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Abstract

Recently Wen Chean Teh [Australas. J. Combin. 76 (2020), 208–219]
showed that for every permutation π of the ordered alphabet A = {a1, a2,
. . . , an} there exists a word w ∈ A∗, in which each letter of A appears
at least once, such that w and π(w) have the same Parikh matrix. He
conjectured that it is always possible to find such a w whose length is at
most 2n. We prove this.

We use the usual notation for combinatorics on words. A word of m elements is
x = x[1 . .m], with x[i] being the ith element and x[i . . j] the factor of elements from
position i to position j. If i = 1 then the factor is a prefix and if j = m then it is a
suffix. The reverse of x, written x, is the word x[m]x[m−1] . . . x[1]. If a word equals
its own reverse then it is a palindrome. The letters in x come from some alphabet. We
will use the ordered alphabet A = {a1, a2, . . . , an} where a1 < a2 < · · · < an, except
in some examples where we use the more familiar a < b < c < · · · . The set of all finite
words with letters from A is A∗. The length of x, written |x|, is the number of letters
in x. If i ≤ j we use ai,j as an abbreviation for aiai+1 . . . aj with ai,i interpreted as ai.
If u1, u2, . . . , uk, v1, v2, . . . , vk are words and w = u1v1u2v2 . . . ukvk then u1u2 . . . uk is
a subword (sometimes called a scattered subword) of w. The number of occurrences
of u as a subword of w is written |w|u. For example the word w = cbabbacb contains
4 occurrences of the subword ab so |w|ab = 4. The number of occurrences of the
single letter c in w is |w|c = 2. Note that ca is a subword of w but not a factor. The
set of letters occurring in a word w is written alph(w).

This note concerns Parikh Matrices which may be defined as follows (for an
alternative but equivalent definition see [3]). The Parikh matrix for a word w defined
on the alphabet {a1, a2, . . . , an} is an (n+1)× (n+1) matrix Ψ(w) with entries ψi,j

where
ψi,j = 0 for 1 ≤ j < i ≤ n+ 1,
ψi,i = 1 for 1 ≤ i ≤ n+ 1,
ψi,j+1 = |w|ai,j for 1 ≤ i ≤ j ≤ n.
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Thus

Ψ(cbabbacb) =

⎛
⎜⎜⎝

1 2 4 2
0 1 4 3
0 0 1 2
0 0 0 1

⎞
⎟⎟⎠ .

We will refer to the diagonal immediately above the main diagonal as the second
diagonal, the one above that as the third diagonal and so on. The entries in the
second diagonal form the Parikh vector of w, (|w|a1, |w|a2, . . . , |w|an). This gives some
information about w, the Parikh matrix gives rather more. Much of the research in
the area concerns the conditions under which different words have the same Parikh
matrix. In 2004 Şerbǎnuţǎ [2] extended the idea of Parikh matrices to involve a
permutation π of the alphabet. In this case the Parikh matrix is written Ψπ(a1,n)(w)
and the third condition of the definition is replaced by

ψi,j+1 = |w|π(ai,j).
A further extension is possible in which π is replaced be a word in A∗ but this will
not concern us. The non-extended version of the Parikh Matrix corresponds to π
being the identity permutation.

In 2018 Salomaa [1] defined a permutation π to be Parikh friendly with respect
to A if there exists a word w with alph(w) = A and such that

Ψa1..an(w) = Ψπ(a1..an)(w)

and the word w is then said to be a witness for the permutation π. But for any ai,i+k

we have |w|π(ai,i+k) = |π−1(w)|ai,i+k
, so w is a witness of π if and only if

Ψa1..as(w) = Ψa1..as(π
−1(w)). (1)

We are now dealing with the non-extended version so the subscripts can be
dropped. Salomaa asked for a characterisation of Parikh-friendly permutations. In [3]
Teh obtained the surprising result that every permutation π of A is Parikh-friendly.
In fact he proved the stronger result that for every alphabet A there exists a single
(long) word (which he called a uniformly Parikh-friendly word with respect to A)
that is a witness for every permutation of A. Teh also made the following conjecture
which we will prove in Corollary 7.

Conjecture 1. Suppose A is an ordered alphabet, then every permutation of A has
a Parikh-friendly witness of length at most 2|A|.

Since we want witnesses for all permutations, and as π runs through all permuta-
tions in the symmetric group so does π−1, so in view of (1) we will find w depending
on π such that Ψ(w) = Ψ(π(w)). Our construction of such a witness is fairly simple
but we need some machinery before we present it. Recall that τ is a cyclic permu-
tation if it is a cyclic group under composition: such a permutation can be written
(a, τ(a), τ 2(a), . . . , τk−1(a)) where the terms are distinct and τk(a) = a. Any permu-
tation of a finite set can be written as the product of cyclic permutations. We say
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that a word is special if it is a palindrome with each letter in the word occurring
exactly twice. Note that if w is special and π is a permutation of alph(w) then π(w)
is also special. We will show in Theorem 6 that any cyclic permutation has a witness
that is special and, using Lemma 5, that the concatenation of the witnesses of the
cyclic permutations is a witness for their product. The truth of Conjecture 1 then
follows. We begin by describing the Parikh matrix of a special word.

Lemma 2. If w is special then w contains subwords ai,i+k and aj,j+k where i < j ≤
i+ k − 1 if and only if w contains the subword ai,j+k.

Proof. Sufficiency is immediate. We will prove necessity. Recall that w is a palin-
drome. It is sufficient to show that there is at least one position in w that is used in
both subwords. Both subwords contain the alphabetic letters ai+k−1 and ai+k. It is
clear that for at least one of these letters, both appearances of the letter correspond
to the same position in w. From this it is clear that one can construct the required
subword using the given subwords as a prefix and an overlapping suffix.

The condition j ≤ i + k − 1 cannot be replaced by j ≤ i + k. Consider w =
cbaeddeabc which contains subwords abc and cde, but not abcde.

Theorem 3. If P is the Parikh matrix defined on A of a special word w then
(a) Each element on the main diagonal equals 1,
(b) The elements in the second and third diagonals equal 0 or 2, and each element
pi,i+2 in the third diagonal equals 2 if and only if both pi,i+1 and pi+1,i+2 equal 2.
(c) Each element on the fourth diagonal equals 0 or 2.
(d) Each element pi,j of P with j ≥ i + 4 equals 2 if both pi,j−1 and pi+1,j equal 2,
and equals 0 otherwise.

Proof. Part (a) is immediate from the definition of Parikh matrices. For (b) note
that if w contains the element ai ∈ A then, as w is special, it contains exactly two
copies of ai and so |w|ai = pi,i+1 = 2. Note that w contains the subword aiai+1 if and
only if it contains both ai and ai+1, and it will then contain exactly two copies of
the subword. Part (b) follows. Part (c) follows from similar reasoning: if a subword
ai,i+2 occurs in w it occurs exactly twice. Part (d) follows from Lemma 2: if, and
only if, |w|ai,i+2

and |w|ai+1,i+3
both equal 2 then so does |w|ai,i+3

, and similarly for
longer subwords.

The essential point of this theorem is the following corollary.

Corollary 4. In order to show that the Parikh matrices of two special words w1 and
w2 are equal it is sufficient to show that alph(w1) = alph(w2) and that their fourth
diagonals are equal.

Proof. It is clear that the described conditions are necessary. The condition alph(w1)
= alph(w2) means the second diagonals of the two Parikh matrices are equal and
part (b) of the theorem then implies that the third diagonals are equal. Parts (c) and
(d) imply that if the fourth diagonals are equal then inductively all higher diagonals
are equal and so the matrices are equal.
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Recall that the fourth diagonal contains terms |w|ai,i+2
which count the subwords

aiai+1ai+2. We will call such a subword a consecutive triple. Note that a consecutive
triple is uniquely determined by its first element.

Lemma 5. If u1, u2, v1 and v2 are words such that

Ψ(u1) = Ψ(u2) and Ψ(v1) = Ψ(v2)

and alph(u1) ∩ alph(v1) = ∅ then

Ψ(u1v1) = Ψ(u2v2).

Proof. Consider |u1v1|ai,i+k
and suppose that this is positive. If ai,i+k is a subword

of u1 then, by our assumption that Ψ(u1) = Ψ(u2), ai,i+k is a subword of u2 and
|u1|ai,i+k

= |u2|ai,i+k
. Since the alphabets of u1 and v1 (which equal, respectively, the

alphabets of u2 and v2) do not intersect this means |u1v1|ai,i+k
= |u2v2|ai,i+k

. For
similar reasons this will also be the case if ai,i+k is a subword of v1.

Suppose instead that ai,i+s is a subword of u1 and ai+s+1,i+k is a subword of v1,
where 0 ≤ s < k. Since |u1|ai,i+s

must equal |u2|ai,i+s
and |v1|ai+s+1,i+k

must equal
|v2|ai+s+1,i+k

we have

|u1v1|ai,i+k
= |u1|ai,i+s

|v1|ai+s+1,i+k

= |u2|ai,i+s
|v2|ai+s+1,i+k

= |u2v2|ai,i+k

in all cases. Finally, suppose that |u1v1|ai,i+k
= 0. If also |u2v2|ai,i+k

= 0 there is
nothing to prove, and if |u2v2|ai,i+k

> 0 then we obtain a contradiction by repeating
the argument above but beginning with the assumption that |u2v2|ai,i+k

is positive.
It follows that in this case Ψ(u1v1) = Ψ(u2v2).

Recall that X is the reverse of X.

Theorem 6. Let π = (b1, b2, . . . , bt) be a cyclic permutation of a subset of A with
b1 being its lexicographically least member and set X = b2b3 . . . bt. Let w1 = b1XXb1
and w2 = Xb1b1X. Then for either i = 1 or i = 2 (but not both) we have

Ψ(wi) = Ψ(π(wi)).

Proof. The words w1 and w2 are special so we can apply earlier results to them. Note
that

π(b1X) = π(b1b2 . . . bt) = b2b3 . . . btb1 = Xb1

and
π(Xb1) = π(btbt−1 . . . b1) = b1bt . . . b2 = b1X.

Consider w1 = b1XXb1 and note that π(b1XXb1) = Xb1b1X. Clearly alph(w1) =
alph(w2) so we may apply Corollary 4. If b1XXb1 and Xb1b1X have the same set of
consecutive triples then they have the same Parikh matrices and we are done. Clearly
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any consecutive triple in XX will belong to both b1XXb1 and Xb1b1X . Therefore,
if there is a consecutive triple in one of these words which is not in the other it must
contain b1, and since we have assumed b1 is the lexicographically least letter in the
permutation the consecutive triple must begin with b1. Say it is b1αβ. If either α
or β is absent from the set {b1, b2, . . . , bt} then b1αβ does not appear in either word
and we’re done. Suppose they are both present. Clearly b1αβ is then a subword of
b1XXb1. It is also a subword of Xb1b1X if α occurs before β in X ; that is, if β occurs
before α in X. So Ψ(w1) = Ψ(π(w1)) except in the case where αβ is a subword of X.

Suppose then that αβ is a subword of X and consider w2 = Xb1b1X . We have
π(Xb1b1X) = b1XXb1. As before, any consecutive triple which is a subword of
XX will be a subword of both Xb1b1X and b1XXb1. So we need only consider the
consecutive triple b1αβ. By our assumption that αβ is a subword of X this is indeed
a subword of both words, so Ψ(w2) = Ψ(π(w2))

If we had written the cyclic permutation as (c1, . . . , ck) with ck being the lexi-
cographically greatest letter, and set Y = c1 . . . ck−1 we could have used the words
w3 = ckY Y ck and w4 = Y ckckY instead of w1 and w2 in the theorem. I haven’t
found other satisfactory words. We can now prove Conjecture 1.

Corollary 7. If π is a permutation of A = {a1, . . . , an} then π has a witness of
length 2n.

Proof. The permutation π can be written as a product of disjoint cyclic permutations
C1, C2, . . . Ck which have lengths μ1, . . . , μk respectively, so that μ1+μ2+· · ·+μk = n
. By the theorem for each of these there exists a word wi of length 2μi such that

Ψ(wi) = Ψ(π(wi)).

Since the Cis are disjoint the sets alph(wi) are disjoint so we may apply Lemma 5
and conclude that

Ψ(w1 . . . wk) = Ψ(π(w1) . . . π(wk))

= Ψ(π(w1 . . . wk)).

So the word w1 . . . wk is a witness for π and has length 2(μ1 + · · ·+ μk) = 2n.

We finish with an example. Consider the permutation π(abcdefgh) = hgafdecb
which is a product of the cyclic permutations (ahbgc) and (dfe). For the first cyclic
permutation, since bc is a subword of X = hbgc, we use the word w2 from Theorem
6 which is cgbhaahbgc. For the second permutation ef is not a subword of X =
fe so we use w1 = dfeefd. Our witness is the concatenation of these which is
cgbhaahbgcdfeefd. The image of this under π is acgbhhbgcafeddef . The Parikh
matrix of each of these is:
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 2 2 4 4 0 0 0
0 1 2 2 4 4 4 0 0
0 0 1 2 4 4 4 0 0
0 0 0 1 2 2 2 0 0
0 0 0 0 1 2 2 0 0
0 0 0 0 0 1 2 0 0
0 0 0 0 0 0 1 2 2
0 0 0 0 0 0 0 1 2
0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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