ≥ n0 − 1+ 4 ≥ 16,
a contradiction.

Thus any two of e1, e2 and e3 must intersect in an inner point. Let R1, R2, and
R3 be the three (inner) points of intersections of the three 5-secants. Clearly, on each
of them there are exactly 4 tangents, so we see that LS contains at least 9 tangents.
But then 14 = |LS | ≥ n0 − 1 + 9 ≥ 21, a contradiction. Hence n5 ≤ 2.

Case 2.2: n5 = 2. Let e and f be the two 5-secants. Assume P ∈ PS first.
Then |Z| = 4, hence there are at least 3 tangents on P . As n0 ≥ 13, we get
14 = |LS | ≥ 13− 1 + 3− 1 = 14, so n0 = 13, and LS contains exactly 12 skew lines
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and two tangents on P . Adding n5 = 2 and n0 = 13 to BASIC IP+, it has only
one solution, yielding n3 = 0 and n4 = 3. If Z is collinear, then PS is contained in
the three sides of a triangle, yielding only one 4-secant (the side containing Z), a
contradiction. If no three points of Z are collinear, then τ(Z) = 4 · 9 − (

4
2

)
gives a

contradiction in (3) of Lemma 2.9. Thus Z contains three points on a line h and one
more point not on h. In this case τ(Z) = 31 gives equality in (3), hence Z cannot
intersect any line joining a point of Ei with one of Fi. As n3 = 0, h must intersect e
in an outer point and f in an inner point (we may interchange e and f if necessary).
Let X ∈ Fi ∩ [h]. Then there are four lines joining X with a point of Eo. One of
them is h, another one may be blocked by the point in Z \ [h], so the remaining two
lines are tangents to PS . As there can be only one outer tangent line in an inner
point, one of these lines must be in |LS | but, as seen before, there are exactly two
tangents in LS which meet PS in P , a contradiction. Hence P /∈ PS .

We may assume now P /∈ PS . Then k = l = |Z| = 3, and (22), coming from (2)
of Lemma 2.9, gives equality with r = 0, hence r = 0 and all lines containing a point
of Eo ∪ Fo ∪ {P} intersect Z in at most one point. This yields that n0 = 13 (there
are four skew lines in [P ], and |Eo| · |Fo| − r = 9 between Eo and Fo). Hence, again,
BASIC IP+ gives the same one and only solution as above.

A 4-secant line to PS must contain at least two points of Z. As n4 = 3, the
points of Z cannot be collinear (in this case, only one line could contain at least two
points of Z), hence each 4-secants contains two points of Z, one of Ei and one of Fi.
Let X1, X2 and X3 be the three points of Ei covered by a 4-secant line; as |Z| = 3,
these must be pairwise distinct. Among the three lines joining Xi to Fo, at most
one may be blocked by Z, hence at least two of them are tangents; thus there is at
least one inner tangent line on Xi, i ∈ {1, 2, 3}. This gives |LS | ≥ n0 − 1+ 3 = 15, a
contradiction, hence n5 ≤ 1.

Case 2.3: n5 = 1. Now BASIC IP+ contains n7 = n6 = 0 and n5 = 1 as extra
constraints and it gives n0 ≥ 14, n4 ≥ 2. Let e be a 5-secant and let f be a 4-secant.
Suppose first P ∈ PS . Then k = 4, l = 5, |Z| = 5. Thus on [P ], there are at least
two tangents to PS , so one of them is in LS ; as 14 = |LS | ≥ n0 − 1 + 1 ≥ 14, we
obtain that n0 = 14, and LS consists of 13 skew lines and one tangent line through
P . With n0 = 14, BASIC IP+ gives the unique solution n4 = 4, n3 = 2, n2 = 38,
n1 = 14. Let h �= f be a 4-secant. Suppose that h ∩ e ∈ Ei =: X . If h ∩ f ∈ Fi,
then |[h] ∩ Z| = 2, so at most three among the five lines joining X with Fo may be
blocked by Z, hence there must be an inner tangent on X, a contradiction. Also,
if h ∩ f ∈ Fo, then |[h] ∩ Z| = 3, so at most two among the four lines joining X
with Fo, different from h, may be blocked by Z, and we get a similar contradiction.
Clearly, P ∈ h is not possible (as there would be too many inner tangents on P ).
Thus each of the three 4-secants different from f must intersect e in an outer point.
Counting the inner points on e, f and the remaining three 4-secants we thus obtain
13 = |PS | ≥ 5+3+3+2+1 = 14, a contradiction. Hence no 4-secant may intersect
e in an inner point; thus we may assume P /∈ PS .

Suppose now n4 ≥ 3. Counting |PS | on e and three 4-secants (none of which may
cover an inner point of e) we obtain 13 = |PS | ≥ 5 + 4 + 3 + 2 = 14. Thus n4 = 2.
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With this, the BASIC IP+ yields n0 = 15, n1 = 13, and n3 = 7, hence LS contains
only skew lines and, as no tangent may be inner and n1 = 13 = |PS |, each point of
PS is on exactly one tangent line.

Let f and h be 4-secants, and let R = h∩ f , X = h∩ e. As seen above, X ∈ Eo.
If R ∈ Fo, then Z = [h]∩PS , and 15 = n0 = (|[P ]|−2−|Z|)+(|Eo| · |Fo|−1) = 3+11,
a contradiction. If R = P , then there are 15 = n0 = (|[P ]| − 3) + (|Eo| · |Fo| − r)
skew lines to PS , whence r = 3. As |Z| = 4 > r, there is a point in Z that does not
meet any line joining a point of Eo to one of Fo, hence there is no tangent line on
this point of PS , a contradiction. Thus R ∈ Fi. Then |[h] ∩ Z| = 3; let W be the
unique point of Z \ [h]. Let Y ∈ e, and let us estimate the number of 3-secants on Y .
If Y = P , then there are no 3-secants through Y . If Y ∈ Ei, then there is exactly
one tangent on Y , so exactly three of the four lines joining Y to a point of Fo are
blocked by Z. Either each of them is blocked once, and hence the line joining Y to
the fourth point of Z is the only 3-secant on Y , or one of them is blocked twice, and
thus it is the only 3-secant on Y . Hence each point of Ei is on exactly one 3-secant
line. Let Y ∈ Eo. If Y = X or Y = e∩RW , then each line though Y (different from
f) contains either at most one point of Z or it is h, hence none of them is a 3-secant.
If Y is the third point of Eo, then the only line through it that may be a 3-secant is
Y W . Thus the number of 3-secant lines is at most six, in contradiction with n3 = 7,
so n5 = 1 cannot hold.

Case 2.4: n5 = 0. In this case, BASIC IP+ gives n0 = 15 and n4 ≥ 5. As
n0 = |LS | + 1, all lines of LS are skew to PS . Take four 4-secants. If any two
of them intersects in an outer point, then |PS | ≥ 16, a contradiction. Hence we
may assume that e and f are two 4-secants that intersect in an inner point; let
[e] ∩ PS = {P1, P2, P3, P4}, [f ] ∩ PS = {P4, P5, P6, P7}. As the collineation group of
PG(2, 8) is transitive on the quadruple of points in general position, we may move
P1, P2, P5 and P6 to any quadruple in general position, hence we may fix e and f
arbitrarily and add the following constraints to the RESSET IP:

∀� ∈ PG(2, 8) :
∑

P∈�
xP ≤ 4(1− x�)

∑

1≤i≤7

xPi
= 5

∑

P∈e
xP = 4

∑

P∈f
xP = 4

Gurobi solves this extended model in about 11 seconds and shows
∑

v∈P∪L xv ≥ 28;
thus a resolving set of size 27 cannot exist.
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4.7 μ(Π9) = 32 = 4q − 4.

Suppose to the contrary that S is a resolving set of size 4q− 5 = 31. Proposition 2.5
gives |PS | ≥ 14. Suppose |PS | = 14, |LS | = 17. Then BASIC IP gives n8 = 1 and
n0 = 18, hence all lines of LS are skew. However, through an inner point of the 8-
secant line, there are at least 9−(|PS |−8) = 3 tangents to PS , none of which may be
inner, a contradiction. Hence we may assume |PS | = 15 = 2q−3, |LS | = 16 = 2q−2.
Lemma 4.1 then gives

0 ≤ (k + l)2 + kl − (12 + IP )(k + l)− r + 24, (25)

0 ≤ (k + l)2 − (11 + IP )(k + l) + 30, (26)

0 ≤ kl − 2(k + l) + 6− 9IP , if Z is not collinear. (27)

Recall that Proposition 2.10 assures n8 = n9 = n10 = 0.

Case 1: n7 ≥ 1.

Suppose that e is a 7-secant. Let f be a line intersecting e in an outer point, and
suppose it contains at least two points of PS . Then IP = 0, k = 2 and r ≥ 0 with
(25) yield (l− 5)(l− 1)− 1 ≥ 0. As l ≥ 2, this yields l ≥ 6; hence a line intersecting
e in an outer point may contain at most three points of PS .

Let f be a line intersecting e in an inner point and containing another point of
LS . Then k = 3, IP = 1; these with (25) give (l − 5)(l − 1) − 1 ≥ 0, whence l ≥ 6
follows; thus a line intersecting e in an inner point contains at most four points of
PS . The observations so far yield in case of n7 ≥ 1 we have n7 = 1, n6 = n5 = 0.
Suppose now that f is a 4-secant with e ∩ f ∈ PS . Then (27) with IP = 1, k = 3,
l = 6 gives a contradiction; hence, in such case, Z must be collinear. As |Z| = 5, this
gives a line containing at least 5 points of PS different from e, a contradiction. Hence
we also have n4 = 0. However, adding the constraints n7 = 1, n6 = n5 = n4 = 0 to
BASIC IP+, it becomes infeasible. We conclude that n7 = 0.

Case 2: n7 = 0, n6 ≥ 1.

Suppose now that e is a 6-secant. Let f be another 6-secant. If e ∩ f ∈ PS , then
IP = 1, k = l = 4 gives a contradiction with (26). If e ∩ f /∈ PS , then IP = 0,
k = l = 3 and r ≥ 0 gives a contradiction with (25). Hence n6 = 1. BASIC IP+
yields n0 ≥ 15 and n5 ≤ 3. Assume now that f is a 5-secant to PS and e ∩ f ∈ PS .
Then there are at least 10− 2− |Z| = 3 tangents on P to PS , hence at least two of
these must be in LS .

Case 2.1: n6 = 1, n5 = 3. Suppose now n5 = 3, and let h1, h2 and h3 be the
three 5-secants to PS . Counting the points of PS on e and the 5-secants we get
15 = |PS | ≥ 6+4+3+2 = 15, hence any two of these four lines must intersect in an
inner point. Let Pi = e ∩ hi. Then, as LS contains at least two tangent lines on Pi,
1 ≤ i ≤ 3, so at least six tangents altogether, we get 16 = |LS | ≥ n0 − 1 + 6 ≥ 20, a
contradiction. Thus n5 ≤ 2.
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Case 2.2: n6 = 1, n5 = 2. Suppose now n5 = 2. Then BASIC IP+ gives
n0 ≥ 16. If a 5-secant meets e in an inner point, then 16 = |LS | ≥ n0 − 1 + 2 = 17,
a contradiction; hence both 5-secants intersect e in an outer point. As |PS | = 15, it
follows that the two 5-secants meet in an inner point R, and PS is contained in the
triangle formed by e and the two 5-secants, which yields n4 = 0. Also, the number of
tangents to PS through R is at least 10− 2− 6 = 2, so LS must contain at least one
tangent; hence 16 = |LS | ≥ n0 − 1 + 1 ≥ 16 gives n0 = 16. Adding this to BASIC
IP+ we obtain n4 ≥ 2, a contradiction. Hence n5 ≤ 1.

Case 2.3: n6 = 1, n5 = 1. Suppose now n5 = 1, and let f be the 5-secant. Then
BASIC IP+ gives n0 = 17, hence LS consists of 16 skew lines, so P = e ∩ f /∈ PS ;
also we obtain from BASIC IP+ n1 ≥ 14. These mean that all but one point of PS
is on exactly one (outer) tangent to PS . Note that the tangents through the points
of Z meet both e and f in an outer point; that is, either meet both in P , or join a
point of Eo with one of Fo. Let t be the number of lines on P blocked by Z. Then
17 = n0 = |[P ]| − 2 − t + |Eo| · |Fo| − r = 20 − t − r, where t ≥ 1 and r ≥ 0. If
t = 1, then the points of Z are on a line h containing P ; clearly, h is not tangent.
The r = 2 lines joining a point of Eo with one of Fo blocked by Z cover at most two
points of Z, hence there are two points of Z that are not incident with any tangent
line, a contradiction. If t = 2, then r = 1 and Z is covered by two lines containing
P , call them h1 and h2. If, say, h1 is a 3-secant, then only one of the inner points on
h1 can be covered by the r = 1 line joining Eo to Fo and blocked by Z, hence there
are at least two inner points without a tangent line, a contradiction. If t = 3 and
r = 0, then there are three lines through P covering Z, one of which is a 2-secant;
through the two inner points on this line there are no tangents. Thus n5 = 0.

Case 2.4: n6 = 1, n5 = 0. BASIC IP+ yields n0 = 17, n1 = 15 and n4 = 6.
Thus all lines of LS are skew, and each point of PS is on exactly one tangent line.
Suppose that a 4-secant intersects e in an inner point P . Then there are at least
|[P ]|−2−(|PS |−9) = 2 tangents on P , a contradiction. Then counting the points of
PS on e and four 4-secants we get 15 = |PS | ≥ 6+4+3+2+1 = 16, a contradiction.
Thus we conclude that n6 = 0.

Case 3: n7 = n6 = 0, n5 ≥ 1.

BASIC IP+ gives n0 ≥ 16, hence LS contains at least n0 − 1 = 15 skew lines and at
most one tangent. Suppose that n5 ≥ 4, and let hi, 1 ≤ i ≤ 4 be distinct 5-secants.
Suppose that two 5-secants, say, h3 and h4 meet in an inner point P . Then there
are at least |[P ]| − 2 − (|PS | − 9) = 2 tangents on P ; it follows that LS contains
15 skew lines and one tangent through P , and there are two 5-secants, two tangents
and six 2-secants on P . From these we can see that any pair of 5-secants, except
maybe for {h3, h4}, must intersect in an outer point. Then counting the points of
PS on h1, h2, h3 and h4 we get 15 = |PS | ≥ 5 + 5 + 5 + 4 = 19, a contradiction.
Hence n5 ≤ 3. BASIC IP+ then yields n0 = 17, n4 = 3, and n5 = 3. Now all lines in
LS must be skew; hence, as seen before, any two 5-secants meet in an outer point,
whence 15 = |PS | ≥ 5+5+5, so PS is contained in the triangle formed by the three
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5-secants. However, this contradicts n4 ≥ 1. It follows that n5 = 0.

Case 4: n7 = n6 = n5 = 0.

In this case, BASIC IP+ is infeasible, which gives a final contradiction with |S| =
4q − 5, yielding μ(Π9) = 4q − 4.

5 Corollary on the metric dimension of affine planes

Let Aq denote (the incidence graph of) an arbitrary affine plane of order q. In [7], it
was shown that μ(Aq) = 3q− 4 if q ≥ 13. The upper bound is due to a construction
proving μ(Aq) ≤ 3q−4 for all q ≥ 3, whereas the lower bound was proved by showing
an intrinsic link between resolving sets for affine and projective planes. For the sake
of a compact presentation, we deliver this connection as the combination of three
results of [7].

Result 5.1 ([7], Propositions 2.4, 2.5, and proof of Theorem 2.6). Assume that Aq,
q ≥ 5, contains a resolving set SA of size |SA| ≤ 3q − 4. Then the projective closure
of Aq admits a resolving set S = PS ∪LS of size |SA|+q. Furthermore, |LS | ≥ 2q−3
and there is a q-secant line to PS .

Using Result 5.1, Theorem 1.1 and computer search, we are able to prove the
following.

Theorem 5.2. The metric dimension of an affine plane of order q is 3q − 4 except
for q = 2, in which case it is 3.

Proof. Recall μ(Aq) ≤ 3q − 4 for all q ≥ 3. Suppose now that an affine plane Aq of
order q ≥ 5 admits a resolving set of size |SA| ≤ 3q − 5. Apply Result 5.1 to obtain
a resolving set S = PS ∪ LS of size |S| ≤ 4q − 5 for a projective plane of order q.

If q ≥ 8, this contradicts Theorem 1.1, thus μ(Aq) = 3q − 4 must hold.

Suppose now q ∈ {5, 7}. Result 5.1 also yields |LS | ≥ 2q− 3 and that PS admits
a q-secant line �. By Proposition 2.10, this is impossible unless |PS | ≥ 2q − 2, in
which case |PS | = 2q − 2 and |LS | = 2q − 3 follow. On the unique outer point P
of �, there can be at most |PS | − q = q − 2 lines besides � that meet PS , so we find
two skew lines r1 and r2 on P . Using the symmetries of the plane, we may fix P ,
�, r1 and r2. Add

∑
Q∈P xQ = 2q − 2,

∑
r∈L xr = 2q − 3, xP = 0,

∑
Q∈� xQ = q,∑

Q∈r1 xQ = 0,
∑

Q∈r2 xQ = 0 to RESSET IP. Gurobi proves this model infeasible for
q = 5 and q = 7 in less than a second and in about two minutes, respectively. Hence
μ(Aq) = 3q − 4 holds for q ∈ {5, 7} as well.

For q ∈ {2, 3, 4}, either an appropriate modification of RESSET IP or the general
IP model of [10] can be solved very quickly to see that μ(A2) = 3, and μ(Aq) = 3q−4
for q ∈ {3, 4}. This completes the proof.
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