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Abstract

The 3-uniform cycle of length 5 has five vertices a, b, c, d, e and five 3-
element edges abc, bcd, cde, dea, eab. Similarly, an r-uniform k-cycle
has k vertices arranged in a cyclic order, and k edges which are the
r-element subsets formed by any r consecutive vertices. A hypercycle
system C(r, k, v) of order v is a collection of r-uniform k-cycles on a v-
element vertex set, such that each r-element subset is an edge in precisely
one of those k-cycles. In this paper we study hypercycle systems with
r = 3 and k = 5. The definition of 2-split system is introduced, and
recursive constructions of hypercycle systems C(3, 5, v) are designed. We
find, by a new difference method, hypercycle systems C(3, 5, v) of orders
v = 10, 11, 16, 20 and 22. By recursion, they yield infinite families of
hypercycle systems.
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1 Introduction

In this paper we study a type of combinatorial design which is a generalization of
cycle decompositions of graphs.

A hypergraph H of order v is a pair (X,E), whereX is the vertex set with |X| = v,
and E is a family of subsets of X called edges. If all edges in E have size r, then the
hypergraph is said to be r-uniform. The complete r-uniform hypergraph of order v,
denoted by K

(r)
v , is the hypergraph in which E consists of all the r-element subsets

of X. If r = 3, throughout this paper we shall write 3-set instead of 3-element set.

There are various ways to define cycles in hypergraphs. What we shall call a cycle
in this paper is usually termed a ‘tight cycle’ in the literature. In our terminology, for
any integers k > r ≥ 3, an r-uniform hypercycle of length k, or simply a k-cycle when
r is understood, consists of k vertices and k edges; namely, it is a cyclic sequence of
k vertices of X in which any r consecutive vertices form an edge, and only those. It
will be denoted by C(r, k).

A hypercycle system C(r, k, v) of order v is a pair (X, E) where X is the vertex

set of cardinality |X| = v and E is a family of k-cycles such that each edge of K
(r)
v

is contained in precisely one k-cycle of E . In particular, if k = v, then C(r, v, v) is a
Hamiltonian hypercycle system.

In this paper we propose to study C(r, k, v) for the case of k fixed, especially
concentrating on r = 3 and k = 5. As a notational convention, we shall often use the
integers 0, 1, . . . , v−1 for the vertices, so for instance the cyclic sequence (0, 2, 4, 1, 3)
represents a C(3, 5) whose edges are the 3-sets {0, 2, 4}, {1, 2, 4}, {1, 3, 4}, {0, 1, 3},
and {0, 2, 3}.

There are not many previous results about hypercycle systems C(r, k, v), and
in fact initially only the Hamiltonian cases C(r, v, v) were studied. Namely, as a
generalization of Hamiltonian cycles of graphs, in the first paper [4] on this subject,
Katona and Kierstead defined a Hamiltonian chain for an r-uniform hypergraph,
which means a hypercycle of length |X| in our terminology. A decade later, Bailey
and Stevens [1] developed a numerical algorithm to find C(r, v, v) systems for r = 3
and v = 7, 8; and also for r = 4 and v = 9. For r = 3 the authors showed that it is
possible to connect any edge of K

(3)
v to a triplet of differences and, by a difference

method, they found cyclic C(3, v, v) systems for v = 10, 11, 16.

Meszka and Rosa [8] made further improvements, and with a computer program
they determined all C(3, v, v) systems for v ≤ 32. They also introduced the general
definition of C(r, k, v). We find it important to recall the following composition
theorem from that paper. The notation S(3, s, v) stands for a Steiner system with
parameters s and v, that is, a family B of s-element subsets (called blocks) of a
v-element set X such that each 3-set in X is contained in precisely one member
of B.

Theorem 1.1 ([8]) If there exists a Steiner system S(3, s, v) and a k-cycle system
C(3, k, s), then there exists a C(3, k, v).
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The proof is obtained by replacing each block of the S(3, s, v) with a copy of the
C(3, k, s) whose vertex set is the block in question. Despite that the idea of substitu-
tion is simple, this theorem is important by the fact that the trivial C(3, 5, 5) exists
(observe that C(3, 5) is self-complementary). Thus, if there exists a Steiner system
S(3, 5, v), then a C(3, 5, v) exists as well. Explicit consequences of this principle will
be mentioned in the concluding section.

The results of the current paper were presented in September 2012 [3] by the
third author. Shortly after the first write-up, Keevash [5] announced the milestone
result that the Divisibility Conditions1 (namely, that

(
v−i
t−i

)
is a multiple of

(
k−i
t−i

)
for

every i = 0, 1, . . . , t−1) imply the existence of an S(t, k, v) whenever v is sufficiently
large with respect to k. The paper still seems to be under the refereeing process,
but recently its simplified version [6] is also available. By this deep theorem, and by

splitting each copy of K
(3)
5 (placed into the blocks of S(3, 5, v)) into two edge-disjoint

copies of C(3, 5), we immediately obtain the following existence result.

Theorem 1.2 For every v sufficiently large, a cycle system C(3, 5, v) exists when-
ever v ≡ 2, 5, 17, 26, 41, 50 (mod 60).

In [8] it was also observed that the order of a C(3, 5, v) must satisfy the congruence

v ≡ 1, 2, 5, 7, 10, 11 (mod 15),

and all systems C(3, 5, v) for v ≤ 17 were found with the help of computer. For
example, it was announced that there exist exactly two non-isomorphic systems
C(3, 5, 7).

Simultaneously with [6], Keevash [7] announced a strong extension of his method,
which in particular leads to necessary and sufficient arithmetic conditions for the
decomposability of K

(r)
v into copies of a fixed r-uniform hypergraph H assuming that

v is sufficiently large. For the case of H = C(3, 5, v) it implies the following result on
the spectrum of C(3, 5, v) systems, which was conjectured in an early version of the
present paper.

Theorem 1.3 For v sufficiently large, a C(3, 5, v) exists if and only if v ≡ 1, 2, 5,
7, 10, 11 (mod 15).

Currently a complete solution of the spectrum problem is out of reach, as the
asymptotic existence result above cannot handle small cases. In this paper we make
some steps towards the solution of this problem, by explicit constructions and re-
cursive operations. We would like to emphasize that—contrary to previous work on
small cycle systems—the results below have been found without any use of comput-
ers. At some points we shall indicate principles that helped us to construct cycle

1The Divisibility Conditions are sometimes referred to as Numerical Conditions. For t = 3 and

k = 5, i.e. for Steiner systems S(3, 5, v), they mean the following three constraints: 10 | v(v−1)(v−2)
6 ,

6 | (v−1)(v−2)
2 , 3 | (v− 2). Proceeding in reverse order, they reduce to 3 | (v− 2), 4 | (v− 1)(v− 2),

5 | v(v − 1)(v − 2). This yields the residue classes 2, 5, 17, 26, 41, 50 modulo 60.
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systems with certain parameters by hand. Analogous ideas may turn out to be useful
in larger cases as well.

We say that a C(3, 5, w) hypercycle system (X ′, E ′) is a subsystem of a C(3, 5, v)
system (X, E), if it holds that X ′ ⊂ X , and for each 3-set T inside X ′ the unique
5-cycle of E containing T is a 5-cycle of E ′, too (that is, E ′ ⊂ E).

Due to their highly useful role in constructions, we shall also study the existence
of cycle systems of two restricted types. One of them is the class of cyclic systems,
which admit a labeling x1, x2, . . . , xv of the vertices in such a way that the rotation
xi �→ xi+1 (i = 1, . . . , v, where xv+1 is meant as x1) is an automorphism; that is,
if a cyclic sequence (xi1 , xi2 , xi3 , xi4 , xi5) of five vertices determines a C(3, 5) then,
for every j = 1, 2, . . . , v− 1, also (xi1+j, xi2+j , xi3+j , xi4+j , xi5+j) determines a C(3, 5)
in the same system (where subscript addition is taken modulo v, replacing 0 with
v). The other type is what we call a 2-split system. Such systems always have even
order, therefore we define them on 2v vertices rather than on v. More explicitly, a
C(3, 5, 2v) is said to be a 2-split system if it contains two vertex-disjoint subsystems
of type C(3, 5, v). (Those two subsystems are not required to be isomorphic.) As
a further definition, in a 2-split system, a crossing 5-cycle is a 5-cycle which does
not contain edges from the two subsystems; in other words, the crossing 5-cycles
establish the connection between the two subsystems of the C(3, 5, 2v). We use the
term crossing 3-set analogously.

In Section 2 we determine necessary conditions for the existence of 2-split systems
and of cyclic systems. Currently we cannot decide whether those conditions are
also sufficient if v is large, although the relations obtained may characterize the
corresponding spectra apart from finitely many exceptional cases. In the second
part of the section we define the notion of difference triplets which will be applied
later in designing particular hypercycle systems.

In Section 3 we present recursive constructions which can be applied to construct
infinite classes of hypercycle systems C(3, 5, v) from smaller systems. Some conse-
quences, comments and conjectures are collected in the concluding section.

In Section 4 we describe some small cycle systems which are cyclic (v = 11, 16)
or 2-split (2v = 10, 20) or both cyclic and 2-split (2v = 22). They can serve as
building bricks of larger constructions. These small systems are created with the
help of difference triplets.

We believe that our approach via difference triplets can turn out to be useful in
constructing many further basic configurations, and hence also will lead to new infi-
nite families of hypercycle systems. The ‘difference method’ has made the situation
for small systems fairly transparent, helping to find them by hand without computer
aid. For larger systems this may be difficult. However, while a standard computer
search applies nearly brute force, the specific properties of differences required for
our constructions may drastically reduce running time, and in this way systems of
quite large orders may also become reachable.
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2 Divisibility conditions and difference triplets

We begin this section with describing arithmetic conditions on the order v of hyper-
cycle systems C(3, 5, v), which are necessary, either in general, or for the existence of
particular kinds of systems. After that we introduce the notion of difference triplets,
and observe some of their properties.

2.1 Possible residue classes

The so-called Divisibility Conditions are well-known for Steiner systems, and they are
traditionally used as a starting point in determining the spectrum of feasible orders
for which a system with given parameters exists. Here we observe the analogous
conditions for hypercycle systems C(3, 5, v), and also mention their consequences for
cyclic and 2-split systems. As we mentioned in the Introduction, the residue classes
for unrestricted C(3, 5, v) were also listed in [8].

Observation 2.1 (Divisibility Conditions) Let (X, E) be a hypercycle system
C(3, 5, v) of order v.

1. Each copy of C(3, 5) in E contains five 3-sets, therefore v(v−1)(v−2)
6

is a multiple
of 5, i.e.

v ≡ 0, 1, 2 (mod 5).

2. Each vertex is incident with three 3-sets in each copy of C(3, 5), therefore
(v−1)(v−2)

2
is a multiple of 3, i.e.

v ≡ 1, 2 (mod 3).

3. If (X, E) is cyclic, then the rotational automorphisms cannot map any 3-set
onto itself because v is not a multiple of 3. Thus, each orbit in E consists of
v copies of C(3, 5) and contains precisely 5v 3-sets, therefore v(v−1)(v−2)

6
is a

multiple of 5v, i.e.
v ≡ 1, 2 (mod 5).

4. If there exists a 2-split system C(3, 5, 2v), then both v and 2v satisfy the first
congruence above, i.e. more restrictively we have

v ≡ 0, 1 (mod 5).

Certainly, if C(3, 5, 2v) is 2-split, then also the second property must be valid for
both v and 2v; but it is clear that once it holds for v, it also holds for 2v, and vice
versa.

From the four parts of Observation 2.1 one can easily deduce the following facts.
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Corollary 2.1 (Feasible residue classes for the spectrum)

1. If there exists a cyclic system C(3, 5, v), then
v ≡ 1, 2, 7, 11 (mod 15) .

2. If there exists a 2-split system C(3, 5, 2v), then
v ≡ 1, 5, 10, 11 (mod 15) .

3. If there exists a cyclic 2-split system C(3, 5, 2v), then its order 2v satisfies

2v ≡ 2, 22 (mod 30) .

2.2 Difference triplets

Here we introduce a ‘difference technique’ distinct from the one presented in [1, 8].
The goal is to have a more transparent view on cyclic systems C(3, 5, v); for this we
define the notion of difference triplets. We assume that the vertices are 0, 1, . . . , v−1
and that they are arranged in a cyclic order in such a way that rotating each copy
of C(3, 5) by 1 yields another copy of C(3, 5). The distance between vertices i and j
is meant to be

‖i− j‖ = min(|i− j|, v − |i− j|) .
In this way, we can assign a difference triplet

ti,j,k = (‖i− j‖, ‖j − k‖, ‖k − i‖)
to any three vertices i, j, k with 0 ≤ i < j < k ≤ v − 1.

It has to be emphasized that the ordering condition i < j < k is important in the
definition, since tj,i,k would yield a cyclic triplet which usually is different from ti,j,k
as the second and third components ‖j−k‖ and ‖k−i‖ are transposed. On the other
hand, the formal definition above clearly yields ti,j,k = tj,k,i = tk,i,j for all choices of
{i, j, k}. Moreover, difference triplets are rotation-invariant, i.e. ti,j,k = ti+1,j+1,k+1

holds for all i, j, k.

From the observations of Section 2.1 we see that v is not a multiple of 3, thus
there can occur two kinds of difference triplets; we simplify their names by omitting
the word ‘triplet’ in these particular terms:

• symmetric differences, of the form (a, a, b) where 2a = b or 2a+ b = v, and

• reflected differences, by which we mean a pair of the form {(a, b, c), (a, c, b)}
where a+ b = c or a+ b+ c = v, and a 
= b 
= c 
= a.

In accordance with the definition of ‖ · ‖, the case a + b = c applies if a + b ≤ v/2,
and we have a + b + c = v if a + b ≥ v/2. For instance, if v = 7 then the reflection
of (1, 2, 3) is (1, 3, 2), although along the cycle the latter looks as (1, 4, 2) (but ‘4’ is
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not a valid distance for v = 7). That is, the meaning of b becomes clear only in the
context of a and c together, since a triplet containing i and i+ a may have its third
element i+ a + b or i+ a− b modulo v as well, depending on the value of c.

A reflection is a mapping (a, b, c) → (a, c, b) (which, by rotational symmetry,
is equivalent to (a, b, c) → (b, a, c), as well as to (a, b, c) → (c, b, a)). We extend
the term also for 5-cycles. We say that two distinct 5-cycles are reflected if the five
difference triplets of one of them are the reflected difference triplets of the other one,
and vice versa.

It is clear that all the three difference triplets (a, b, c), (b, c, a) and (c, a, b)
generate always the same orbit under rotation i �→ i + 1. That is, a cyclic shift of
the components of a difference triplet does not give different orbits. In particular, a
symmetric difference (a, a, b) and its reflection (a, b, a) have the same orbit. The situ-
ation is opposite, however, if no value is repeated among a, b, c; this fact is expressed
in the following proposition. It is simple but useful in determining the distribution
of symmetric and reflected differences in the set of difference triplets of K

(3)
v .

Proposition 2.1 In a K
(3)
v , with v ≥ 6, two reflected differences generate two dif-

ferent orbits.

Proof. Applying cyclic shift if necessary, we may assume that the two reflected
difference triplets to be compared are (a, b, c) and (a, c, b). Identical orbits would
require that the sets {i, i+a, i+a+ b} and {j, j+a, j− b} coincide for some i and j.
The difference a appears only between the first and second element in each set; this
implies i = j. Hence, to obtain the same triplet we would need that i+a+b coincides
with i− b, but this is impossible because b 
= c. �

Lemma 2.1 The number of difference triplets is (v−1)(v−2)
6

. Moreover, depending on
the parity of v we have:

(i) if v is odd, then there are v−1
2

symmetric differences and (v−1)(v−5)
12

reflected
differences;

(i) if v is even, then there are v−2
2

symmetric differences and (v−2)(v−4)
12

reflected
differences.

Proof. Suppose that there are s symmetric and r reflected differences. Due to
rotational symmetry, the v(v−1)(v−2)

6
vertex 3-sets determine equivalence classes of

cardinality v with respect to difference triplets, and distinct classes have distinct
ti,j,k. This implies

s+ 2r =
(v − 1)(v − 2)

6
.

Moreover, the parameter a in a symmetric difference (a, a, b) can take the values
a = 1, 2, . . . , �v−1

2
� and nothing else, because b ≥ 1 and 2a+ b ≤ v must be valid. �
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Lemma 2.2 There exists a cyclic C(3, 5, v) if and only if it is possible to find
(v−1)(v−2)

30
5-cycles containing all the (v−1)(v−2)

6
difference triplets.

Proof. Each ti,j,k must have a representative vertex 3-set in some copy of C(3, 5),
and none of them can occur more than once because then rotation would also yield
that the copies of C(3, 5) are not mutually disjoint. �

3 Hypercycle systems of small orders

In this section we obtain hypercycle systems C(3, 5, v) for small orders v, namely v
= 10, 11, 16, 20 and 22. The systems of orders v = 11, 16 are isomorphic to the
ones found in [8] by computer search, but here we find base 5-cycles in particular
positions with respect to their symmetric and reflected differences.

For the sake of completeness, at the end of the section we also put some remarks
concerning v = 17, in which case the existence of C(3, 5, v) follows immediately by
that of S(3, 5, 17).

3.1 Cyclic systems, v = 11, 16

Despite that v = 7 satisfies all the Divisibility Conditions, inspection shows that
it does not allow a cyclic 5-cycle system. The next two feasible values are more
favorable.

C(3,5,11)

A C(3, 5, 11) has 33 5-cycles and, by Lemma 2.1, there are five symmetric and five
reflected differences. To obtain a cyclic C(3, 5, 11) we need three base 5-cycles. The
idea here is to compose a 5-cycle which contains all the five symmetric differences,
and to create a 5-cycle which takes precisely one difference triplet from each reflected
difference. Then the reflection of the latter properly contains those triplets which
have not been included so far.

This can be done with (0, 1, 6, 9, 2), (0, 1, 4, 2, 7), (0, 4, 9, 7, 10) (mod 11).
The first one generates all the five symmetric differences, while the last two (viewed
cyclically) are reflected, which fact can easily be verified if we compare the distances
of their consecutive pairs: 1, 3, 2, 5, 4 and 4, 5, 2, 3, 1 respectively; they clearly are the
inverses of each other.

C(3,5,16)

A C(3, 5, 16) has 112 5-cycles, and it contains 7 symmetric and 14 reflected dif-
ferences. Hence a cyclic system requires 112/16 = 7 base 5-cycles, the same as the
number of symmetric differences.

The idea is to compose each base 5-cycle from one symmetric difference and
two reflected differences. To do this, we constructed an edge-colored graph on 14
vertices; the vertices represented the reflected differences. Then we analyzed the
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possible combinations of symmetric and reflected differences which are possible to
put together with a symmetric difference in one 5-cycle. An edge of color i was
drawn between two vertices if those two reflected differences were included in a 5-
cycle together with the symmetric difference (i, i,min{2i, 16−2i}). In this graph we
found a perfect matching such that each edge was taken from a distinct color class.
This approach led to the following seven base 5-cycles:

(0, 8, 6, 14, 15), (0, 6, 5, 3, 1), (0, 7, 3, 10, 13), (0, 3, 5, 8, 4),
(0, 4, 6, 10, 5), (0, 7, 5, 12, 6), (0, 8, 3, 12, 5) (mod 16).

The list is put in increasing order of i. For instance, its first member (0, 8, 6, 14,
15) belongs to the symmetric difference (1, 1, 2) established on the elements 0, 14, 15.
The structure of this base 5-cycle is shown in Figure 1.

� �

� �

2

6886

0 14

6 8 � �

� �

�1 1

8778

15

6 8

14 0

� �

�

2

11
15

14 0

Figure 1: Difference triplets of the 5-cycle (0, 8, 6, 14, 15).

3.2 2-split systems, 2v = 10, 20

One general principle, even when a cyclic system of order 2v does not exist, is to cover
the crossing 3-sets in a cyclic manner. A transparent characteristic small example of
this approach is the case of 2v = 10.

C(3,5,10)

In order to emphasize the structure of the construction, instead of denoting
the vertices by 0, 1, . . . , 9 in C(3, 5, 10), here we rather start from the embedded
two subsystems isomorphic to C(3, 5, 5). We denote them by (X1, E1) and (X2, E2),
where X1 = {01, 11, 21, 31, 41} and X2 = {02, 12, 22, 32, 42}. Inside each of them, for
i = 1, 2 we can take the trivial system with the two 5-cycles (0i, 1i, 2i, 3i, 4i) and
(0i, 2i, 4i, 1i, 3i).

Then the C(3, 5, 10) system (X, E) is defined on X = X1 ∪X2. Besides the four
5-cycles of E1∪E2 it contains the twenty 5-cycles which are the rotations of four base
cycles as follows:

(02, 41, 01, 22, 31); (32, 01, 21, 22, 31); (31, 02, 12, 01, 42); (01, 02, 22, 41, 32) .
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Rotation here is meant by keeping the subscripts unchanged, while increasing the
main figures by 1, modulo 5, hence 0i being the successor of 4i, for i = 1, 2. For
instance, the first base 5-cycle yields the following five 5-cycles including itself, too:

(02, 41, 01, 22, 31); (12, 01, 11, 32, 41); (22, 11, 21, 42, 01); (32, 21, 31, 02, 11); (42, 31, 41, 12, 21).

Each 5-cycle contains three vertices from one Xi, and two vertices from the other.
Four of the five generated crossing 3-sets meet the majority class Xi in two vertices,
and among them the distribution is 3 : 1 or 1 : 3 between the 3-sets with two
consecutive vs. non-consecutive vertices. It is a matter of routine to check that each
3-set is generated; and then it follows by counting that each of them occurs precisely
once.

C(3,5,20)

Let us construct a 2-split C(3, 5, 20) containing the two vertex-disjoint subsys-
tems2 C′(3, 5, 10) and C′′(3, 5, 10), respectively, with vertex sets X1 = {1, 3, 5, 7, 9, 11,
13, 15, 17, 19} and X2 = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18}. This partition of the vertex
set permits that the difference triplets which contain three even integers generate all
the 3-sets of vertices completely contained in X1 orX2; we call this kind of differences
even differences.

By Lemma 2.1 a C(3, 5, 20) has 9 symmetric and 24 reflected differences. Because
of the third Divisibility Condition these cannot be distributed in a completely cyclic
way. But once the subsystems on X1 and X2 are inserted, they cover four symmet-
ric and four reflected differences, hence there remain 5 symmetric and 20 reflected
differences to be covered, which turns out to be possible in a completely cyclic way.
For the sake of completeness we list all generators of the obtained C(3, 5, 20) in a
systematic way, starting with the base cycles on X1 and X2.

The 5-cycles (0, 4, 8, 12, 16), (1, 5, 9, 13, 17), (2, 6, 10, 14, 18), (3, 7, 11, 15, 19) con-
tain all the 3-sets which correspond to the even difference (4, 4, 8), while the 5-cycles
(0, 8, 16, 4, 12), (1, 9, 17, 5, 13), (2, 10, 18, 6, 14), (3, 11, 19, 7, 15) contain all the 3-sets
with even difference (8, 8, 4).

The two base 5-cycles (0, 2, 8, 10, 18) and (0, 4, 10, 8, 14) (mod 20) contain one
symmetric difference (namely (2, 2, 4) and (6, 6, 8), respectively) and two reflected
differences each. Together with the previously given ones, these 5-cycles contain all
the even differences of a C(3, 5, 20), so they generate the two disjoint subsystems
C ′(3, 5, 10) and C′′(3, 5, 10).

Now let us consider the following two sets of crossing base 5-cycles. The first set
contains five base 5-cycles: (0, 1, 18, 2, 19), (0, 3, 12, 8, 17), (0, 3, 7, 10, 5), (0, 1, 8, 6, 13),
(0, 17, 5, 2, 11) (mod 20). Each of them has one symmetric and two reflected differ-
ences.

2It would not be a proper approach to split 20 into four equal parts and take a 2-split system
in the union of each pair. The reason is that the collection of 3-sets having their three vertices in
three different parts does not admit a decomposition into 5-cycles; it does not even contain any
5-cycles. (A 5-cycle composed of such a kind of 3-sets would need at least five parts.)
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The second set contains four base 5-cycles: (0, 1, 6, 14, 5), (1, 0, 15, 7, 16), (0, 9, 16,
6, 7), (16, 7, 0, 10, 9) (mod 20) where the first two and also the last two form a reflected
pair.

The listed 5-cycles contain all the possible differences of a C(3, 5, 20), so a 2-split
system is constructed.

3.3 Cyclic 2-split system, 2v = 22

Since we already have a cyclic system of order 11, we will use its two copies on the
alternating odd and even elements, respectively.

C(3,5,22)

A C(3, 5, 22) has ten symmetric and thirty reflected differences. Let us construct
a 2-split C(3, 5, 22) with the two subsystems C ′(3, 5, 11) and C′′(3, 5, 11) having vertex
sets X1={1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21} andX2={0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20}
respectively. Applying the construction of C(3, 5, 11) from above, the 5-cycles of these
two cyclic subsystems can be defined by the following base 5-cycles:

(0, 2, 12, 18, 4), (0, 2, 8, 4, 14), (0, 8, 18, 14, 20) (mod 22) .

They contain all the even differences of a C(3, 5, 22), in particular the first base 5-
cycle has five symmetric differences while the second and the third are mirror images
of each other, hence they together generate reflected differences.

Now let us define all the crossing base 5-cycles. The five base 5-cycles (0, 1, 6, 16,
21), (0, 3, 8, 14, 19), (0, 2, 19, 10, 5), (0, 9, 16, 8, 15), (0, 19, 6, 4, 13) (mod 22) contain
one symmetric difference (i, i,min{2i, 22 − 2i}) for i odd (listed in the order of in-
creasing i) and two reflected differences each.

The last three pairs of base 5-cycles (0, 1, 14, 13, 3) and (0, 9, 10, 20, 1); (0, 1, 16,
18, 5) and (0, 7, 5, 18, 1); (0, 3, 7, 4, 15) and (3, 0, 18, 21, 10) (mod 22) define three re-
flected base 5-cycles.

The fourteen listed base 5-cycles contain all the difference triplets of a C(3, 5, 22),
and a cyclic 2-split system is obtained.

3.4 Cyclic system, v = 17

There exists a unique system S(3, 5, 17). Similarly to Galois planes, this spherical
geometry is cyclic, and it can be generated modulo 17 by the four basic blocks

(0, 1, 2, 8, 11), (0, 1, 3, 5, 6), (0, 2, 6, 10, 12), (0, 3, 4, 7, 12).

Every base block admits a decomposition into two base 5-cycles, each of them gener-
ating one symmetric difference and two reflected differences. In this way we obtain
a cyclic C(3, 5, 17) system whose eight base 5-cycles are

(0, 1, 2, 8, 11), (0, 1, 3, 5, 6), (0, 2, 6, 10, 12), (0, 3, 4, 7, 12),
(0, 2, 11, 1, 8), (0, 3, 6, 1, 5), (0, 6, 12, 2, 10), (0, 4, 12, 3, 7).
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The corresponding symmetric differences in this order are

(1, 1, 2), (2, 2, 4), (4, 4, 8), (5, 5, 7), (7, 7, 3), (3, 3, 6), (6, 6, 5), (8, 8, 1).

4 Recursive constructions of C(3, 5, v)
In this section we present three recursive constructions, which are useful to obtain
infinite classes of hypercycle systems C(3, 5, v). Some starting configurations will be
constructed in Section 3, more specifically 2-split systems of orders 10, 20 and 22,
and further (cyclic) systems of orders 11 and 16.

Besides the already known cycle systems or their 2-split types, two auxiliary
structures will be applied in performing the general steps. One of them is the class
of resolvable systems S(2, 5, v); their divisibility conditions imply the necessity of
v ≡ 5 (mod 20), and this is also known to be sufficient for all v but for v = 45, 345,
465, 645 (see [2, p. 127], Table 7.37).

The other tool is a structure called 3-wise transversal design of block size 5 and
group size3 w, commonly abbreviated as 3-TD(5, w) or simply 3-TD when block size
5 and group size w are understood. It means a 3-tuple (X,G,B) where X is the
vertex set of cardinality 5w, G is a partition of X into five groups (subsets) of size w
each, and B is a family of w3 blocks, which are 5-element subsets of X intersecting
each group of G. (Each block has precisely one vertex in each group.) In a 3-TD it
is required that each 3-set which intersects three distinct groups of G is contained in
precisely one block.

It is easy to define a particular 3-trasversal design with group size equal to w ≡
1, 5 (mod 6). Let the five groups be Gi = {xi,0, xi,1, . . . , xi,w−1} for 1 ≤ i ≤ 5, where
we view the second subscripts as elemets of a group of order w, for instance Zw. Any
block b ∈ B is uniquely defined by b = (x1,p, x2,q, x3,r, x4,p+q+r, x5,p+2q+3r). We have
that |B| = w3, and in particular any (xi,p, xj,q, xk,r), for all 1 ≤ i < j < k ≤ 5 and
all 1 ≤ p, q, r ≤ w, identifies one and only one block of B, because (xi,p, xj,q, xk,r)
defines a system of linear equations which admits a unique solution.

4.1 Main constructions

The basis for the first construction of an infinite class is the following result.

Theorem 4.1 If there exist a C(3, 5, v) and a resolvable Steiner system S (2, 5, v),
then there exists a 2-split system C(3, 5, 2v).

Proof. If X1 and X2 are two disjoint vertex sets of cardinality v, then let the two
hypercycle systems C1(3, 5, v) and C2(3, 5, v) be (X1, E1) and (X2, E2); and let the
two resolvable Steiner systems S1(2, 5, v) and S2(2, 5, v) be (X1, B1) and (X2, B2),

3In design theory, group size is sometimes called order; but we reserve ‘order’ for the number of
vertices.
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which define respectively the two parallel classes F = (F1, F2, . . . , Fm) and F ′ =

(F ′
1, F

′
2, . . . , F

′
m), where m =

(v − 1)

4
.

Now let us construct a C(3, 5, 2v) system (X, E) with X = X1 ∪ X2, starting
with the insertion of all the 5-cycles contained in E1 and E2 into E .

If we fix a bi,p ∈ Fi, then for any b′i,q ∈ F ′
i we have that bi,p and b′i,q are vertex

disjoint and |bi,p ∪ b′i,q| = 10, so for every q with 1 ≤ q ≤ v

5
, all the crossing 5-cycles

of the 2-split systems C(3, 5, 10) with vertex set bi,p ∪ b′i,q must be inserted in E , as
constructed in Section 3.2. Let us do this procedure with bi,p for all 1 ≤ i ≤ (v − 1)

4
and for all 1 ≤ p ≤ v

5
. The total number of 5-cycles in E is

v(v − 1)(v − 2)

15
+20

(v
5

)2 v − 1

4
=

v(v − 1)(v − 2)

15
+
v2(v − 1)

5
=

2v(2v − 1)(2v − 2)

30
.

Any 3-set inside X1 or X2 is in a 5-cycle of E , in fact it is contained in a 5-cycle
of E1 or E2. Moreover a 3-set of X which contains only one or two vertices of X1 is
certainly in a crossing 5-cycle of a hypercycle C(3, 5, 10) having vertex set bi,p ∪ b′i,q,
where bi,p contains the one or two vertices of X1 contained in the 3-set. �

Another recursion is based on the following result.

Theorem 4.2 If there exist a Steiner system S(3, 5, v) and a 2-split system
C(3, 5, 2w), with w ≡ 1 or 5 (mod 6), then there exists a C(3, 5, vw).

Proof. We want to construct a C(3, 5, vw) hypercycle system (X, E). Let X ′ =
{x1, . . . , xv} be the vertex set of the S(3, 5, v). The vertex set X is obtained by
replacing each xi ∈ X ′ with a set Xi of cardinality w, in such way that for any two
distinct Xi and Xj we have Xi ∩Xj = ∅; so X =

⋃v
i=1Xi.

For any Xi it is possible to consider a C(3, 5, w) hypercycle system (Xi, Ei). Let
us insert into E all the 5-cycles of Ei for 1 ≤ i ≤ v.

For any pair of two distinct i and j, with 1 ≤ i < j ≤ v, we consider a 2-split
system C(3, 5, 2w) which has vertex set Xi ∪ Xj. Let Ei,j denote the family of its
crossing 5-cycles; put it into E for all pairs i, j. Hence it remains to deal with the
3-sets meeting with exactly three of the sets Xi.

Let bk = (xi1 , xi2 , xi3 , xi4 , xi5) be a block of the S(3, 5, v) Steiner system (X ′, B),

for 1 ≤ k ≤ m =
v(v − 1)(v − 2)

60
. Then it is possible to construct a 3-TD with

group partition G = {Xi1 , Xi2, Xi3 , Xi4, Xi5} and family Bk of blocks. The vertices
of any block of Bk can define a hypercycle system C(3, 5, 5), and from all those blocks
together we obtain a family E ′

k of 5-cycles. We insert also those into E .
In this way we have obtained the following family E of 5-cycles:
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E = (

v⋃
i=1

Ei ) ∪ (
⋃

1≤i<j≤v

Ei,j ) ∪ (

m⋃
k=1

E ′
k ).

In particular, for the sizes of the three parts we see

∣∣ v⋃
i=1

Ei
∣∣ = v · w(w − 1)(w − 2)

30
=

vw3 − 3vw2 + 2vw

30
;

∣∣ ⋃
1≤i<j≤v

Ei,j
∣∣ =

v(v − 1)

2

(
2w(2w − 1)(2w − 2)

30
− 2 · w(w − 1)(w − 2)

30

)

=
3v2w3 − 3v2w2 − 3vw3 + 3vw2

30
;

∣∣ m⋃
k=1

E ′
k

∣∣ = 2w3 · v(v − 1)(v − 2)

60
=

v3w3 − 3v2w3 + 2vw3

30
.

It is simple to verify that the cardinality of E is

|E| = vw(vw − 1)(vw − 2)

30
.

It remains to prove that each 3-set of X is in one 5-cycle of E . In fact any 3-set
inside an Xi, for 1 ≤ i ≤ v, is contained in one 5-cycle of Ei; a 3-set which contains
a vertex in Xi and two vertices in Xj, for 1 ≤ i, j ≤ v, is in a 5-cycle of Ei,j; and a
3-set which contains vertices from three distinct Xi, Xj, Xp is in a 5-cycle of an E ′

k.
The theorem is proved. �

In fact a strengthening of the above theorem is possible by replacing Steiner
systems with cycle systems, as follows.

Theorem 4.3 If there exists a hypercycle system C(3, 5, v) and a 2-split system
C(3, 5, 2w) with w ≡ 1 or 5 (mod 6), then there exists a C(3, 5, vw).

Proof.

The construction is analogous to the one in the preceding theorem. We replace
each vertex xi (1 ≤ i ≤ v) of a hypercycle system C(3, 5, v) with a setXi of cardinality
w, substitute a C(3, 5, w) into each Xi, and insert the crossing 5-cycles of a 2-split
C(3, 5, 2w) between each pair Xi, Xj for all 1 ≤ i < j ≤ v. What remains is to
find a decomposition into 5-cycles for the collection of those 3-sets which meet three
distinct Xi1, Xi2 , Xi3. This will be carried out with the help of 3-TD(5, w) systems,
using the structure of C(3, 5, v).
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Any three vertices xi1 , xi2 , xi3 in C(3, 5, v) belong to precisely one 5-cycle, say
C = xi1xi2xi3xi4xi5 . We now consider a 3-TD on Xi1 ∪ · · · ∪Xi5 , where the sets Xij

are the groups of size w. Each block B of the 3-TD covers ten 3-sets; we put those five
of them into the C(3, 5, vw) system which correspond to the members of the 5-cycle C.
In a cyclical listing these are {B∩Xi1 , B∩Xi2, B∩Xi3}, {B∩Xi2 , B∩Xi3 , B∩Xi4},
. . . , {B ∩ Xi5 , B ∩ Xi1 , B ∩ Xi2}. In this way a 5-cycle is specified for each 3-set
which meets three distinct parts Xi of the construction. Observe that any such 3-set
T uniqely determines a 5-cycle C(T ) of C(3, 5, v); then C(T ) uniqely determines a
5-tuple of parts Xij (T ) (j = 1, . . . , 5) such that T ⊂ Xi1(T ) ∪ · · · ∪ Xi5(T ); inside
those five parts T uniqely determines the block B(T ) such that T ⊂ B(T ); and then
precisely one 5-cycle is specified inside B(T ). It follows that the obtained 5-cycles
— together with the copies of C(3, 5, w) inside each Xi, and with the crossing cycles
of the copies of the 2-split C(3, 5, 2w) system between any two Xi, Xj — form a
C(3, 5, vw). �

5 Conclusion

We have designed two recursive ways to construct hypercycle systems C(3, 5, v) from
which some infinite classes can be obtained. Here we briefly summarize their scheme,
together with the earlier one mentioned in the introduction:

Rule 1. C(3, 5, s) + S(3, s, v) −→ C(3, 5, v) (Meszka and Rosa [8]);

Rule 2. C(3, 5, v) + resolvable S(2, 5, v) −→ 2-split C(3, 5, 2v) (Theorem 4.1);

Rule 3. 2-split C(3, 5, 2v) with v ≡ 1 or 5 (mod 6) + S(3, 5, w) −→ C(3, 5, vw)
(Theorem 4.2);

Rule 4. 2-split C(3, 5, 2v) with v ≡ 1 or 5 (mod 6) + C(3, 5, w) −→ C(3, 5, vw)
(Theorem 4.3).

These rules can be applied iteratively, starting from the hypercycle systems men-
tioned above, and applying the following known facts from design theory:

• The necessary condition v ≡ 5 (mod 20) for the existence of a resolvable system
S(2, 5, v) is known to be sufficient for all v but for v = 45, 345, 465, 645 ([2,
p. 127], Table 7.37). This means that almost all v ≡ 5 (mod 20) are applicable
in Rule 2.

• Spherical geometries S(3, q+1, qn+1) exist for every prime power q and integer
n ≥ 2 ([2, p. 103], Theorem 5.11.2). This yields the sequence of S(3, 5, 4n + 1)
for Rule 3, and more generally some pairs (q, n) for Rule 1 with suitable values
of s = q + 1. Also, a system S(3, 5, 101) is known to exist.

• If an S(3, q+1, v+1) and an S(3, q+1, w+1) both exist, then there exists an
S(3, q + 1, vw + 1) ([2, p. 103], Theorem 5.12).
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A partial list of parameters, from which one can start to build larger systems, is
shown in Table 1. Then in Table 2 we exhibit a possible sequence of operations that
can be performed on the basis of those initial configurations. Table 3 gives a more
transparent summary of known constructions.

system type initial values of v

5-cycle system general C(3, 5, v) 5, 7, 10, 11, 16, 20, 22

2-split 5-cycle system C(3, 5, 2v) 5, 10, 11 (2v = 10, 20, 22)

resolvable S(2, 5, v) 25, 65, 85, 105, 125, etc.

S(3, 5, v) 5, 17, 26, 65, 101, 257

S(3, s, v) with s > 5 82, 730 (s = 10); 362 (s = 20)

Table 1: Some starting configurations

Next we mention some consequences.

Corollary 5.1 Some of the infinite classes of hypercycle systems that can be obtained
are as follows.

1. There exists a C(3, 5, v) for every order v = 4n + 1, v = 9n + 1, v = 19n + 1,
v = 25n + 1, v = 49n + 1, and v = 169n + 1, for any n ≥ 1.

2. There exists a 2-split C(3, 5, 2v) for every order 2v = 2 · (42m+1 + 1), m ≥ 0.

3. There exists a C(3, 5, v) for every order v = (4n + 1) · (42m+1 + 1), n ≥ 1,
m ≥ 0.

4. There exists a C(3, 5, v) for every order v = w · (4n + 1) where w = 11, 25, 85,
125, 325, for any n ≥ 1.

Proof.

1: by Rule 1, from the existence of S(3, s, v) systems (spherical geometries, in
particular) where s−1 is a prime power, and from the existence of C(3, 5, s) systems
with s = 5, 10, 20, 26, 50, and 170.

2: by Rule 2, using 1. and the fact that 42m+1 +1 ≡ 5 (mod 20) for all m, hence
a resolvable S(2, 5, 42m+1 + 1) exists. Note that the possible four exceptions v from
the orders of resolvable systems are not of the form 42m+1 + 1. (The even powers of
4 do not work here.)

3: by Rule 3, the 2-split system taken from 2., applying the spherical geometries
of block size 5.
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rule systems used C(3, 5, v) obtained with v =

1 C(3, 5, 5) + S(3, 5, 17 | 26 | 65 | 101 | 257) 17, 26, 65, 101, 257

3 2-split C(3, 5, 10) + S(3, 5, 5 | 17 | 26 | 65 | 101) 25, 85, 130, 325, 505

3 2-split C(3, 5, 22) + S(3, 5, 5 | 17 | 26 | 65 | 101) 55, 187, 286, 715, 1111

2 C(3, 5, v) + resolvable S(2, 5, v) 2-split 2v = 50, 130, 170, 650

(v = 25, 65, 85, 325, 505) 650, 1010

3 2-split C(3, 5, 50) + S(3, 5, 5 | 17) 125, 425

2 C(3, 5, 125 | 425) + resolvable S(2, 5, 125 | 425) 2-split 2v = 250, 850

3 2-split C(3, 5, 250) + S(3, 5, 5) 625

3 2-split C(3, 5, 130) + S(3, 5, 17) 1105

1 C(3, 5, 10) + S(3, 10, 92 + 1 | 93 + 1) 82, 730

1 C(3, 5, 20) + S(3, 20, 192 + 1) 362

1 C(3, 5, 26) + S(3, 26, 252 + 1) 626

4 2-split C(3, 5, 10 | 22 | 50 | 130 | 170 | 250) + C(3, 5, 7) 35, 77, 175, 455, 595, 875

2 C(3, 5, 385) + resolvable S(2, 5, 385) 2-split 2v = 770

4 2-split C(3, 5, 10 | 22 | 50 | 130) + C(3, 5, 16) 80, 176, 400, 1040

4 2-split C(3, 5, 10 | 22 | 50) + C(3, 5, 20) 100, 220, 500

4 2-split C(3, 5, 10) + C(3, 5, 22 | 55 | 77 | 82 | 110 | 187) 110, 275, 385, 410, 550, 935

4 2-split C(3, 5, 22) + C(3, 5, 11 | 22 | 55 | 80 | 82 | 100) 121, 242, 605, 880, 902, 1100

Table 2: Some iterative constructions with v ≤ 1111

5 7 10 11 16 17 20 22 25

26 35 50 55 65 77 80 82 85

100 101 110 121 125 130 170 175 176

187 220 242 250 257 275 286 325 362

385 400 410 425 455 500 505 550 595

605 625 626 650 715 730 770 850 875

880 902 935 1010 1040 1100 1105 1111

Table 3: Orders ≤ 1111 of known constructions: 5-cycle systems and 2-split systems
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4: by Rule 3, combining spherical geometries of order 4n +1 with those w which
have been obtained from the 2-split systems of Table 2 and are not included in 3.
It should be noted that not all of the known 2-split systems are applicable here; for
instance 20/2 ≡ 4 (mod 6), hence C(3, 5, 20) is not a suitable choice. �

Remark 5.1 Table 5.17 of [2, pp. 103–104] lists all existing, non-existing, and un-
settled cases of S(t, k, t+n) up to n = 200. Concentrating on the possible applicability
of Rule 1, the latter (unsettled) relevant ones are v = 41, 50, 62, 77, 86, 110, 122,
125, 137, 146, 161, 170, 182, 185, 197 for S(3, 5, v); v = 77, 92, 107, 112, 127, 142,
182, 197 for S(3, 7, v); and v = 146 for S(3, 10, v). There are several ones among
them — namely 50, 77, 110, 125, 170 — which have been solved above for 5-cycle
systems. We note further that some infinite classes of the constructed C(3, 5, v) sys-
tems have v ≡ 1 (mod 3), hence they surely cannot be obtained from an S(3, 5, v)
that would require v ≡ 2 (mod 3). This is the case with all the systems in parts 2.
and 3. of the corollary, and also with the ones belonging to w = 11 and w = 125 in
part 4.

Conjecture 5.1 Suppose that v is sufficiently large.

1. If v ≡ 1, 2, 7, 11 (mod 15), then there exists a cyclic system C(3, 5, v).
2. If v ≡ 1, 5, 10, 11 (mod 15), then there exists a 2-split system C(3, 5, 2v).
3. If 2v ≡ 2, 22 (mod 30), then there exists a cyclic 2-split system C(3, 5, 2v).
4. If v ≡ 1, 11 (mod 15), then there exists a 2-split system C(3, 5, 2v) on the

vertex set X = X1 ∪ X2, with Xi = {xi,j | 1 ≤ j ≤ v} for i = 1, 2, such
that both the involution x1,j ↔ x2,j ( 1 ≤ j ≤ v) and the 2-orbit permutation
which is cyclic on both X1 and X2 (i.e., xi,j → xi,j+1 for i = 1, 2 and for all
1 ≤ j ≤ v, where xi,v+1 = xi,1) are automorphisms.

We close this paper with some recursive conjectures, which are perhaps more
reachable than the ones above.

Conjecture 5.2 For every v and w we have:

1. If there exist hypercycle systems C(3, 5, v) and C(3, 5, w), then there exists a
system C(3, 5, (v − 1)(w − 1) + 1).

2. If there exist cyclic systems C(3, 5, v) and C(3, 5, w), then there exists a cyclic
system C(3, 5, (v − 1)(w − 1) + 1).

3. If there exist 2-split systems C(3, 5, 2v) and C(3, 5, 2w), then there exists a
2-split system C(3, 5, (2v − 1)(2w − 1) + 1).

4. If there exist cyclic 2-split systems C(3, 5, 2v) and C(3, 5, 2w), then there exists
a cyclic 2-split C(3, 5, (2v − 1)(2w − 1) + 1).
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