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Abstract

Contractible edges in spanning trees, longest paths and maximum match-
ings in 2-connected graphs non-isomorphic to K3 are investigated. Ev-
ery spanning tree and every longest path are shown to contain at least
two contractible edges. All graphs with a spanning tree / a longest path
containing exactly two contractible edges are characterized. Also, we
prove that there always exists a longest path P which contains more
than |E(P )|/2 contractible edges, and the bound is asymptotically op-
timal. Every maximum matching must contain a contractible edge and
those graphs with a maximum matching having exactly one contractible
edge are characterized. Finally, it is shown that there always exists a
maximum matching M that contains at least 2(|M | + 1)/3 contractible
edges, and the bound is optimal.

1 Introduction

The study of contractible edges started with the work of Tutte [20] who proved that
every 3-connected graph non-isomorphic to K4 contains a contractible edge. Further
results on the number of contractible edges and non-contractible edges in terms of the
order and size of a graph were obtained. Ando et al. [6] proved that every 3-connected

graph G non-isomorphic toK4 has at least
|V (G)|

2
contractible edges and characterized

all the extremal graphs (refer to McCuaig’s paper [17] for further refinements). Ota

[18] proved that every 3-connected graph G of order at least 19 has at least 2|E(G)|+12
7

contractible edges and determined all the extremal graphs. Egawa et al. [9] showed
that the number of non-contractible edges in a 3-connected graph G non-isomorphic
to K4 is at most 3|V (G)| − �3

2
(
√
24|V (G)|+ 25− 5)�.

The existence of contractible edges in certain types of subgraphs in 3-connected
graphs was also investigated. For any 3-connected graphs of order at least seven,
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Dean et al. [7] proved that for any two distinct vertices x, y, every longest x-y path
contains at least two contractible edges and that every longest cycle contains at least
three contractible edges. Later, Aldred et al. [1, 2] characterized all 3-connected
graphs with a longest path containing exactly two contractible edges and Aldred et
al. [3] characterized all 3-connected graphs having a longest cycle containing exactly
three contractible edges. Ellingham et al. [10] proved that every non-hamiltonian
3-connected graph has at least six contractible edges in any longest cycle. For any
3-connected graph of order at least five, Fujita [12] proved that there exists a longest

cycle C such that C contains at least |V (C)|+9
8

contractible edges, and later [13] im-

proved the lower bound to |V (C)|+7
7

. Maximum matchings were shown to contain a
contractible edge by Aldred et al. [4]. They [5] also characterized all 3-connected
graphs with a maximum matching containing precisely one contractible edge. Re-
cently, Elmasry et al. [11] proved that every depth-first search tree in a 3-connected
graph non-isomorphic to K4 contains a contractible edge.

For 2-connected graphs, several analogous results on contractible and non-con-
tractible edges were known in the more general context of matroids. Let M be a
simple 2-connected matroid with rank r(M). Oxley [19] showed that M has at least
r(M) + 1 contractible elements. Wu [21] characterized the extremal matroids to
be precisely the matroids arised from 2-connected outerplanar graphs. Kahn and
Seymour [15] proved that if M has rank at least two, then M has at least |E(M)| −
r(M) + 2 contractible elements, and characterized all the matroids where equality
holds. When restricted to graphs, these correspond to maximally outerplanar graphs.
In Section 3, we will provide graph-theoretical proofs of the above and related results.

Section 4 deals with contractible edges in spanning trees in 2-connected graphs.
From the above result of Kahn and Seymour, every spanning tree must contain at
least two contractible edges. Those graphs having a spanning tree containing exactly
two contractible edges are characterized. In Section 5, we study contractible edges
in longest cycles and longest paths. It is easy to see that every edge in a longest
cycle is contractible, and the first and last edges in any longest path between two
given vertices are contractible. Furthermore, we characterize all the graphs with a
longest path containing exactly two contractible edges to be the square of a path.
For 2-connected non-hamiltonian graphs, every longest path is shown to contain
at least four contractible edges which is best possible. We also prove that for any
2-connected graph non-isomorphic to K3, there exists a longest path P containing
more than |E(P )|/2 contractible edges and this bound is asymptotically optimal.
Lastly, in Section 6, every maximum matching is shown to contain a contractible
edge. All 2-connected graphs with a maximum matching containing precisely one
contractible edge are characterized. We also prove that for any 2-connected graph
non-isomorphic to K3, there exists a maximum matching M that contains at least
2(|M |+ 1)/3 contractible edges and the bound is optimal.
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2 Definitions

All basic graph-theoretical terminology can be found in Diestel [8]. Unless otherwise
stated, all graphs G = (V (G), E(G)) considered in this paper are simple and finite.
For any vertex x in G, denote the set of neighbors of x by NG(x) and the set of edges
incident to x by EG(x). For any subset S of V (G), define NG(S) :=

⋃
x∈S NG(x) \ S

to be the set of neighbors of S in V (G) \ S. Let A and B be two disjoint subsets
of V (G), define EG(A,B) to be the set of all edges between A and B. A graph is
acyclic if it does not contain any cycle. The square of G, denoted by G2, is the graph
on V (G) where two vertices are adjacent if and only if they have distance at most
two in G. A matching is a set of independent edges and a maximum matching is a
matching of largest cardinality. Let M be a matching in G. An M-alternating path
is a path whose edges alternate between M and E(G) \M . An M-alternating path
is called M-augmenting if the first and last vertices of the path are not incident to
any edges in M . Let H be a subgraph of G. An H-path is a non-trivial path meeting
H exactly in its ends. Let Q be a path or a cycle. Two chords x1x2 and y1y2 of
Q (x1, x2, y1, y2 are all distinct) are overlapping if x1, y1, x2, y2 appear in this order
in Q.

A graph is connected if for any two of its vertices, there exists a path between
them. A component of a graph is a maximally connected subgraph. Let G be a
disconnected graph. The union of at least one but not all components of G is called a
fragment of G. A graph G is k-connected (k ≥ 2) if |V (G)| > k and for every set X ⊆
V (G) with |X| < k, G−X is connected. Let G be a k-connected graph. An edge e of
G is said to be k-contractible if the graph obtained by its contraction, G/e, is also k-
connected. Otherwise, it is called k-non-contractible. Since this paper concerns only
2-connected graphs, we write 2-contractible as contractible and 2-non-contractible
as non-contractible. Denote the set of contractible edges and non-contractible edges
in G by EC(G) and ENC(G) respectively. Define GC := (V (G), EC(G)) to be the
subgraph induced by all the contractible edges and GNC := (V (G), ENC(G)). For
any vertex x in G, denote the set of contractible edges incident to x by EGC(x).

A graph is outerplanar if it can be embedded in the plane such that all the
vertices lie on the boundary of one face. A graph is maximally outerplanar if it is
outerplanar and the addition of any extra edge results in a non-outerplanar graph.
It is well-known that a 2-connected outerplanar graph consists of a Hamilton cycle
with non-overlapping chords.

3 Contractible and non-contractible edges in 2-connected

graphs

Here we group together all the major results concerning contractible and non-con-
tractible edges in 2-connected graphs. We start with two well-known facts about
non-contractible edges in any 2-connected graph non-isomorphic to K3, finite or
infinite.
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Lemma 3.1. Let G be a 2-connected finite or infinite graph non-isomorphic to K3.
An edge e in G is non-contractible (G/e is not 2-connected) if and only if G− V (e)
is not connected.

Lemma 3.2. Let G be a 2-connected finite or infinite graph non-isomorphic to K3.
For every edge e of G, G− e or G/e is 2-connected.

By Lemmas 3.1 and 3.2, we can easily prove the following lemma which says that
deleting a non-contractible edge preserves other non-contractible edges.

Lemma 3.3. Let G be a 2-connected finite or infinite graph non-isomorphic to K3.
Let e and f be two distinct non-contractible edges of G. Then G− e is 2-connected
and f is non-contractible in G− e.

Deleting a non-contractible edge does not affect contractible edges either as shown
below.

Lemma 3.4. Let G be a 2-connected finite or infinite graph non-isomorphic to K3.
Let e be a non-contractible edge of G and f be a contractible edge of G. Then G− e
is 2-connected and f is contractible in G− e.

Proof. Let e = xy. By Lemma 3.2, G − e is 2-connected. Suppose f is non-
contractible in G − e. By Lemma 3.1, G − e − V (f) is not connected. Since f is
contractible in G, G − V (f) is connected by Lemma 3.1, and e connects the two
components of G − e− V (f). This means x, y /∈ V (f) and every x-y path in G− e
intersects V (f). Let C be the component of G− x− y containing f Then G−C − e
has an x-y path not intersecting V (f), a contradiction. �

The existence of contractible edges in certain finite edge sets follows directly from
Lemmas 3.2 and 3.3.

Lemma 3.5. Let G be a 2-connected finite or infinite graph non-isomorphic to K3

and F be a finite subset of E(G).

(a) If G− F is disconnected, then F contains at least two contractible edges.

(b) If G − F is connected but not 2-connected, then F contains at least one con-
tractible edge.

Lemma 3.6. Let G be a 2-connected finite or infinite graph non-isomorphic to K3,
and xy be a non-contractible edge in G. Consider a component C of G − x − y. If
|EG(x, C)| is finite, then EG(x, C) contains a contractible edge.

Proof. Obviously, G−EG(x, C) is connected. Since y is a cutvertex of G−EG(x, C),
EG(x, C) contains a contractible edge by Lemma 3.5. �

Lemma 3.5 implies that for any 2-connected graph non-isomorphic to K3, every
vertex is incident to at least two contractible edges. Hence, the number of contractible
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edges is at least the number of vertices. The 2-connected graphs satisfying the lower
bound were characterized by Wu [21] to be outerplanar graphs. Since Wu’s work
concerns simple 2-connected matroids, we give a graph-theoretical proof below. This
requires the following theorem which says that the subgraph induced by all the
contractible edges is spanning and 2-connected.

Theorem 3.1. Let G be a 2-connected graph non-isomorphic to K3. Then GC :=
(V (G), EC(G)) is 2-connected.

Proof. By Lemmas 3.2, 3.3 and 3.4, we can repeatedly delete all the non-contractible
edges while preserving the original contractible edges so that the resulting graph GC

is 2-connected. �

Theorem 3.2 (Wu [21]). Every 2-connected graph G non-isomorphic to K3 has at
least |V (G)| contractible edges. The equality holds if and only if G is outerplanar.

Proof. By Lemma 3.5, every vertex is incident to at least two contractible edges.
Therefore, the number of contractible edges is at least |V (G)|.

Suppose G is outerplanar. Since G is 2-connected, G consists of a Hamilton cycle
with non-overlapping chords. The edges in the Hamilton cycle are the only con-
tractible edges and the equality holds. Suppose the equality holds. From above, we
have |EGC(x)| ≥ 2. Now, |V (G)| = |EC(G)| = 1

2

∑
x∈V (G) |EGC(x)| ≥ 1

2

∑
x∈V (G) 2 =

|V (G)|. Therefore, every vertex of G is incident to exactly two contractible edges.
By Theorem 3.1, GC is a Hamilton cycle of G. All edges of G outside GC are chords
of GC and are non-contractible. By Lemma 3.1, no chords of GC are overlapping.
Hence, G is outerplanar. �

There is also a similar result for the upper bound of the number of non-contract-
ible edges in a 2-connected graph. As noted in the Introduction, this was already
proved by Kahn and Seymour [15] for matroids. For 2-connected graphs, we will
adopt Kriesell [16]’s arguments, and make use of the following two lemmas on how
deleting or contracting a fragment affects the contractability of the remaining edges.

Lemma 3.7. Let G be a 2-connected finite or infinite graph non-isomorphic to K3.
Let xy be a non-contractible edge in G and C be a fragment of G− x− y. Then

(1) G− C is 2-connected.

(2) Every non-contractible edge in G− C is non-contractible in G.

(3) Let e ∈ E(G− C) \ xy. If e is non-contractible in G, then e is non-contractible
in G− C.

Proof. (1) and (2) are obvious.

(3) Since e �= xy, without loss of generality, assume x /∈ V (e). Let D be the
component of G− V (e) containing C ∪ x. Note that C � D and G−D− V (e) �= ∅.
Since G− V (e)− C is not connected, e is non-contractible in G− C. �
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Lemma 3.8. Let G be a 2-connected finite or infinite graph non-isomorphic to K3.
Let xy be a non-contractible edge in G and C be a fragment of G− x− y. Let H be
the graph obtained from G− C by adding a vertex a, and edges ax and ay. Then

(1) H is 2-connected.

(2) Every non-contractible edge in H is non-contractible in G.

(3) Let e ∈ E(H). If e is a non-contractible edge in G, then e is non-contractible
in H.

Proof. First, note that degH(a) = 2, and ax and ay are contractible in H by Lemma
3.2.

(1) By Lemma 3.7(1), G−C = H−a is 2-connected. This implies that no vertex
in H is a cutvertex and hence H is 2-connected.

(2) Let e be a non-contractible edge in H . Then e �= ax, ay. The result is true if
e = xy. Suppose e ∈ E(H − a) \ xy. By applying Lemma 3.7(3) to H , xy and a, e
is non-contractible in H − a = G−C. By Lemma 3.7(2), e is non-contractible in G.

(3) Since e is a non-contractible edge in G, e �= ax, ay. Hence, e ∈ E(H − a).
The result is true if e = xy. Suppose e ∈ E(H−a)\xy = E(G−C)\xy. By Lemma
3.7(3), e is non-contractible in G−C = H − a. By applying Lemma 3.7(2) to H , xy
and a, e is non-contractible in H . �

Theorem 3.3 (Kahn and Seymour [15]). Every 2-connected graph G non-isomorphic
to K3 has at most |V (G)| − 3 non-contractible edges. The equality holds if and only
if G is maximally outerplanar.

Proof. The first statement was already proved by Kriesell [16]. We prove the second
statement using the same inductive arguments. The ‘if’ part is obvious. For the ‘only
if’ part, the result is true when |V (G)| = 4. Suppose |V (G)| > 4. Consider a non-
contractible edge xy inG. Let C1 be a component ofG−x−y and C2 := G−C1−x−y.
Suppose C1 = a. Then degG(a) = 2, and ax and ay are contractible in G by Lemma
3.2. By Lemma 3.7(1), G− a is 2-connected. By Lemma 3.7(2) and (3), ENC(G) =
ENC(G − a) if xy is non-contractible in G − a, or ENC(G) = ENC(G − a) ∪ {xy}
if xy is contractible in G − a. The first case cannot occur because G − a has at
most |V (G)| − 4 non-contractible edges by the first part of the theorem. Hence, xy
is a contractible edge in G − a and G − a has exactly |V (G)| − 4 non-contractible
edges. By the induction hypothesis, G − a is maximally outerplanar and so is G.
Suppose |V (C1)| > 1 and |V (C2)| > 1. For i = 1, 2, let Gi be the graph obtained
from G − Ci by adding a vertex ai, and edges aix and aiy. By Lemma 3.8(1), Gi

is 2-connected. By the first part of the theorem, Gi has at most |V (Gi)| − 3 non-
contractible edges. By Lemma 3.8(2) and (3), ENC(G) = ENC(G1)∪ENC(G2). Note
that ENC(G1) ∩ ENC(G2) = {xy}. Since |V (G)| − 3 = |ENC(G)| = |ENC(G1)| +
|ENC(G2)|−1 ≤ |V (G1)|−3+ |V (G2)|−3−1 = |V (C1)|+ |V (C2)|−1 = |V (G)|−3,
each Gi has exactly |V (Gi)|−3 non-contractible edges. By the induction hypothesis,
each Gi is maximally outerplanar and so is G. �
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By combining Theorems 3.2 and 3.3, we obtain a lower bound for the number of
contractible edges and an upper bound for the number of non-contractible edges in
terms of the size of a graph.

Theorem 3.4. Every 2-connected graph G non-isomorphic to K3 has at least
|E(G)|+3

2

contractible edges and at most |E(G)|−3
2

non-contractible edges. In both cases, the
equality holds if and only if G is maximally outerplanar.

Proof. By Theorems 3.2 and 3.3, |V (G)| ≤ |EC(G)| and |ENC(G)| ≤ |V (G)| − 3 ≤
|EC(G)|−3. Therefore, 2|ENC(G)|+3 ≤ |E(G)| = |EC(G)|+|ENC(G)| ≤ 2|EC(G)|−
3. We have |EC(G)| ≥ |E(G)|+3

2
and |ENC(G)| ≤ |E(G)|−3

2
. In both cases, the equality

holds if and only if |ENC(G)| = |V (G)| − 3 = |EC(G)| − 3 which is equivalent to G
being maximally outerplanar by Theorem 3.3. �

4 Contractible edges in spanning trees

Another question that can be asked about contractible edges in a 2-connected finite
graph is: How many contractible edges are there in certain types of subgraphs? By
Theorem 3.1, every 2-connected graph non-isomorphic to K3 contains a spanning
tree consisting of contractible edges only. Theorem 3.3 implies that every spanning
tree contains at least two contractible edges. Below we characterize all 2-connected
graphs having a spanning tree containing exactly two contractible edges.

Theorem 4.1. Let G be a 2-connected graph non-isomorphic to K3. Then every
spanning tree of G contains at least two contractible edges. Moreover, G has a span-
ning tree containing exactly two contractible edges if and only if G is maximally
outerplanar and GNC is acyclic.

Proof. Consider a spanning tree T of G. By Theorem 3.3, |ENC(G)| ≤ |V (G)| − 3.
Hence, |E(T )∩EC(G)| = |E(T )|−|E(T )∩ENC(G)| ≥ |E(T )|−|ENC(G)| ≥ (|V (G)|−
1) − (|V (G) − 3) = 2. Suppose T contains exactly two contractible edges. Then
|E(T ) ∩ ENC(G)| = |ENC(G)| = |V (G)| − 3. By Theorem 3.3, G is maximally
outerplanar. Also, GNC is acyclic as ENC(G) ⊆ E(T ).

Suppose G is maximally outerplanar and GNC is acyclic. If the subgraph in-
duced by all the non-contractible edges G[ENC(G)] is not connected, then a chord
can be added to join two closest components of G[ENC(G)] without destroying the
outplanarity, a contradiction. Hence, G[ENC(G)] is connected. Since GNC is acyclic,
G[ENC(G)] is acyclic and hence is a tree of order |ENC(G)| + 1 = |V (G)| − 2 by
Theorem 3.3. Now, G[ENC(G)] can be extended to a spanning tree of G containing
exactly two contractible edges. �

Suppose l is the minimum number of contractible edges a spanning tree of G can
contain. It is easy to show that there exists a spanning tree containing exactly k
contractible edges for l ≤ k ≤ |V (G)| − 1.
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Theorem 4.2. Let G be a 2-connected graph non-isomorphic to K3 and l be the
minimum number of contractible edges a spanning tree of G contains. Then, for
l ≤ k ≤ |V (G)| − 1, G has a spanning tree containing exactly k contractible edges.

Proof. If l = |V (G)| − 1, then the result follows from Theorem 3.1. Assume l <
|V (G)| − 1. Suppose we have proved that G has a spanning tree T containing
exactly k contractible edges (k < |V (G)| − 1). Let xy be a non-contractible edge in
T . Denote the subtree of T −xy containing x by Tx and that containing y by Ty. By
Lemma 3.5(a), EG(Tx, Ty) contains a contractible edge, say uv. Then T − xy + uv
is a spanning tree containing exactly k + 1 contractible edges. By induction, the
theorem follows. �

5 Contractible edges in longest cycles and paths

Inspired by the results of Dean et al. [7] and Aldred et al. [3], we also study con-
tractible edges in longest paths and longest cycles in 2-connected graphs.

Lemma 5.1. Let G be a 2-connected graph non-isomorphic to K3, and x, y be two
distinct vertices in G. Suppose P := x1x2 . . . xn is a longest x-y path in G (x = x1

and y = xn). If xixi+1 is non-contractible, then i /∈ {1, n−1}, G−xi−xi+1 has exactly
two components, one of which contains x1Pxi−1 and the other contains xi+2Pxn, and
there is no x1Pxi−1-xi+2Pxn path in G− xi − xi+1. In particular, x1x2 and xn−1xn

are contractible.

Proof. We need only to show that every component C of G− xi − xi+1 intersects P .
Suppose C ∩P = ∅. Let yi be a neighbor of xi in C, yi+1 be a neighbor of xi+1 in C,
and Q be a yi-yi+1 path in C. Then x1PxiyiQyi+1xi+1Pxn is an x-y path longer than
P which is impossible. Note that if i = 1 or n− 1, then there is always a component
of G−xi−xi+1 not intersecting P . Summing up, i /∈ {1, n−1} (or equivalently, x1x2

and xn−1xn are contractible), G−xi−xi+1 has exactly two components, one of which
contains x1Pxi−1 and the other contains xi+2Pxn, and there is no x1Pxi−1-xi+2Pxn

path in G− xi − xi+1. �
The existence of contractible edges in longest path and longest cycle follows im-

mediately from Lemma 5.1.

Theorem 5.1. Let G be a 2-connected graph non-isomorphic to K3. Then the first
and the last edges in a longest path in G are contractible, and all edges in a longest
cycle in G are contractible.

Proof. The first part follows from Lemma 5.1. Let C be a longest cycle in G. Suppose
C contains a non-contractible edge xy. Let z be a neighbor of y in C other than
x. Then C − yz is a longest y-z path in G. By Lemma 5.1, yx is contractible, a
contradiction. �

As a natural step, we characterize all 2-connected graphs having a longest path
containing exactly two contractible edges.
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Theorem 5.2. Let G be a 2-connected graph non-isomorphic to K3. Then G has a
longest path containing exactly two contractible edges if and only if G is the square
of a path.

Proof. First, notice that every 2-connected finite or infinite graph G non-isomorphic
to K3 has a path of length at least three. To see that, consider a cycle C in G. If C
has at least four vertices, then the result follows. Otherwise, C is a triangle. Since
G � K3, there exists a vertex in G − C adjacent to C and we can find a path of
length at least three.

The ‘if’ part is obvious. For the ‘only if’ part, suppose P := x1x2 . . . xn is a
longest path in G containing exactly two contractible edges. By Lemma 5.1, x1x2

and xn−1xn are the only contractible edges in P . As discussed above, n ≥ 4. For
k = 1, 2, . . . , n − 3, define Pk to be the subpath x1x2 . . . xk of P and Ck to be the
component of G− xk+1 − xk+2 containing Pk.

If V (C1) �= x1, then there exists a vertex in C1, say y1, adjacent to x1. By
applying Lemma 5.1 to P and x2x3, x4Pxn � C1 and y1x1x2Pxn is a longer path
than P , a contradiction. Therefore, V (C1) = x1 = V (P1), NG(P1) = {x2, x3} and
G[P3] = P 2

3 .

Suppose we have proved that for i = 1, 2, . . . , k, (1) V (Ci) = V (Pi), (2) NG(Pi) =
{xi+1, xi+2} and (3) G[Pi+2] = P 2

i+2. Consider Ck+1. Suppose V (Ck+1) �= V (Pk+1).
Let y be a vertex in V (Ck+1) \ V (Pk+1) adjacent to Pk+1. By (2), y is adjacent
to xk+1. If k is odd, yxk+1xk−1 . . . x2x1x3 . . . xkxk+2Pxn is a longer path than P , a
contradiction. If k is even, yxk+1xk−1 . . . x1x2x4 . . . xkxk+2Pxn is a longer path than
P , a contradiction. Therefore, V (Ck+1) = V (Pk+1) and NG(Pk+1) = {xk+2, xk+3}.
By (2), xk+1 is the only neighbor of xk+3 in Ck+1 and G[Pk+3] = P 2

k+3. By induction,
G = P 2. �

Since the square of a path is Hamiltonian, the above theorem implies that every
longest path in a 2-connected non-hamiltonian graph contains at least three con-
tractible edges. In fact, the correct lower bound is four. This is best possible as
demonstrated by K2,n where n ≥ 3.

Theorem 5.3. Let G be a 2-connected non-Hamiltonian graph. Then every longest
path contains at least four contractible edges.

Proof. Suppose P := x1x2 . . . xn is a longest path in G containing exactly three
contractible edges. By Lemma 5.1, x1x2 and xn−1xn are contractible. Let xkxk+1 be
the third contractible edge in P . By arguing as in the proof of Theorem 5.2, we have

NG(x1) = {x2, x3}, NG(x2) = {x1, x3, x4}, NG(x3) = {x1, x2, x4, x5}, . . . ,
NG(xk−2) = {xk−4, xk−3, xk−1, xk}, NG(xk+3) = {xk+1, xk+2, xk+4, xk+5}, . . . ,
NG(xn−2) = {xn−4, xn−3, xn−1, xn}, NG(xn−1) = {xn−3, xn−2, xn},
NG(xn) = {xn−2, xn−1}.

By the maximality of P , NG(xk−1) ⊆ P and NG(xk+2) ⊆ P . Since xkxk+1 is con-
tractible, G− xk − xk+1 is connected, and xk−1 and xk+2 are adjacent. Again by the
maximality of P , NG(xk) ⊆ P and NG(xk+1) ⊆ P . Now, V (G) = V (P ) and G is
Hamiltonian, a contradiction. �
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Theorem 5.1 tells us that every longest path has at least two contractible edges
but is it possible to find a longest path that contains many contractible edges? The
following theorem provides an affirmative answer.

Theorem 5.4. Let G be a 2-connected graph non-isomorphic to K3 and P be a
longest path in G containing as many contractible edges as possible. Then P has
more than |E(P )|/2 contractible edges.

Proof. Let P := x1x2 . . . xn. By Lemma 5.1, x1x2 and xn−1xn are contractible, and
the result is true if |E(P )| = 3. Therefore, we can assume |E(P )| ≥ 4.

Claim 5.1. The first four and last four edges of P are contractible.

Proof. Suppose x2x3 is non-contractible. By the maximality of P and by applying
Lemma 5.1 to x2x3 (refer to the proof of Theorem 5.2), NG(x1) = {x2, x3}. Then
x1x3 is a contractible edge by Lemma 3.2 and x2x1x3Pxn has more contractible edges
than P , a contradiction. Therefore, x2x3 is contractible.

Suppose x3x4 is non-contractible. Then by the maximality of P and by applying
Lemma 5.1 to x3x4, NG(x1) ⊆ {x2, x3, x4}. Since x2x3 is contractible, G − x2 − x3

is connected and x1 is adjacent to x4. Suppose x1x4 is non-contractible. By Lemma
3.6, there exists a contractible edge incident to x1, say x1y, such that y /∈ {x2, x3, x4}
which is impossible. Therefore, x1x4 is contractible and x3x2x1x4Pxn has more
contractible edges than P , a contradiction. Therefore, x3x4 is contractible.

Suppose x4x5 is non-contractible. Let C be the component of G − x4 − x5 con-
taining x1. Then by the maximality of P and by applying Lemma 5.1 to x4x5,
NG(x1) ⊆ {x2, x3, x4, x5}. Suppose x5 ∈ NG(x1). If x1x5 is non-contractible, then by
Lemma 3.6, there exists a contractible edge x1y such that y /∈ {x2, x3, x4, x5}, a con-
tradiction. Therefore, x1x5 is contractible and x4x3x2x1x5Pxn has more contractible
edges than P , a contradiction. Hence, x5 /∈ NG(x1). Since x2x3 is contractible,
G − x2 − x3 is connected and x1x4 ∈ E(G). If x1x4 is non-contractible, then by
Lemma 3.6, there exists a contractible edge x1y such that y /∈ {x2, x3, x4, x5}, a
contradiction. Hence, x1x4 is contractible. Since x3x4 is contractible, there exists
a x2-x5 path Q in G − x1 − x3 − x4. Now, x3x4x1x2Qx5Pxn is a longer path than
P unless Q is the edge x2x5. Suppose x2x5 is non-contractible. Let D be a compo-
nent of G− x2 − x5 not containing x1, and Q′ be an x2-x5 path in G[D ∪ {x2, x5}].
But x3x4x1x2Q

′x5Pxn is a longer path than P , a contradiction. Hence, x2x5 is
contractible but then x1x4x3x2x5Pxn has more contractible edges than P which is
impossible. Therefore, x4x5 is contractible. �

Claim 5.2. Let xixi+1 and xi+1xi+2 be two consecutive non-contractible edges in P .
Then there exists a contractible edge between xi and xi+2.

Proof. Let C be the component of G−xi−xi+1 containing xi+2. By Lemma 3.6, there
exists a contractible edge xiyi such that yi ∈ C. Let Q be a yi-P path in C. Apply
Lemma 5.1 to xi+1xi+2. Since there is no x1Pxi-xi+3Pxn path in G − xi+1 − xi+2,
Q ∩ P = xi+2. Define R := x1PxiyiQxi+2Pxn. If |E(Q)| ≥ 2, then R is a longer
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path than P , a contradiction. If |E(Q)| = 1, then R and P have the same length,
but R has more contractible edges than P , a contradiction. Therefore, |E(Q)| = 0
and xixi+2 is a contractible edge. �

Claim 5.3. There are no three consecutive non-contractible edges in P .

Proof. Suppose there are three consecutive non-contractible edges xixi+1, xi+1xi+2

and xi+2xi+3 in P . By Claim 5.2, xixi+2 and xi+1xi+3 are contractible edges. But
then x1Pxixi+2xi+1xi+3Pxn has more contractible edges than P , a contradiction. �

Below we will represent contractible and non-contractible edges in P using the
following notation. For example, xixi+1xi+2xi+3xi+4xi+5 := CNCNN = (CN)2N
denotes that xixi+1 and xi+2xi+3 are contractible, and xi+1xi+2, xi+3xi+4 and xi+4xi+5

are non-contractible. Note that NNN is impossible by Claim 5.3.

Claim 5.4. For any integer k ≥ 0, there is no NN(CN)kN in P .

Proof. The case k=0 is Claim 5.3. Suppose xixi+1 . . . xi+2k+2xi+2k+3 := NN(CN)kN
appears in P where k ≥ 1. Since xi+2jxi+2j+1 is contractible (1 ≤ j ≤ k), G−xi+2j−
xi+2j+1 is connected and contains an x1Pxi+2j−1-xi+2j+2Pxn path internally disjoint
from P , denoted by Qj. Apply Lemma 5.1 to xi+2j−1xi+2j and xi+2j+1xi+2j+2. Since
there is no x1Pxi+2j−2-xi+2j+1Pxn path and no x1Pxi+2j-xi+2j+3Pxn path, Qj ∩P =
{xi+2j−1, xi+2j+2} and all Qj ’s are pairwise disjoint. By Claim 5.2, xixi+2 and
xi+2k+1xi+2k+3 are contractible edges. Consider P ′ := x1Pxixi+2xi+1Q1xi+4xi+3Q2

xi+6 . . . xi+2k−3Qk−1xi+2kxi+2k−1Qkxi+2k+2xi+2k+1xi+2k+3Pxn. Since P is a longest
path, all Qj ’s are edges. Hence, Qj = xi+2j−1xi+2j+2 and P ′ is also a longest
path. Since P ′ − V (Qj) is connected, by Lemma 5.1, Qj is contractible. But then
xiP

′xi+2k+3 = (CN)k+1C and P ′ has more contractible edges than P , a contradic-
tion. �

Claim 5.5. For any integer k ≥ 0, every 2k + 1 consecutive edges in P contain at
least k contractible edges.

Proof. For k = 0, it is trivial. By Claim 5.3, k = 1 is true. Suppose we have
proved that for all 0 ≤ l ≤ k, every 2l + 1 consecutive edges in P contain at least
l contractible edges. Consider any 2k + 3 consecutive edges Q in P . Assume Q
contains only k contractible edges. Since the last 2k+1 edges contain k contractible
edges, the first two edges are non-contractible. Similarly, the last two edges are
non-contractible. By Claim 5.3, Q = NNC . . . CNN .

Suppose we have proved that Q = N(NC)l . . . (CN)lN . Since the last
2(k − l) + 1 edges contain k − l contractible edges and the first 2l + 1 edges has
l contractible edges, the (2l + 2)-th edge is non-contractible. By symmetry, Q =
N(NC)lN . . . N(CN)lN . From Claim 5.4, Q = N(NC)l+1 . . . (CN)l+1N . By induc-
tion, Q = NN(CN)kN , which is impossible by Claim 5.4. Hence, Q contains at
least k + 1 contractible edges. �

Claim 5.6. P has more than |E(P )|/2 contractible edges.
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Proof. For |E(P )| ≤ 8, by Claim 5.1, all edges are contractible. Suppose |E(P )| > 8.

By Claim 5.1 and Claim 5.5, P contains at least 8 + |E(P )|−8−1
2

> |E(P )|
2

contractible

edges if |E(P )| is odd, or at least 8 + |E(P )|−8−2
2

> |E(P )|
2

contractible edges if |E(P )|
is even. �

Finally, the bound in Theorem 5.4 is asymptotically best possible as demonstrated
by the family of graphs, Hk (k ≥ 0), constructed below.
Define V (Hk) := {x1, x2, . . . , x2k+10} and

E(Hk) :=

2k+9⋃

i=1

{xixi+1} ∪ {x1x4, x2x6, x2k+5x2k+9, x2k+7x2k+10} ∪
k⋃

i=1

{x2i+3x2i+6}.

It is not difficult to see that the longest path of Hk is either x1x2 . . . x2k+10 or
(x1x4x3x2/x3x4x1x2)x6x5x8x7 . . . x6+4ix5+4ix8+4ix7+4i . . . x2k+4x2k+3x2k+6x2k+5(x2k+9

x2k+8x2k+7x2k+10/x2k+9x2k+10x2k+7x2k+8), and has the contractible/non-contractible
edge pattern: CCCCN(CN)kCCCC.

6 Contractible edges in maximum matchings

This section deals with contractible edges in maximum matchings in 2-connected
graphs. First, it will be shown that every maximum matching in a 2-connected
graph non-isomorphic to K3 contains a contractible edge.

Lemma 6.1. Let G be a 2-connected graph non-isomorphic to K3 and M be a match-
ing in G. Consider any edge xy in M . Let C be a component of G−x−y such that all
edges in M ∩E(C) are non-contractible. Then G[C ∪ xy] contains an M-alternating
path P such that xy ∈ P , y is an endvertex of P , and the other endvertex of P lies
in C and is not incident to any edges in M .

Proof. Let x0 := x and x1 be a neighbor of x in C. Suppose P := yx0x1 . . .
x2kx2k+1 is a longest M-alternating path in G[C ∪ xy] such that x1 . . . x2kx2k+1 lies
in C and x2kx2k+1 /∈ M . If x2k+1 ∈ V (M), then there exists an edge in M incident
to x2k+1, say x2k+1x2k+2. Obviously, x2k+2 /∈ yx0x1 . . . x2kx2k+1. Since x2k+1x2k+2 is
non-contractible, x2k+2 is adjacent to a vertex, say x2k+3, in a component of G −
x2k+1 − x2k+2 not containing P − x2k+1. But then yxx1 . . . x2k+2x2k+3 is a longer
M-alternating path in G[C ∪ xy] such that x2k+2x2k+3 /∈ M , a contradiction. Hence,
x2k+1 /∈ V (M) and P is the desired M-alternating path. �

Since an M-augmenting path enables one to construct a larger matching than
M , Lemma 6.1 immediately implies the following.

Theorem 6.1. Every maximum matching in a 2-connected graph non-isomorphic to
K3 contains a contractible edge.

Proof. Let M be a maximum matching. Suppose all edges inM are non-contractible.
Let xy be an edge inM , and C andD be two components of G−x−y. By Lemma 6.1,
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G[C ∪ xy] contains an M-alternating path P such that xy ∈ P , y is an endvertex of
P , and the other endvertex of P lies in C and is not incident to any edges in M . By
Lemma 6.1, G[D ∪ xy] contains an M-alternating path Q such that xy ∈ Q, x is an
endvertex of Q, and the other endvertex of Q lies in D and is not incident to any
edges in M . Now, P ∪Q is an M-augmenting path which is impossible. �

Next, we characterize all 2-connected graphs with a maximum matching con-
taining precisely one contractible edge. For such purpose, we define the following
type of graphs Rn(n ≥ 1) with V (Rn) := {x0, y0, x1, y1, . . . , xn, yn, z} and E(Rn) :=
{xiyi, xixi+1, yiyi+1 : 0 ≤ i ≤ n−1}∪{xnyn, xnz, ynz}∪F where F ⊆ {xiyi+1, yixi+1 :
0 ≤ i ≤ n− 1}.
Theorem 6.2. Let G be a 2-connected graph. Then G has a maximum matching
containing precisely one contractible edge if and only if G ∼= Rn.

Proof. If G ∼= Rn, then {xiyi : 0 ≤ i ≤ n} is the desired matching. Conversely, let M
be a maximum matching containing precisely one contractible edge x0y0. Since all
edges in K3 are non-contractible, G has at least four vertices. Note that G− x0 − y0
is connected and thus contains an edge e. By the 2-connectedness of G, there is a
cycle containing x0y0 and e. Hence, there exists two distinct vertices x1 and y1 such
that x1 is adjacent to x0 and y1 is adjacent to y0. Note that x0x1 /∈ M and y0y1 /∈ M .

We claim that x1y1 ∈ M and NG({x0, y0}) = {x1, y1}. There are three cases
to consider. (1) If |{x1, y1} ∩ V (M)| = 0, then x1x0y0y1 is an M-augmenting path,
contradicting M being maximum. (2) If |{x1, y1}∩V (M)| = 1, then we may assume
x1 /∈ V (M) and y1 ∈ V (M). Let y1y

′
1 ∈ M . Note that y′1 �= x1 and y1y

′
1 is non-

contractible. Let C be a component of G − y1 − y′1 not containing x1x0y0. Since
each edge in M ∩ E(C) is non-contractible, by Lemma 6.1, G[C ∪ y1y

′
1] contains

an M-alternating path y1y
′
1Py with y /∈ V (M). However, x1x0y0y1y

′
1Py is an M-

augmenting path, a contradiction. (3) Suppose |{x1, y1} ∩ V (M)| = 2. Let x1x
′
1 and

y1y
′
1 be the edges in M incident to x1 and y1 respectively. Assume x′

1 �= y1. Then
x1x

′
1 and y1y

′
1 are distinct edges in M , and both are non-contractible. Let C be a

component of G − x1 − x′
1 not containing x0y0y1y

′
1. By Lemma 6.1, G[C ∪ x1x

′
1]

contains an M-alternating path x1x
′
1Px with x /∈ V (M). Let D be a component

of G − y1 − y′1 not containing y0x0x1x
′
1. By Lemma 6.1, G[D ∪ y1y

′
1] contains an

M-alternating path y1y
′
1Qy with y /∈ V (M). But, xPx′

1x1x0y0y1y
′
1Qy is an M-

augmenting path, a contradiction. Therefore, x′
1 = y1 and x1y1 ∈ M . Suppose there

exists a vertex u in NG({x0, y0}) other than x1 and y1. Without loss of generality,
assume u ∈ NG(x0). Then by repeating the above arguments for {u, y1} in place of
{x1, y1}, we obtain uy1 ∈ M which is impossible. Therefore, NG({x0, y0}) = {x1, y1}.

Consider x1y1. Then x0y0 is a component of G − x1 − y1. Suppose G − x1 −
y1 has another two components C1 and C2. By Lemma 6.1, G[C1 ∪ x1y1] con-
tains an M-alternating path y1x1P1z1 with z1 /∈ V (M) and G[C2 ∪ x1y1] con-
tains an M-alternating path x1y1P2z2 with z2 /∈ V (M). But z1P1x1y1P2z2 is an
M-augmenting path, a contradiction. Therefore G−x1 − y1 has exactly two compo-
nents. Let C be the component of G− x1 − y1 other than x0y0. If |V (C)| = 1, then
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G ∼= R1. If |V (C)| > 1, then there exists two distinct vertices x2 and y2 such that
x2 is adjacent to x1 and y2 is adjacent to y1. By arguing as above, x2y2 ∈ M and
NG(x1, y1) = {x0, y0, x2, y2}. We can continue this process with x2y2, x3y3, . . . and
prove that G ∼= Rn. �

Note that Rn contains not only a maximum matching with exactly one con-
tractible edge but also a maximum matching all of whose edges are contractible. It
is natural to ask whether every 2-connected graph non-isomorphic to K3 contains a
maximum matching with many contractible edges. The answer is given by Theorem
6.4 below, and we need a result by Grossman and Häggkvist [14] concerning properly
colored cycles in edge-colored graphs. A cycle is properly colored if adjacent edges
have different colors.

Theorem 6.3 (Grossman and Häggkvist [14]). Let G be a 2-connected graph with
its edges colored by two colors. If every vertex is incident to at least one edge of each
color, then G has a properly colored cycle.

Theorem 6.4. Let G be a 2-connected graph non-isomorphic to K3 and M be a
maximum matching that contains as many contractible edges as possible. Then M
contains at least 2(|M |+ 1)/3 contractible edges.

Proof. We make use of a tree construction similar to the block-cut tree with the
cut being non-contractible edges in M . First, define MNC := M ∩ ENC(G) and
MC := M ∩ EC(G). We say that a subgraph H in G has property (∗) if for each
edge e ∈ MNC ∩E(H), H−V (e) is connected. Define H to be the set of all maximal
2-connected induced subgraphs in G having property (∗).
Claim 6.1. Every edge in G belongs to an element of H.

Proof. Consider a shortest cycle C containing the edge. Obviously, C is 2-connected,
induced, and has property (∗). The maximal 2-connected induced subgraph contain-
ing C with property (∗) is the desired subgraph. �

Claim 6.2. Every edge e ∈ MNC belongs to at least two elements of H.

Proof. Let D1 and D2 be two components of G− V (e). Consider a shortest cycle Ci

in G[Di ∪ e] containing e. Then Ci has property (∗). But no element of H contains
both C1 and C2 since e is non-contractible. �

Claim 6.3. Let H ∈ H. If there is an x-y H-path in G, then xy ∈ MNC .

Proof. Let P be a shortest x-y H-path. Since G[H ∪ P ] does not have property (∗),
there exists e ∈ MNC ∩E(G[H ∪P ]) such that G[H ∪P ]−V (e) is not connected. As
H is 2-connected and has property (∗), this implies |V (e) ∩ P | = 2 and e /∈ E(P ).
Hence, e is a chord of P contradicting P being shortest. �

Claim 6.4. Let H1 and H2 be two distinct elements of H such that H1 ∩ H2 �= ∅.
Then H1 ∩H2 is an edge in MNC and G[H1 ∪H2 − V (e)] is not connected.
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Proof. Suppose |V (H1∩H2)| = 1 and let x = H1∩H2. Since G is 2-connected, there
exists an H1-H2 path in G− x, say P . Let y1 = P ∩H1 and y2 = P ∩H2. By Claim
6.3, xy1, xy2 ∈ MNC which is impossible.

Suppose |V (H1 ∩H2)| ≥ 3. Since H1 is 2-connected, we can find an H2-path in
H1, say xPy. By Claim 6.3, xy ∈ MNC . By property (∗), H1 − x− y is connected.
Let Q be a shortest (V (H1∩H2) \ {x, y})-V (P −x− y) path in H1−x− y such that
z = V (Q) ∩ (V (H1 ∩ H2) \ {x, y}) and a = V (Q) ∩ V (P − x − y). Then xPaQz is
an H2-path. By Claim 6.3, xz ∈ MNC which is impossible.

Therefore, |V (H1∩H2)| = 2 and let {x, y} = H1∩H2. Consider an x-y H2-path in
H1. By Claim 6.3, xy ∈ MNC . Since H1 and H2 have property (∗), G[H1∪H2−V (e)]
is not connected. �

Now, define an auxillary bipartite graph A with the bipartite vertex sets H and
MNC respectively such that there exists an edge between H ∈ H and e ∈ MNC in A
if and only if e ∈ E(H).

Claim 6.5. A is a tree.

Proof. First, we show that A is connected. By Claim 6.2, it suffices to prove that for
any H1, H2 ∈ H, there is a path between H1 and H2 in A. For H1 = H2, it is trivial.
For H1 ∩H2 �= ∅, it is true by Claim 6.4. For H1 ∩H2 = ∅, let P be an H1-H2 path
in G. By applying Claim 6.1 to each edge in P and using Claim 6.4, it is easy to see
that there is a path between H1 and H2 in A.

Next, we show that A is acyclic. Suppose there is a cycle in A, say
H1e1H2e2 . . .HkekH1 where Hi ∈ H and ei ∈ MNC . But then G[H1 ∪H2 ∪ . . . ∪Hk]
has property (∗), a contradiction. �

Claim 6.6. For any H ∈ H, H is not K3.

Proof. Suppose H is K3 with vertices x, y, z. Without loss of generality, assume there
is an x-y H-path. By Claim 6.3, xy ∈ MNC . By Claim 6.4, z cannot belong to other
elements of H. Hence, z has degree two in G. By Lemma 3.2, zx is contractible.
But then M − xy + zx is a maximum matching containing more contractible edges
than M , a contradiction. �

Claim 6.7. Let H ∈ H and e be an edge in H. If e is non-contractible in H, then
e is non-contractible in G. If e is contractible in H, then either e is contractible in
G or e ∈ MNC .

Proof. Suppose e is non-contractible in H and contractible in G. Let C1 and C2 be
two components of H − V (e). Since G − V (e) is connected, there exists a shortest
C1-C2 path in G−V (e), say P . But then G[H ∪P ] is 2-connected and has property
(∗), a contradiction.

Suppose e is contractible in H and non-contractible in G. Let C be a component
of G−V (e) not containing H−V (e). Let D be a shortest cycle in G[C∪e] containing
e, and H ′ be an element of H containing D. Obviously, H �= H ′. By Claim 6.4,
e ∈ MNC . �
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Claim 6.8. |H| ≥ |MNC |+ 1.

Proof. By Claims 6.5 and 6.2, we have

2(|H|+ |MNC | − 1) = 2(|V (A)| − 1)

=
∑

H∈H
degA(H) +

∑

e∈MNC

degA(e)

= 2
∑

e∈MNC

degA(e) ≥ 4|MNC |.

Therefore, |H| ≥ |MNC |+ 1. �

Claim 6.9. For each H ∈ H, H contains at least two edges in MC.

Proof. Suppose H contains at most one edge in MC . Since H is not K3 by Claim 6.6,
by applying Lemmas 3.2, 3.3 and 3.4 to H , we can delete all non-contractible edges in
H so that the resulting graph H ′ is 2-connected and all edges in H ′ are contractible
in H . By Claim 6.7, every contractible edge in G that lies in H is contractible in H .
By the definition of (∗), every edge in MNC ∩E(H) is contractible in H . Therefore,
none of the edges in M ∩E(H) are deleted in forming H ′. Consider any vertex x in
H ′. Suppose x is incident to an edge in M , say xy. If y /∈ H ′, then by Claim 6.1, xy
belongs to an element of H other than H , say K. By Claim 6.4, K ∩H is an edge
in MNC incident to x, which is impossible. Therefore, any edge in M incident to a
vertex in H ′ lies in H ′.

We claim that every vertex in H ′ is incident to an edge in M ∩ E(H ′). Suppose
x is a vertex in H ′ not incident to any edges in M ∩ E(H ′). Let y be any neighbor
of x in H ′. By Claim 6.7, xy is contractible in G. By the maximality of M , y is
incident to an edge in M ∩E(H ′), say yz. If yz ∈ MNC , then M − yz + xy contains
more contractible edges than M , a contradiction. Hence, yz ∈ MC . Since y is an
arbitrary neighbor of x in H ′ and H ′ contains at most one edge in MC , this implies
that y and z are the only neighbors of x in H ′. But then yz is non-contractible in
H ′, a contradiction.

Summing up, every edge in H ′ belongs to either M or EC(G) \ M , and every
vertex in H ′ is incident to an edge in M ∩ E(H ′) and an edge in (EC(G) \ M) ∩
E(H ′). Color all edges in M ∩ E(H ′) with one color and the rest with another
color. By Theorem 6.3, there exists a cycle x1x2 . . . x2kx1 in H ′ such that F :=
{x1x2, x3x4, . . . , x2k−1x2k} ⊆ M and F ′ := {x2x3, x4x5, . . . , x2kx1} ⊆ EC(G) \ M .
Since H contains at most one edge in MC , M − F + F ′ has more contractible edges
than M , a contradiction. �

Claim 6.10. M contains at least 2(|M |+ 1)/3 contractible edges.

Proof. By Claim 6.4, no two distinct elements of H share an edge in MC . By Claims
6.9 and 6.8, |MC | ≥ 2|H| ≥ 2(|MNC |+1). Therefore, 3|MC| ≥ 2(|MC |+|MNC |+1) =
2(|M |+ 1). �



T.L. CHAN/AUSTRALAS. J. COMBIN. 78 (2) (2020), 191–208 207

The proof of Theorem 6.4 is complete. �
Lastly, the bound in Theorem 6.4 is best possible as demonstrated by the family

of graphs below. The building blocks are cycles of length four, C4, and K2’s. De-
fine V (C i

4) := {xi
1, y

i
1, x

i
2, y

i
2} and E(C i

4) := {xi
1y

i
1, y

i
1x

i
2, x

i
2y

i
2, y

i
2x

i
1}, and V (Ki

2) :=
{zi1, zi2} and E(Ki

2) := {zi1zi2}. Now, we construct the family of graphsGn inductively.
Define

V (G1) := V (C1
4) ∪ V (K1

2) ∪ V (C2
4 )

and
E(G1) := E(C1

4 ) ∪ E(K1
2 ) ∪ E(C2

4 ) ∪ {y11z11 , y12z12 , z11y21, z12y22}.
Suppose we have constructed Gn. Define

V (Gn+1) := V (Gn) ∪ V (Kn+1
2 ) ∪ V (Cn+2

4 )

and

E(Gn+1) := E(Gn)∪E(Kn+1
2 )∪E(Cn+2

4 )∪{yn+1
1 zn+1

1 , yn+1
2 zn+1

2 , zn+1
1 yn+2

1 , zn+1
2 yn+2

2 }.

Notice that any maximum matching of Gn is in fact a perfect matching, and must
contain two independent edges of every C4 which are contractible and all the K2’s
which are non-contractible.
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