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Abstract

The fundamental group of the complement of a hyperplane arrangement
in a complex vector space is an important topological invariant. The
third rank of successive quotients in the lower central series of the fun-
damental group was called the Falk invariant of the arrangement since
Falk gave the first formula and asked for a combinatorial interpretation.
In this article, we give a combinatorial formula for the Falk invariant of
hyperplane arrangements attached to certain gain graphs.

1 Introduction

A hyperplane H in Cl is an affine subspace of dimension l−1. A finite collection A =
{H1, . . . , Hn} of hyperplanes is called a hyperplane arrangement. If

⋂n
i=1Hi �= ∅,

then A is called central. In this paper, we only consider central arrangements and
assume that all the hyperplanes contain the origin. For more details on hyperplane
arrangements, see [7].

Let M := Cl \ ⋃
H∈A H be the complement of the arrangement A. It is known

that the cohomology ring H∗(M) is completely determined by L(A), the lattice of
intersections of A. There are several conjectures concerning the relationship between
M and L(A). To study such problems, Falk introduced in [2] a multiplicative invari-
ant, called global invariant, of the Orlik–Solomon algebra of A. The invariant is
now known as the (3rd) Falk invariant and it is denoted by φ3. In [3], Falk posed
as an open problem the finding of a combinatorial interpretation of φ3.
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Several authors have already studied this invariant. In [9], Schenck and Suciu
studied the lower central series of arrangements and described a formula for the Falk
invariant in the case of graphic arrangements. In [4], the authors gave a formula for φ3

in the case of signed graphic arrangements, whose underlying signed graph has only
simple edges and no loops. In [5], the authors extended the previous result to signed
graphic arrangements coming from graphs without loops. In [6], we described a
combinatorial formula for the Falk invariant of several signed graphic arrangements
with loops. In this paper, we will describe a combinatorial formula for the Falk
invariant φ3 for A(G), an arrangement associated to certain gain graphs. Since a
signed graph is a special case of the type of gain graphs considered in this paper, the
previous results will follow.

The paper is organized as follows. In Section 2, we recall the notions of Orlik–
Solomon algebras and the Falk invariant. In Section 3, we recall the definitions and
basic properties of gain graphs. In Section 4, we list all the gain graphs that will
play a role in our main theorem. In Section 5, we state and prove our main theorem.
In Section 6, we give a matroidal interpretation of our main theorem.

All the computations in this article have been performed using the computer
algebra software CoCoA, see [8].

2 Preliminares on Orlik–Solomon algebras

Let A = {H1, . . . , Hn} be a central arrangement of hyperplanes in Cl. Let E1 :=⊕n
j=1Cej be the free module generated by e1, e2, . . . , en, where ei is a symbol cor-

responding to the hyperplane Hi. Let E :=
∧

E1 be the exterior algebra over C.
The algebra E is graded via E =

⊕n
p=0E

p, where Ep :=
∧p E1. The C-module Ep

is free and has the distinguished basis consisting of monomials eS := ei1 ∧ · · · ∧ eip,
where S = {i1, . . . , ip} is running through all the subsets of {1, . . . , n} of cardinality
p with i1 < i2 < · · · < ip. The graded algebra E is a commutative differential graded
algebra with respect to the differential ∂ of degree −1 uniquely defined by the con-
ditions ∂ei = 1 for all i = 1, . . . , n and the graded Leibniz formula. Then for every
S ⊆ {1, . . . , n} of cardinality p, we have

∂eS =

p∑
j=1

(−1)j−1eSj
,

where Sj is the complement in S to its j-th element.
For S ⊆ {1, . . . , n}, put

⋂
S :=

⋂
i∈S Hi. The set of all intersections L(A) :=

{⋂S | S ⊆ {1, . . . , n}} is called the intersection lattice of A. A subset S ⊆
{1, . . . , n} is called dependent if the set of linear polynomials {αi | i ∈ S}, with
Hi = α−1

i (0), is linearly dependent. This definition a priori depends on the choice of
defining linear forms αi, however it depends only on the hyperplanes in S. In fact,
it is equivalent to ask that |S| > codim(S).

Definition 2.1. The Orlik–Solomon ideal of A is the ideal I = I(A) of E gen-
erated by {∂eS | S dependent }. The algebra A := A•(A) = E/I(A) is called the
Orlik–Solomon algebra of A.
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Clearly I is a homogeneous ideal of E and Ip = I ∩ Ep whence A is a graded
algebra and we can write A =

⊕
p≥0A

p, where Ap = Ep/Ip. The map ∂ induces a
well-defined differential ∂ : Ap(A) −→ Ap−1(A), for any p > 0.

Let Ik be the ideal of E generated by
∑

j≤k I
j . We call Ik the k-adic Orlik–

Solomon ideal of A. It is clear that Ik is a graded ideal and (Ik)
p = Ep ∩ Ik. Write

Ak := E/Ik and Ap
k := Ep/(Ik)

p which is called k-adic Orlik–Solomon algebra
by Falk [2].

In this setup, it is now easy to define the Falk invariant.

Definition 2.2. Consider the map d defined by

d : E1 ⊗ I2 → E3,

d(a⊗ b) = a ∧ b.

Then the Falk invariant is defined as

φ3 := dim(ker(d)).

In [2] and [3], Falk gave a beautiful formula to compute such an invariant. In [3],
there is a typographical error in the formula: the correct one is the one described
below.

Theorem 2.3. [3, Theorem 4.7] Let A = {H1, . . . , Hn} be a central arrangement of
hyperplanes in Cl. Then

φ3 = 2

(
n+ 1

3

)
− n dim(A2) + dim(A3

2). (1)

Remark 2.4. Since dim(A3
2) = dim((E/I2)

3) = dim(E3)−dim((I2)
3) and dim(E3) =(

n
3

)
, then we obtain

φ3 = 2

(
n+ 1

3

)
− n dim(A2) +

(
n

3

)
− dim((I2)

3). (2)

From [1], we have that φ3 can also be described from the lower central series of the
fundamental group π(M) of M = Cl \⋃H∈A H the complement of the arrangement.
In particular, if we consider the lower central series as a chain of normal subgroups
Ni, for k ≥ 1, where N1 = π(M) and Nk+1 = [Nk, N1], the subgroup generated by
commutators of elements in Nk and N1, then φ3 is the rank of the finitely generated
abelian group N3/N4.

3 Gain graphs

In this section, we recall the basic notions of gain graphs, and we describe the con-
nection between hyperplane arrangements and gain graphs. See [10, 11, 12, 13, 14]
for a thorough treatment of the subject.
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3.1 Gain graphs

Definition 3.1. Let K be a field. A gain graph G = (G,ϕ) consists of an underlying
oriented graph |G| = G = (VG, EG) and a gain map ϕ : EG → K∗ from the edges of
G into the gain group K∗ := K \ {0}.

By convention ϕ(e−1) = ϕ(e)−1, where e−1 means e with its orientation reversed.

Remark 3.2. A signed graph is a gain graph with gain group G equal to {1,−1}.
For more details, we refer the reader to [4], [5], and [6].

A subgraph of G is a subgraph of the underlying graph |G| with the same gain
map, restricted to the subgraph’s edges.

An oriented path P = e1e2 · · · ek has gain value ϕ(P ) = ϕ(e1)ϕ(e2) · · ·ϕ(ek)
under ϕ. An oriented circle whose gain value is 1 is called balanced. It is unbal-
anced if it is not balanced. The class of balanced circles is denoted by B(G). We
call 〈G〉 = (G,B(G)) the biased graph associated to G. Clearly 〈G〉 depends only
on the underlying unoriented graph, independent of the chosen orientation of G. We
call G balanced if all its circles are balanced, and contrabalanced if it contains no
balanced circles at all.

In this paper, we will assume that all 2-circles and loops of G are unbalanced.

v1

v2 v3

2 1 3 1

1

2

-1

Figure 1: Example of a gain graph.

Example 3.3. In Figure 1, we have a gain graph G with gains in Q∗, the multi-
plicative group of rational numbers. The arrows on the edges are there to show the
direction in which the gain is as stated. We adopt the simplified notation eij(g) for
an edge {vi, vj} with gain ϕ(eij(g)) = g. (Then for instance e12(2) = e21(2

−1).) The
balanced circles are C1 := {e12(1), e23(1), e13(1)} and C2 := {e12(2), e32(2), e13(1)}.
In fact their gains are ϕ(C1) = 1 · 1 · 1 = 1 and ϕ(C2) = 2 · 2−1 · 1 = 1. Therefore
〈G〉 = (G, {C1, C2}).
Theorem 3.4. [13, Theorem 2.1] Let G be a gain graph. Then there is a ma-
troid M(G), whose points are the edges of G and whose circuits are the edge sets
of balanced circles, contrabalanced theta graphs, contrabalanced loose handcuffs and
contrabalanced tight handcuffs.
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(a) (b) (c)

Figure 2: Examples of (a) theta graph, (b) loose handcuff, (c) tight handcuff.

Definition 3.5. Let G be a gain graph. Then the matroid M(G) is called the frame
matroid associated to G.

Definition 3.6. A set of edges of a gain graph G is called a circuit if the corre-
sponding points form a circuit in M(G).

Let λ : VG → G be any function. Switching G by λ means replacing ϕ(e) by
ϕλ(e) := λ(v)−1ϕ(e)λ(w), where e is oriented from v to w. The switched graph,
Gλ = (G,ϕλ), is called switching equivalent to G. In general, we will denote by
[G] any gain graph that is switching equivalent to G for some λ.

Lemma 3.7. [12, Lemma 5.2] 〈[G]〉 = 〈G〉.
Lemma 3.8. [12, Lemma 5.3] G = (G,ϕ) is balanced if and only if ϕ switches to
the identity gain.

Directly from Theorem 3.4, we have the following result.

Proposition 3.9. If G1 and G2 are two gain graphs such that 〈G1〉 = 〈G2〉, then
M(G1) = M(G2).

By Proposition 3.9 and Lemma 3.7, we have the following

Corollary 3.10. M([G]) = M(G).

3.2 Hyperplane arrangement realizations of gain graphs

In this subsection, we will consider K a field, G = (G,ϕ) a gain graph with gain
group K∗, and VG = {1, . . . , l}.
Definition 3.11. Let A(G) be the hyperplane arrangement in K l consisting of the
following hyperplanes

{xi = ϕ(eij)xj} for eij ∈ EG.
We will call A(G) the canonical linear hyperplane representation of G.

Notice that since we assume that every loop is unbalanced, then if eii is a loop,
we have ϕ(eii) �= 1, and hence we attach to it the hyperplane {xi = 0}. Moreover,
since all 2-circles are unbalanced, the hyperplanes of A(G) are all distinct.

Example 3.12. Consider the gain graph described in Example 3.3. Then we obtain
the hyperplane arrangement A(G) ⊆ R3 with defining equation x(x− y)(x−2y)(x−
3y)(y − z)(2y − z)(x − z).
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Given a gain graph G, we can now associate to it two matroids: the frame matroid
and the matroid associated to the intersection lattice of A(G). In [14], Zaslavsky
proved that these two matroids coincide. In particular, he proved the following.

Theorem 3.13. [14, Corollary 2.2] M(G) ∼= M(A(G)).
Proposition 3.14. Let G1 and G2 be two gain graphs such that 〈G1〉 = 〈G2〉. Then
φ3(A(G1)) = φ3(A(G2)).

Proof. By Proposition 3.9 and Theorem 3.13, M(A(G1)) ∼= M(A(G2)). This implies
that A(G1) and A(G2) have isomorphic Orlik–Solomon algebra, and hence they have
the same Falk invariant φ3. ��

Similarly as in the case of signed graph (see Corollary 3.11 in [6]), by Proposi-
tion 3.14 and Lemma 3.7 we have the following

Corollary 3.15. Let G1 and G2 be two switching equivalent gain graphs. Then
φ3(A(G1)) = φ3(A(G2)).

4 List of distinguished biased graphs

In this section, we will describe all the gain graphs that we need to express our main
theorem. Since we will consider K∗ = Q∗, we will describe the underlying graph,
together with the list of balanced circles.

v1 v2

2

3

-1

(a)

v1 v2

-1 2

3

-1

(b)

v1

v2 v3

-1
1 1

-1

1

-1
(c)

Figure 3: List of underlying graphs.

(a) The biased graph 1Kn has as underlying graph the complete graph on n vertices
and it is a balanced.
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v1

v2 v3

-1
1 1

-1

1

-1

(a)

v1

v2 v3

-1
1 1

-1

1

-1

-1

(b)

v1

v2 v3

2 1 2 2 1 2

1

2
(c)

v1

v2 v3

2 1 2 2 1 2

2
1
4

(d)

Figure 4: List of underlying graphs.

(b) The biased graph 1K◦
n is the graph 1Kn with an unbalanced loop at every

vertex.

(c) The biased graph ±1K
(1)
2 is the one associated with the gain graph depicted

in Figure 3(a) and it is contrabalanced.

(d) The biased graph ±1K◦
2 is the one associated with the gain graph depicted in

Figure 3(b) and it is contrabalanced.

(e) The biased graph ±1K3 is the one associated with the gain graph depicted in
Figure 3(c).

(f) The biased graph ±1K
(1)
3 \ e23(−1)is the one associated with the gain graph

depicted in Figure 4(a).

(g) The biased graph ±1K
(1)
3 is the one associated with the gain graph depicted

in Figure 4(b).

(h) The biased graph Z3K3 \ e is the one associated with the gain graph depicted
in Figure 4(c).

(i) The biased graph Z3K3 is the one associated with the gain graph depicted in
Figure 4(d).
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Notice that by construction we have the following

Lemma 4.1. The graphs Z3K3 \ e and Z3K3 do not have any subgraphs isomorphic
to ±1K3.

Remark 4.2. The graphs 1K3, 1K
◦
2 , and ±1K

(1)
2 have isomorphic frame matroids,

and the frame matroids of the graphs 1K4, 1K◦
3 , ±1K3, and ±1K

(1)
3 \ e23(−1) are

also isomorphic, see Section 6.

5 Main theorem

In this section, we will describe how to compute the Falk invariant φ3 for A(G), an
arrangement associated to a gain graph G such that 〈G〉 does not have a subgraph
isomorphic to ±1K◦

2 , it has at most triple parallel edges and it has no loops adjacent
to a theta graph with three edges. Moreover, we will assume that all 2-circles and
loops of G are unbalanced.

In the remainder of the paper, to fix the notation, we will suppose G is a gain graph
whose underlying graph |G| is on l vertices having n edges. Since our result will only
depend on 〈G〉 and not on the specific gain value of the edges (see Proposition 3.14),
we will label the edges of |G| as elements of [n] := {1, . . . , n}.

We define the numbers of some subgraphs of a graph 〈G〉 as the following:

kl denotes the number of subgraphs of 〈G〉 isomorphic to a 1Kl;

k±
3 denotes the number of subgraphs of 〈G〉 isomorphic to ±1K3 but not con-

tained in ±1K
(1)
3 ;

k
(1)
l denotes the number of subgraphs of 〈G〉 isomorphic to ±1K

(1)
l ;

k◦
l denotes the number of subgraphs of 〈G〉 isomorphic to a 1K◦

l ;

g0 denotes the number of subgraphs of 〈G〉 isomorphic to a ±1K
(1)
3 \ e23(−1)

but not contained in ±1K
(1)
3 ;

g1 denotes the number of subgraphs of 〈G〉 isomorphic to a Z3K3 \ e but not
contained in Z3K3;

g2 denotes the number of subgraphs of 〈G〉 isomorphic to a Z3K3;

Θ counts contrabalanced triple parallel edges.

The goal of this section is to prove the following theorem.

Theorem 5.1. For an arrangement associated to a gain graph G such that 〈G〉 has
no subgraph isomorphic to ±1K◦

2 or to a contrabalanced triple parallel edge with an
adjacent loop and has at most triple parallel edges, we have

φ3 = 2(k3 + k4 + k±
3 + k

(1)
2 + k◦

2 + k◦
3 + g0 + g2 +Θ) + 5k

(1)
3 + g1. (3)
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Remark 5.2. The restrictions on G in Theorem 5.1 are exactly that the associated
matroid has no submatroid isomorphic to the 4-point line. For this reason, we will
say that G has no U2,4 subgraphs.

In order to compute φ3, we will use Theorem 2.3, hence we need firstly to identify
the triples S in [n] that are dependent. Clearly, we have the following

Lemma 5.3. S = (i1, i2, i3) is dependent if and only if i1, i2, i3 correspond to the
edges of a subgraph of 〈G〉 that is isomorphic to 1K3, or ±1K

(1)
2 or a contrabalanced

theta graph with only three edges.

Since a dependent triple S corresponds to a circuit of size 3 in M(A(G)), we call
such S a 3-circuit. Moreover, we will write

C3 := span{eS ∈ E | S is a 3-circuit}
which is a subset of E as a vector space over C.

Remark 5.4. Notice that the contrabalanced theta graphs, loose handcuffs, and
tight handcuffs are subdivisions of the unbalanced 3- circuits. In particular, If G1

and G2 are two switching equivalent gain graphs with the same underlying graph,
then C3(G1) = C3(G2), see Proposition 3.9.

Since eiejek = −ejeiek, it is clear that the dimension of the vector space C3 is
k3 + k

(1)
2 + k◦

2 + Θ. Let C ′
3 be a basis of C3 consisting of monomials in one-to-one

correspondence with the subgraphs of 〈G〉 isomorphic to a 1K3, or a ±1K
(1)
2 or a

1K◦
2 or a contrabalanced theta graph with only three edges.

Lemma 5.5. dim(A2) =
(
n
2

)− k3 − k
(1)
2 − k◦

2 −Θ.

Proof. By definition A = E/I, hence

dim(A2) = dim(E2)− dim(I2) =

(
n

2

)
− dim(I2).

By construction I2 = span{∂eijk | eijk ∈ C3}. Notice that if e1, . . . , es are distinct
elements of C ′

3 then the corresponding subgraphs of 〈G〉 share at most one edge and
hence ∂e1, . . . , ∂es are linearly independent. This implies that dim(I2) = dim(C3) =
k3 + k

(1)
2 + k◦

2 +Θ, and the thesis follows. ��
Using Theorem 2.3 and Remark 2.4, to prove Theorem 5.1, we just need to

describe dim((I2)
3). To do so, consider

C3 := {et∂eijk | eijk ∈ C ′
3, t ∈ {i, j, k}},

and
F3 := {et∂eijk | eijk ∈ C ′

3, t ∈ [n] \ {i, j, k}}.
By construction (I2)

3 = I2 · E1 = span{et∂eijk | eijk ∈ C ′
3, t ∈ [n]}, and hence

(I2)
3 = span(C3) + span(F3).
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Lemma 5.6. For an arrangement associated to a gain graph G without U2,4 sub-
graphs, we have

(I2)
3 = span(C3)⊕ span(F3).

Proof. Since 〈G〉 does not contain a ±1K◦
2 as subgraph or loops adjacent to a theta

graph or quadruple parallel edges, any two 3-circuits share at most one element.
Moreover, if et∂eijk ∈ C3, then et∂eijk = ±eijk with i, j, k edges of the same 3-circuit.
On the other hand, if et∂eijk ∈ F3, then et∂eijk = etjk−etik+etij and t does not belong
to the same 3-circuit as i, j, k. This then gives us that span(C3)∩ span(F3) = {0}. ��
Remark 5.7. Notice that if we allow 〈G〉 to have subgraphs isomorphic to ±1K◦

2

or a loop adjacent to a theta graph or quadruple parallel edges, then the previous
lemma is not true any more.

By Lemma 5.6, we can write

dim((I2)
3) = dim(span(C3)) + dim(span(F3))

= k3 + k
(1)
2 + k◦

2 +Θ+ dim(span(F3)).

To prove our main result we need to compute dim(span(F3)). To do so, consider the
following sets:

F 1
3 :={et∂eijk ∈ F3 | t, i, j, k are not in the same 1K4,±1K3;

± 1K
(1)
3 \ e23(−1),±1K

(1)
3 , 1K◦

3 ,Z3K3 \ e,Z3K3};
F 2
3 :={et∂eijk ∈ F3 | t, i, j, k are in the same 1K4};

F 3
3 :={et∂eijk ∈ F3 | t, i, j, k are in the same ± 1K3 not contained

in a ± 1K
(1)
3 };

F 4
3 :={et∂eijk ∈ F3 | t, i, j, k are in the same ± 1K

(1)
3 \ e23(−1) not

contained in a ± 1K
(1)
3 };

F 5
3 :={et∂eijk ∈ F3 | t, i, j, k are in the same ± 1K

(1)
3 };

F 6
3 :={et∂eijk ∈ F3 | t, i, j, k are in the same 1K◦

3};
F 7
3 :={et∂eijk ∈ F3 | t, i, j, k are in the same Z3K3 \ e not contained

in a Z3K3};
F 8
3 :={et∂eijk ∈ F3 | t, i, j, k are in the same Z3K3}.

Lemma 5.8. For an arrangement associated to a gain graph G without U2,4 sub-
graphs, we have

span(F3) =
8⊕

i=1

span(F i
3).

Proof. By hypothesis, 〈G〉 does not contain a subgraph isomorphic to ±1K◦
2 or loops

adjacent to a theta graph with only three edges or quadruple parallel edges. More-
over, if et∂eijk ∈ F p

3 and ea∂ebcd ∈ F q
3 with p, q ≥ 2 and p �= q, then by with Lemma
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4.1 the corresponding graphs share at most 3 edges. This implies that at least one
term of et∂eijk ∈ F p

3 appears only in the expression of et∂eijk ∈ F p
3 and not in the ex-

pression of any other element in
⋃

2≤i≤8
i 	=p

(F i
3). So et∂eijk can not be expressed linearly

by the elements of
⋃

2≤i≤8
i 	=p

(F i
3).

For any element et∂eijk of F 1
3 , we assert that at least one of the terms etjk, etik, etij

appears only in the expression of et∂eijk ∈ F 1
3 and not in the expression of any other

element in
⋃8

i=2 span(F
i
3). So et∂eijk can not be expressed linearly by the elements

of F 2
3 , . . . , F

8
3 .

Since the edges t, i, j, k are not in the same 1K4, ±1K3, ±1K
(1)
3 \e23(−1), ±1K

(1)
3 ,

1K◦
3 ,Z3K3\e, Z3K3, and we do not consider the graphs having subgraphs isomorphic

to ±1K◦
2 or loops adjacent to a theta graph with only three edges or quadruple

parallel edges, we should only consider three cases about the edge t: it can be
adjacent to none of the edges i, j, k, to two of them, or to all of them.

Assume that the edge t is adjacent to none of the edges i, j, k. This implies that
t and none of i, j, k can appear in the same 3-circuit. Hence any element et∂eijk of
F 1
3 will not appear in any of F 2

3 , . . . , F
8
3 .

Assume now that the edge t is adjacent to two of the edges i, j, k, then we should
consider several possibilities. Suppose that in the set {t, i, j, k} there is no loop. If
all the terms of the element et∂eijk ∈ F 1

3 appear in F 2
3 , . . . , F

8
3 , then t, i, j, k have to

appear in the same 1K4, but this is impossible by construction. Suppose that t is a
loop and there is no loop in the set {i, j, k}. If all the terms of the element et∂eijk ∈ F 1

3

appear in F 2
3 , . . . , F

8
3 , then t, i, j, k have to appear in the same ±1K

(1)
3 \ e23(−1) or

in the same ±1K
(1)
3 , but this is impossible by construction. Suppose that t is not

a loop and there is one loop in the set {i, j, k}. In this case i, j, k are the edges
of a ±1K

(1)
2 . Hence, by assumption, the edges t is not adjacent to the loop. If all

the terms of the element et∂eijk ∈ F 1
3 appear in F 2

3 , . . . , F
8
3 , then, also in this case,

t, i, j, k have to appear in the same ±1K
(1)
3 \e23(−1) or in the same ±1K

(1)
3 , but this

is impossible by construction. Suppose that t is not a loop and there are two loops
in the set {i, j, k}. In this case i, j, k are the edges of a 1K◦

2 . If all the terms of the
element et∂eijk ∈ F 1

3 appear in F 2
3 , . . . , F

8
3 , then t, i, j, k have to appear in the same

1K◦
3 , but this is impossible by construction.
Finally, assume that the edge t is adjacent to all the edges i, j, k. Since the

underlying graph has at most triple edges and no loops adjacent to a theta graph
with only three edges, then in this situation, there are just two cases we should
consider. Suppose that in the set {t, i, j, k} there is no loop. If all the terms of
the element et∂eijk ∈ F 1

3 appear in F 2
3 , . . . , F

8
3 , then t, i, j, k have to appear in the

same ±1K3 or in the same Z3K3 \ e or in the same Z3K3, but this is impossible by
construction. Suppose that t is not a loop and there is one loop in the set {i, j, k}. In
this case i, j, k are the edges of a ±1K

(1)
2 . If all the terms of the element et∂eijk ∈ F 1

3

appear in F 2
3 , . . . , F

8
3 , then t, i, j, k have to appear in the same ±1K

(1)
3 \ e23(−1) or

in the same ±1K
(1)
3 , but this is impossible by construction.

This shows that if et∂eijk ∈ F p
3 , then can not be expressed linearly by the elements
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of
⋃

1≤i≤8
i 	=p

(F i
3). Since clearly

span(F3) =

8∑
i=1

span(F i
3)

this concludes the proof. ��
In the following example we compute the dimension of span(F3) for the arrange-

ment A(±1K
(1)
3 \ e23(−1)) associated to the gain graph G in Figure 4(a), where

〈G〉 = ±1K
(1)
3 \ e23(−1).

Example 5.9. Let 〈G〉 = ±1K
(1)
3 \ e23(−1). Consider the hyperplane arrangement

A(G) = {H1, . . . , H6}, where H1, . . . , H6 correspond to the edges e21(−1), e12(1),
e13(1), e13(−1), e23(1), and e11(−1), respectively. Then the list of 3-circuits S is
{126, 145, 235, 346}. Then the number of the elements in F3 is 12, listed as follows:

e3∂e126 = −e236 + e136 + e123, e4∂e126 = −e246 + e146 + e124,

e5∂e126 = −e256 + e156 + e125, e2∂e145 = e245 + e125 − e124,

e3∂e145 = e345 + e135 − e134, e6∂e145 = e456 − e156 + e146,

e1∂e346 = e146 − e136 + e134, e2∂e346 = e246 − e236 − e234,

e5∂e346 = −e456 + e356 + e345, e1∂e235 = e135 − e125 + e123,

e4∂e235 = −e345 + e245 + e234, e6∂e235 = e356 − e256 + e236.

Then an easy computation shows that in this case dim(span(F3)) = 10.

In this next example, we compute the dimension of span(F3) for the arrangement
A(Z3K3 \ e) associated to the gain graph G in Figure 4(c), where 〈G〉 = Z3K3 \ e.
Example 5.10. Let 〈G〉 = Z3K3\e. Then the number 3-circuits S is 7. This implies
that the number of the elements in F3 is 35, and they are all the elements of the form

et∂eijk = etjk − etik + etij ,

for each 3-circuit ijk and t /∈ {i, j, k}. Then a direct computation shows that in this
case dim(span(F3)) = 34.

Remark 5.11. Similarly to the previous examples, we can directly compute
dim(span(F3)) for all the distinguished gain graphs of Section 4. In particular,
if we consider the graphs ±1K3, 1K4 and 1K◦

3 , then dim(span(F3)) = 10. If we
consider ±1K

(1)
3 , then dim(span(F3)) = 19. Finally, if we consider Z3K3, then

dim(span(F3)) = 52.

Lemma 5.12. We have the following equalities

dim(span(F 2
3 )) = 10k4,
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dim(span(F 3
3 )) = 10k±

3 ,

dim(span(F 4
3 )) = 10g0,

dim(span(F 5
3 )) = 19k

(1)
3 ,

dim(span(F 6
3 )) = 10k◦

3,

dim(span(F 7
3 )) = 34g1,

dim(span(F 8
3 )) = 52g2.

Proof. Assume that in the graph 〈G〉 there are exactly g1 = p distinct subgraphs
isomorphic to a Z3K3\e, G1, . . . ,Gp, none of which is a subgraph of a graph isomorphic
to Z3K3. Consider

F 7
3,i := {et∂eijk | eijk ∈ C ′

3, t ∈ [n] \ {i, j, k}, i, j, k ∈ Gi}.
Since four edges in the underlying graph of 〈G〉 can not appear in two distinct Z3K3\e
at the same time, then none of the terms of the element et∂eijk ∈ F 7

3,i appear in the
elements of F 7

3 \ F 7
3,i. This shows that

span(F 7
3 ) =

p⊕
i=1

span(F 7
3,i).

By Proposition 3.14, we have that dim(span(F 7
3,i)) = 34 for all i = 1, . . . , p. This

then implies that

dim(span(F 7
3 )) =

p∑
i=1

dim(span(F 7
3,i)) = 34g1.

Using Remark 5.11, the same exact argument used in this case will prove the
other equalities. ��
Lemma 5.13. For an arrangement associated to a gain graph G without U2,4 sub-
graphs, we have

dim((I2)
3) = (n− 2)(k3 + k

(1)
2 + k◦

3 +Θ)− 2k4 − 2k±
3 − 2g0 − 2k◦

3 − 5k
(1)
3 − g1 − 2g2.

Proof. By the previous lemmas

dim(span(F3)) =
8∑

i=1

dim(span(F i
3)) =

= [(n− 3)(k3 + k
(1)
2 + k◦

3 +Θ)− 12k4 − 12k±
3 − 12g0 − 12k◦

3 − 24k
(1)
3 − 35g1 − 54g2]+

+10k4 + 10k±
3 + 10g0 + 10k◦

3 + 19k
(1)
3 + 34g1 + 52g2 =

(n− 3)(k3 + k
(1)
2 + k◦

3 +Θ)− 2k4 − 2k±
3 − 2g0 − 2k◦

3 − 5k
(1)
3 − g1 − 2g2.

The thesis follows from the equality

dim((I2)
3) = k3 + k

(1)
2 + k◦

2 +Θ+ dim(span(F3)).

��
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Proof of Theorem 5.1. By Remark 2.4 and Lemma 5.5 we have

φ3 = 2

(
n + 1

3

)
− n(

(
n

2

)
− k3 − k

(1)
2 − k◦

2 −Θ) +

(
n

3

)
− dim((I2)

3).

Because 2
(
n+1
3

)− n
(
n
2

)
+
(
n
3

)
= 0, then from Lemma 5.13 we obtain

φ3 = 2(k3 + k4 + k±
3 + k

(1)
2 + k◦

2 + k◦
3 + g0 + g2 +Θ) + 5k

(1)
3 + g1.

��
Let us see how our formula works on a non-trivial example.

Example 5.14. We want to compute φ3 for the arrangement associated to the gain
graph G of Figure 5(a). In order to not create any confusion, in Figure 5(b) we
labeled each edge with a letter.

v1

v2 v3

v4

2 1 2 31

-1

2
1
2

1

1 1

2 3

(a)

v1

v2 v3

v4

a b c lk

n

d
e
f

m

h i

j g

(b)

Figure 5: The gain graph G and its underlying graph.

In order to compute φ3 with the formula (3), we need to compute the following:

k3 = |{{b, e, i}, {b, h, m}, {e, h, k}, {i, k, m}, {a, f, i}, {a, e, j}, {b, d, j},
{c, d, i}, {e, g, l}}| = 9;

k4 = |{{b, e, h, i, k, m}}| = 1;

k±
3 = 0;

k
(1)
2 = |{{g, h, n}, {k, l, m}}| = 2;

k◦
2 = 0;

k◦
3 = 0;

g0 = |{{e, g, h, k, l, n}}| = 1;
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g2 = 0;

Θ = |{{a, b, c}, {d, e, f}}| = 2;

k
(1)
3 = 0;

g1 = |{{a, b, c, d, e, f, i, j}}| = 1.

From formula (3), we obtain

φ3 = 2(9 + 1 + 0 + 2 + 0 + 0 + 1 + 0 + 2) + 0 + 1 = 31.

Notice that if we tried to compute the dimension of F3 directly, we would have to
write 143 equations in the eijk.

6 Matroidal interpretation

In this section, we will give a matroidal interpretation of our main theorem. In
Theorem 5.1, the formula (3) of φ3 is expressed in terms of the numbers of subgraphs
of the given gain graph. Since some of the subgraphs appearing in the formula (3)
describe different realizations of the same matroid, we are able to give a new formula
just in terms of the numbers of the submatroids of the frame matroid of the given
gain graph. In this way, we obtain a simpler and more compact formula.

In Theorem 5.1, we consider the class of arrangements associated to gain graphs
G such that 〈G〉 does not have a subgraph isomorphic to ±1K◦

2 , it has no loops
adjacent to a theta graph with only three edges and it has at most triple parallel
edges. This class coincides with the class of arrangements associated to gain graphs
such that the underlying matroid has no rank-two flats of size greater than three.

From the list of gain graphs in Section 4, it is immediate to prove the following.

Lemma 6.1. The graphs 1K3, 1K◦
2 , ±1K

(1)
2 and the contrabalanced theta graph with

three edges have isomorphic underlying matroids. Similarly, the graphs 1K4, ±1K3,
1K◦

3 and ±1K
(1)
3 \ e23(−1) have isomorphic underlying matroids.

Definition 6.2. We denote by M(K3) the frame matroid associated to 1K3, and by
M(K4) the one associated to 1K4.

Let A(G) be an arrangement associated to the gain graph G. Denote by kl
the number of submatroid of M(G) isomorphic to M(Kl), by g1 the number of
submatroid of M(G) isomorphic to M(Z3K3 \ e), by g2 the number of submatroid
of M(G) isomorphic to M(Z3K3), and by k

(1)
3 the number of submatroid of M(G)

isomorphic to M(±1K
(1)
3 ).

Remark 6.3. Consider the gain graph G = ±1K
(1)
3 described in Figure 4(b). M(G) is

the well-known non-Fano matroid. 〈G〉 has two subgraphs isomorphic to ±1K
(1)
2 and

four isomorphic to 1K3, and hence, M(G) has six submatroid isomorphic to M(K3).
Similarly, 〈G〉 has one subgraph isomorphic to ±1K3 and two to ±1K

(1)
3 \ e23(−1),

and hence, M(G) has three submatroid isomorphic to M(K4). By Theorem 5.1,
φ3(A(G)) = 17, that it coincides with 2(k3 + k4)− 1.
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We are now able to rewrite formula (3) of Theorem 5.1 just in terms of submatroid.

Theorem 6.4. For an arrangement associated to a gain graph G such that the un-
derlying matroid has no rank-two flats of size greater than three, we have

φ3 = 2(k3 + k4 + g2)− k
(1)
3 + g1, (4)

Proof. From the formula (3), we can get the new formula (4), by the use of Lemma 6.1
and Remark 6.3. ��

In the following example we will use the new formula (4) to compute φ3 for the
gain graph G of figure 5 in the example 5.14.

Example 6.5. There are 13 submatroids of M(G) isomorphic to M(K3) (9 sub-
motroids come from the subgraphs isomorphic to 1K3 and 2 from the subgraphs iso-
morphic to ±1K

(1)
2 , and 2 from contrabalanced theta graph with only three edges).

There are also 2 submatroids of M(G) isomorphic to M(K4) (one is isomorphic to
1K4 and the other one to ±1K

(1)
3 \ e23(−1)). Besides these submatroids, there is 1

submatroid isomorphic to M(Z3K3 \ e).
Therefore, we obtain

φ3 = 2(13 + 2 + 0)− 0 + 1 = 31.

This coincides with the result of the computation in Example 5.14.
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