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Abstract

Given a graph G with n vertices and a bijective labeling of the vertices
using the integers 1, 2, . . . , n, we say G has a peak at vertex v if the degree
of v is greater than or equal to 2, and if the label on v is larger than the
label of all its neighbors. Fix a set S ⊂ V (G). We want to determine
the number of distinct bijective labelings of the vertices of G, such that
the vertices in S are precisely the peaks of G. The set S is called the
peak set of the graph G, and the set of all labelings with peak set S is
denoted by P (S;G). This definition generalizes the study of peak sets of
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permutations, as that work is the special case of G being the path graph
on n vertices. In this paper, we present an algorithm for constructing
all of the bijective labelings in P (S;G) for any S ⊆ V (G). We also
use combinatorial methods to explore peak sets in certain well-studied
families of graphs.

1 Introduction

Let [n] := {1, 2, . . . , n} and Sn denote the symmetric group on n letters. We let
π = π1π2 · · ·πn denote the one-line notation for a permutation π ∈ Sn and we say
that π has a peak at index i if πi−1 < πi > πi+1. The peak set of a permutation π is
defined as the set

P (π) = {i ∈ [n] | π has a peak at index i}.

Given a subset S ⊆ [n] we denote the set of all permutations with peak set S by

P (S;n) = {π ∈ Sn |P (π) = S}.

Peak sets of permutations have been the focus of much research; in particular, these
sets are useful in studying peak algebras of symmetric groups [1, 2, 3, 12, 13, 14],
and more recently, enumerating the sets P (S;n) for various S has drawn considerable
attention [4, 5, 6, 7, 9, 10, 11]. In their celebrated paper, Billey, Burdzy, and Sagan
[5] developed a recursive formula (whose terms alternate in sign) for |P (S;n)| and
showed that

|P (S;n)| = 2n−|S|−1pS(n) (1)

where pS(x) is a polynomial of degree max(S)− 1 referred to as the peak polynomial
associated to the set S.

The results in [5] were motivated by a probabilistic meteor mass redistribution
model on finite graphs studied by Billey, Burdzy, Pal, and Sagan [4], where it was
noted that the concept of a crater is essentially equivalent to that of a peak in
a random permutation. The results in [5] also led to subsequent analysis of sub-
sets of Coxeter groups of classical types with given peak sets, including the work
of Castro-Velez, Diaz-Lopez, Orellana, Pastrana, and Zevallos [7] and Diaz-Lopez,
Harris, Insko, and Perez-Lavin [10]. More recently, Diaz-Lopez, Harris, Insko, and
Omar developed a recursive formula for |P (S;n)| that allowed the authors to re-
solve a conjecture of Billey, Burdzy and Sagan claiming that peak polynomials have
nonnegative coefficients when expanded in a particular binomial basis [9]; this newer
recursive formula is based on an analysis of the possible positions in which the largest
number in the permutation can appear.

In this article, we study a more general version of the original problem of Bil-
ley, Burdzy, and Sagan, that of studying peaks on general graphs. We present an
algorithm that determines, for a finite graph and a finite set of vertices S deemed



A. DIAZ-LOPEZ ET AL. /AUSTRALAS. J. COMBIN. 75 (2) (2019), 174–189 176

to be peaks, the set of labelings where peaks are precisely at vertices in S. The key
insight in this process is generalizing the more recent recursive formula for peaks on
permutations presented in [9].

To make this precise, let G be a graph with n vertices v1, . . . , vn. A permutation
π = π1 · · ·πn ∈ Sn corresponds to a bijective labeling �π : V (G) → [n] by setting
πi to be the label of vertex vi i.e., �π(vi) = πi. Through this correspondence, we
interchangeably refer to a labeling and its corresponding permutation. We say that
a permutation π has a peak at the vertex vi of G if �π(vi) > �π(vj) for all vertices
vj adjacent to vi, and remark that we do not allow peaks at vertices of degree 1
or 0 so that peak sets on paths agree with the existing literature with peak sets on
permutations.

Example 1.1. Below is a graph G with vertices v1, v2, v3 and v4 and four of the 4!
different labelings of G. The first two labelings have a peak at v1, whereas the last
two have no peaks.

v1 v2

v3 v4

G
4 3

1 2

4312
4 2

3 1

4231
1 3

2 4

1234
2 3

1 4

2314

The G-peak set of a permutation π is defined to be the set

PG(π) = {i ∈ [n] | π has a peak at the vertex vi}.
Given S ⊆ V (G) := {v1, . . . , vn}, we denote the set of all permutations with G-peak
set S by

P (S;G) = {π ∈ Sn |PG(π) = S}
and say S is a G-admissible set if P (S;G) is nonempty. We classify G-admissible
peak sets in Subsection 2.1. Later in Subsection 2.3 we show that the graph G in
Example 1.1 has {v1} as an admissible peak set with

P ({v1};G) = {4321, 4312, 4231, 4132, 4213, 4123, 3124, 3214}.
The paper proceeds as follows. In Section 2, we provide Algorithm 1 for con-

structing all permutations in P (S;G) for an arbitrary graph G. In Section 3, we
explore when combinatorial arguments can be used to find |P (S;G)| directly; in par-
ticular we consider graph joins and provide a collection of interesting special cases
that show that |P (S;G)| often demonstrates factorial growth, and that the peak
polynomials appearing in Equation (1) are rare occurrences.

2 Recursive Construction for Peaks on Graphs

The main goal of this section is to present an algorithm that yields a construction
of the set P (S;G) for arbitrary graphs G. Prior to doing so, we classify all admis-
sible peak sets in Subsection 2.1. Next we illustrate our algorithm and notation in
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Subsection 2.2 using the example of cycle graphs. Finally, we present the algorithm
in Subsection 2.3 and prove it produces P (S;G) in Theorem 2.8.

2.1 Admissible Peak Sets on Graphs

The results in this subsection characterize the G-admissible peak sets of a graph G.

Proposition 2.1. The set S = ∅ is a G-admissible peak set if and only if there exists
v ∈ V (G) with deg(v) = 1.

Proof. If G has no vertices of degree 1, then the vertex labeled n is larger than the
labels of any of its neighbors. Thus it must be a peak, and S = ∅ is not an admissible
peak set. Conversely, if G has a vertex v ∈ V (G) of degree one, then one can create
a labeling of G with an empty peak set through the following process: (1) starting
with v, create a list L of length n by ordering the vertices in V (G) by their distance
from v and breaking ties arbitrarily; (2) label v with n and the remaining vertices
of L by n− 1, n− 2, . . . , 1 in descending order. The resulting labeling has no peaks
as n appears at the leaf v, and every other vertex in V (G) that is distance k from v
has at least one neighbor that is distance k − 1 from v with a larger label than its
own.

Recall that an independent set is a subset S ⊆ V (G) of vertices in a graph G, no
two of which are adjacent. The next result characterizes non-empty admissible peak
sets in terms of independent sets.

Proposition 2.2. A non-empty set S ⊂ V (G) is G-admissible if and only if S is an
independent set containing no degree 1 vertices.

Proof. If S ⊂ V (G) is an independent set containing no degree 1 vertices, then
one can create a labeling of G with peak set S in the following manner: Label the
elements of S with the largest values n, n− 1, . . . , n− |S|+ 1. Order the remaining
vertices by their minimum distance from S, breaking ties arbitrarily, and label them
with n − |S|, n − |S| − 1, . . . , 2, 1 in descending order. The resulting labeling has
peaks at every element of S, and any other vertex in V (G) \ S that is distance k
from S has a neighbor that is distance k− 1 from S that has a larger label. Hence S
is admissible. Conversely, if S is an independent set that contains a vertex of degree
1, then S is not admissible as it is impossible to have a peak at a vertex of degree 1
by definition.

From these two results we note that the number of non-empty G-admissible sets
is equal to the number of independent sets that do not contain leaves, whenever G
has at least one leaf, and is one less than the number of independent sets whenever
G does not have a leaf.
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2.2 Cycles

Let Cn denote a cycle graph on n vertices which we label by v1, v2, . . . , vn. We say
that a set S = {vi1 , vi2 , . . . , vi�} ⊆ V (Cn) is Cn-admissible if P (S;Cn) �= ∅. For each
1 ≤ k ≤ � let Ŝik = S \ {vik}. If S is Cn-admissible, then the label n must be placed
at a vertex vi in S. By removing the vertex vi and its incident edges from Cn, we
obtain Cn \ {vi} a path graph on n − 1 vertices whose peak set is Ŝi. We can now
state our first set of results.

Proposition 2.3. If S ⊂ V (Cn) is a Cn-admissible set, then

|P (S;Cn)| =
∑
vi∈S
|P (Ŝi ; Cn \ {vi})|.

Proposition 2.3 follows from Theorem 2.8 in Subsection 2.3 , and hence we omit
the details.

Corollary 2.4. If S is a Cn-admissible set, then |P (S;Cn)| = 2n−|S|−1
∑

vi∈S p ̂Si
(n−

1) where p
̂Si
denotes the peak polynomial of Equation (1).

Proof. Using Proposition 2.3 and Equation (1), we get

|P (S;Cn)| =
∑
vi∈S
|P (Ŝi ; C \ {vi})| =

∑
vi∈S
|P (Ŝi ; Pn−1)|

=
∑
vi∈S

2(n−1)−| ̂Si|−1p
̂Si
(n− 1) = 2n−|S|−1

∑
vi∈S

p
̂Si
(n− 1).

C5 =

v1

v2

v3 v4

v5
G1 = v2 v3 v4 v5

G2 = v2 v1 v5 v4

Figure 2.1: Cycle graph on 5 vertices and path graphs G1 and G2 obtained from removing
vertices v3 and v1 from C5, respectively.

Example 2.5. Consider the graph C5 in Figure 2.1. If S = {v1, v3} ⊆ V (C5) then

the sets Ŝ1 = {v3} and Ŝ3 = {v1}. One can verify that

P (Ŝ1 = {v3} ; G1) = P (Ŝ3 = {v1} ; G2) = {1324, 2314, 1432, 1423, 2431, 3421, 3412}
where G1 and G2 are isomorphic to P4 as shown in Figure 2.1. Proposition 2.3 yields

|P (S;C5)| = |P (Ŝ1 ;G1)|+ |P (Ŝ3 ;G2)| = 16

and one can verify that in fact

P (S;C5) =

{
31542, 32541, 41523, 41532, 42513, 42531, 43512, 43521,
51324, 51423, 51432, 52314, 52413, 52431, 53412, 53421

}
.
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For cycle graphs Cn, computing the labelings with peak set S came directly from
labeling a vertex v in S with the value n, deleting this vertex labeled n, and then
repeating the process on the graph G \ {v} and its subsequent subgraphs. However,
complications may arise when taking this approach for graphs with more complicated
neighborhood structure.

For example, consider a graph G with |V (G)| = n and a set S ⊂ V (G) with
|S| > 1. We first label a vertex v ∈ S with n and then remove this vertex. Then, in
G \ {v}, the label n− 1 does not necessarily have to be placed at a vertex in S \ {v}.
Instead it could be placed at a neighbor of the vertex v, or at a leaf of G. Another
complication with this approach arises when considering the initial vertex on which
we place the label n. Because leaves of G cannot be peaks, the label n does not
necessarily have to be placed at a vertex in S; instead it can be placed at a leaf of
G. Our algorithm correctly manages all of these cases.

2.3 General constructive algorithm for graphs

In this section we describe a recursive algorithm for constructing the set P (S;G) con-
sisting of all labelings of the vertices of a graph G with a given admissible peak set S.
We begin by setting the following notation. For any vertex v ∈ V (G), the neighbor-
hood of v, denoted NG(v) is the set NG(v) := {w ∈ V (G) : {v, w} is an edge in G}.
For any S ⊆ V (G), we let NG(S) be the neighborhood set of S, namely NG(S) =
∪v∈SNG(v). As is standard, we say S is an independent set if no vertex in S is in the
neighborhood of any other vertex in S, i.e. S ∩NG(S) = ∅. Let V<2(G) denote the
set of vertices in G of degree less than 2. We now present the algorithm (see next
page).

Before verifying Algorithm 1 we present a graphical example that includes every
possible choice in line 5 of the algorithm, as well as the algorithm’s output.

Example 2.6. Consider the graph G in Figure 2.2, and let S = {v1}. We ap-
ply Algorithm 1 to G with vertices v1, v2, v3, v4. Each time we call the function
GraphLabelings(G, S, L, π), we label a vertex with the largest available number and
then remove that vertex from the graph, but for illustrative purposes we color the
removed vertices instead of physically removing them from G. Figure 2.2 provides
the inputs S, L, π for the first iteration of Algorithm 1, as well as the final output
B, which records the labeled graphs. Writing each labeling of G as a permutation,
with the label of vi as the image of i, we obtain

P (S;G) = {4321, 4312, 4231, 4132, 4123, 4213, 3124, 3214}.

The next definition plays an important role in the proof of our main result The-
orem 2.8 as it introduces the notation needed to address the possible complications
discussed in Subsection 2.2.

Definition 2.7. Let L be a set with V<2(G) ⊆ L ⊆ V (G). Define P (S,G, L) to be
the set of labelings ofG with peak set S, or peak set S ′ with S ⊆ S ′ ⊆ S∪(L\NG(S)).
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Algorithm 1: Graph Peak Set Algorithm

Input : Graph G = (V (G), E(G)), admissible Peak Set S ⊆ V (G), and L
such that V<2(G) ⊆ L ⊆ V (G)

Output: B
1 π ← list indexed by V (G) with all entries equal to 0 ;
2 B ← empty set ;
3 GraphLabelings(G, S, L, π) ;

4 function GraphLabelings(G, S, L, π):
5 for v ∈ S ∪ (L \NG(S)) do
6 π[v] = |V (G)| ;
7 if v ∈ S then
8 S ← S\{v} ;
9 end

10 L← (L ∪NG(v))\{v} ;
11 if |V (G\{v})| > 0 then
12 GraphLabelings(G\{v}, S, L, π) ;
13 end
14 if |V (G\{v})| = 0 then
15 add π to B ;
16 return;

17 end

18 end
19 return B ;

If L = V<2(G) then the only potentially admissible peak set S ′ satisfying S ⊆
S ′ ⊆ S ∪ (L \NG(S)) is S itself because none of the elements of L can be peaks. In
this case P (S,G, L) = P (S;G).

Theorem 2.8. Let S be a G-admissible peak set, L be a set with V<2(G) ⊆ L ⊂ V (G)
and π be a list indexed by V (G) with all entries equal to 0. Then the set P (S,G, L)
is equal to the set B which is the output of Algorithm 1 with inputs G, S, and L.
Moreover, when L = V<2(G) the set of outputs of GraphLabelings(G, S, L, π) is
P (S;G) (the set of labelings of G with peak set S).

The proof of Theorem 2.8 will result from the following technical lemmas.

Lemma 2.9. With the assumptions of Theorem 2.8, the set P (S,G, L) is a subset
of the set B which is the output of Algorithm 1 with inputs G, S, and L.

Proof. We prove the result by induction on |V (G)|. Let L be a labeling in P (S,G, L).
First, if V (G) = {v} then the only possible peak set is S = ∅. Since L must contain
any vertex of degree less than 2, the only possible L is {v}. Then P (S,G, L) consists
of one labeling, hence P (S,G, L) = {[1]} and L = [1]. When running Algorithm 1
with input G, S and L, in line 3 we call the function GraphLabelings(G, S, L, π),
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S = {v1}, L = {v4}
π = [v1, v2, v3, v4]

v1

v2

v3

v4

S = ∅, L = {v2, v3, v4}
π = [4, v2, v3, v4]

S = {v1}, L = {v3}
π = [v1, v2, v3, 4]

4

v2

v3

v4

v1

v2

v3

4

4

3

v3

v4

4

v2

3

v4

4

v2

v3

3

3

v2

v3

4

4

3

2

v4

4

3

v3

2

4

2

3

v4

4

v2

3

2

4

2

v3

3

4

v2

2

3

3

v3

2

4

3

2

v3

4

4

3

2

1

4

3

1

2

4

2

3

1

4

1

3

2

4

2

1

3

4

1

2

3

3

1

2

4

3

2

1

4

π = [4, 3, 2, 1] π = [4, 3, 1, 2] π = [4, 2, 3, 1] π = [4, 1, 3, 2] π = [4, 2, 1, 3] π = [4, 1, 2, 3] π = [3, 1, 2, 4] π = [3, 2, 1, 4]

Figure 2.2: Application of Algorithm 1 on a small graph G.
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where π is defined in line 1. Since G has one vertex v, GraphLabelings(G, S, L, π)
picks v ∈ L \ {NG(S)} in line 5, labels π[v] with 1 in line 6, updates S in lines 7-9,
updates L in line 10, skips lines 11-13, and then in line 15, adds π = [1] to B. Thus,
the set P (S,G, L) is a subset of the set B in this base case.

Now we suppose that the statement is true for all admissible peak sets S ⊆ V (G′)
and any set L′ with V<2(G

′) ⊆ L′ ⊆ V (G′) on graphs G′ with 1 ≤ |V (G′)| < n. Let
G be any graph with |V (G)| = n, S be an admissible peak set on G, and L be a set
with V<2(G) ⊆ L ⊆ V (G). Let L be a labeling in P (S,G, L). Recalling Definition
2.7, the peak set SL of L satisfies

S ⊆ SL ⊆ S ∪ (L \NG(S)). (2)

There are two cases to consider depending on where the label n can appear in L:
either n labels a peak or n labels a leaf of G. In other words, either n labels a vertex
in S or n labels a vertex in L \ NG(S) with V<2(G) ⊆ L ⊆ V (G). We show that in
either case L is in B, the output of Algorithm 1 with input G, S, and L.

Case 1: Suppose n labels a vertex v in S. In Algorithm 1, we define π and B in
lines 1 and 2, respectively. In line 3 we call the function GraphLabelings(G, S, L, π).
In line 5 we consider v ∈ S as the chosen vertex. In line 6, we label v by π[v] =
n = |V (G)| and then in lines 7-10 we update S to be S ′ = S \ {v} and L to be
L′ = (L ∪ NG(v)) \ {v}. In lines 11-12, we call GraphLabelings(G \ {v}, S ′, L′, π),
running Algorithm 1 again with input G \ {v}, S ′, and L′, except for the caveat that
the labeling π has an extra index v labeled with n. Note that by removing v from
G we restrict the initial labeling L of G to a labeling of G \ {v}, which we denote
by L′. To show L in B, it is enough to show that L′ is in P (S ′, G \ {v}, L′), which
is itself a subset of the output of Algorithm 1 with input G \ {v}, S ′, and L′ by our
induction hypothesis.

The removal of v in G might create peaks at vertices in NG(v) and we keep all
other peaks of L. Together with (2), this implies that the peak set S ′′ of L′ satisfies

S ′ ⊆ S ′′ ⊆ S ′ ∪ (L \NG(S)) ∪NG(v). (3)

Going back to the definition of P (S ′, G \ {v}, L′), to show L′ ∈ P (S ′, G \ {v}, L′), we
must show that the peak set S ′′ of L′ satisfies

S ′ ⊆ S ′′ ⊆ S ′ ∪
[(

(L ∪NG(v)) \ {v}
)
\NG\{v}(S ′)

]
. (4)

We will rewrite the rightmost set in (3) to show that the set S ′′ also satisfies
the second inclusion in (4). Note that in (3), in the set (L \ NG(S)) ∪ NG(v), we
remove NG(v) from L and then add it back. Thus, the removal of NG(v) from L is
superfluous. Therefore, (L\NG(S))∪NG(v) = (L\NG(S

′))∪NG(v). Since v ∈ S, it
is a peak, and hence it is not adjacent to any other peak. Consequently, v �∈ NG(S),
so (L \NG(S

′)) ∪NG(v) = (L \NG\{v}(S ′)) ∪NG(v). Thus (3) can be rewritten as

S ′ ⊆ S ′′ ⊆ S ′ ∪ (L \NG\{v}(S ′)) ∪NG(v). (5)



A. DIAZ-LOPEZ ET AL. /AUSTRALAS. J. COMBIN. 75 (2) (2019), 174–189 183

Since v is a peak, then v is not a leaf of G, thus (4) can be rewritten as

S ′ ⊆ S ′′ ⊆ S ′ ∪
[(

L ∪NG(v)

)
\NG\{v}(S ′)

]
. (6)

Note that the only elements in the set to the right of the second containment
in (5) that are not in the set to the right of the second containment in (6) are the
elements in NG(v) ∩ NG\{v}(S ′). Since these elements are in NG\{v}(S ′), they are
connected to peaks, hence cannot be peaks themselves. Thus, they cannot be in S ′′,
which proves the second containment in (6).

Case 2: Suppose n labels a vertex v in L \ NG(S). In Algorithm 1, we define
π and B in lines 1 and 2, respectively. In line 3 we call the function
GraphLabelings(G, S, L, π). In line 5 we consider v ∈ L \ NG(S) as the chosen
vertex. We label v by π[v] = n = |V (G)| in line 6. Then, we skip lines 7-9 and
update L to be L′ = (L ∪ NG(v)) \ {v} in line 10. Then, in lines 11-12, we call
GraphLabelings(G \ {v}, S, L′, π), running Algorithm 1 again with input G \ {v}, S,
and L′, except for the caveat that the labeling π has an extra index v labeled with n.
Similar to the previous case, it is now enough to show that the labeling L′, obtained
by restricting L to the vertices in V (G)\{v}, is an output of Algorithm 1 with input
G\{v}, S, and L′. We do this by showing that L′ belongs to P (S,G\{v}, L′), which
is itself a subset the output of Algorithm 1 with input G \ {v}, S, and L′ by our
induction hypothesis.

Note that removing v from G may create peaks in L′ at vertices in NG(v) and we
keep all other peaks of L. This together with (2) implies that the peak set S ′′ of L′

satisfies
S ⊆ S ′′ ⊆ S ∪ (L \NG(S)) ∪NG(v). (7)

To prove L′ ∈ P (S,G \ {v}, L′), we must show

S ⊆ S ′′ ⊆ S ∪
[(

(L ∪NG(v)) \ {v}
)
\NG\{v}(S)

]
. (8)

We will rewrite the rightmost set in (7) to show that the set S ′′ also satisfies the
second inclusion in (8). Since v had label n, it cannot be adjacent to any peak. Thus,
NG(S) = NG\{v}(S). We can replace L in (7) with L \ {v} because v is no longer a
vertex in G \ {v}, thus it cannot be a peak in L′. We can now rewrite (7) as

S ⊆ S ′′ ⊆ S ∪ [
(L \ {v}) \NG\{v}(S)

] ∪NG(v). (9)

Since v �∈ NG(v) then we can write (L∪NG(v)) \ {v} as (L \ {v})∪NG(v). Thus
(8) can be written as

S ⊆ S ′′ ⊆ S ∪
[(

(L \ {v}) ∪NG(v)

)
\NG\{v}(S)

]
. (10)

Observe that the only elements in the set to the right of the second containment
in (9) that are not in the set to the right of the second containment in (10) are
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the elements in NG(v) ∩NG\{v}(S). Since these elements are in NG\{v}(S), they are
connected to peaks, hence cannot be peaks themselves. Thus, they cannot be in S ′′,
which proves the containment in (10).

Lemma 2.10. With the assumptions of Theorem 2.8, the output B of Algorithm 1
with inputs G, S, and L is a subset of P (S,G, L).

Proof. We will show by induction on |V (G)| that any output L of B is also an element
of P (G, S, L). Let |V (G)| = 1, then the only possible peak set is S = ∅. Since L
must contain any vertex of degree less than 2, the only possible L is {v}. Hence
P (S,G, L) consists of one labeling P (S,G, L) = {[1]}. When running Algorithm 1
with input G, S and L, in line 3 we call the function GraphLabelings(G, S, L, π),
where π is defined in line 1. Since G has one vertex v, GraphLabelings(G, S, L, π)
picks v ∈ L \ {NG(S)} in line 5, labels v with 1 in line 6, updates S and L in lines
7-10. Lines 11-13 are skipped because |V (G \ {v})| = 0. In line 15 adds π = [1] to
B. The algorithm is complete and thus the set B = {[1]} is a subset of P (S,G, L)
in the base case.

Now we suppose that the statement is true for all admissible peak sets S ⊆ V (G′)
and any set L′ with V<2(G

′) ⊆ L′ ⊆ V (G′) on graphs G′ with 1 ≤ |V (G′)| < n. Let G
be a graph with |V (G)| = n, S be an admissible peak set, and L be a set satisfying
V<2(G) ⊆ L ⊆ V (G). redLet L be any labeling in B. Thus, L is created via
Algorithm 1.

Note that in step 5 of Algorithm 1, a certain vertex of v ∈ S ∪ (L \ {NG(S)}) is
chosen. In step 6, the vertex v is labeled by n, i.e., L[v] = n. In steps 7-10, some
elements are added to the sets S and L. Let S ′, L′ denote the resulting sets. In steps
11-12, we run GraphLabelings(G\{v}, S ′, L′, π), running Algorithm 1 again with
input G\{v}, S ′, and L′, except for the caveat that the labeling π has an extra index
v labeled with n. Let L′ be the labeling we obtain by restricting L to G \ {v}. Then
by the induction hypothesis, L′ is an element of P (S ′, G\{v}, L′), i.e., L′ has peak
set SL′ with S ′ ⊆ SL′ ⊆ S ′∪ (L′ \NG(S

′)). To show L is an element of P (S,G, L), we
must show that when inserting v into L′ with label n, we get a labeling with peak
set SL satisfying

S ⊆ SL ⊆ S ∪ (L \NG(S)). (11)

There are two cases to consider.

Case 1: If the chosen vertex v is in S, then S ′ = S\{v} and L′ = (L∪NG(v)) \ {v}.
Thus, L′ has peak set SL′ with

S ′ ⊆ SL′ ⊆ S ′ ∪
[(

(L ∪NG(v)) \ {v}
)
\NG(S

′)
]
. (12)

By inserting the previously removed label n, indexed by v, back into L′, we now
create a peak at v, and remove any previous peak in vertices that are neighbors of
v. Using the containment relations in (12), we get that the peak set SL of L satisfies

S ⊆ SL ⊆ S ∪
(
L \NG(S

′)
)
.
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Since v is a peak, we are certain no vertex in NG(v) is also a peak, thus we can
further say S ⊆ SL ⊆ S ∪ (L \NG(S)), which proves the containment in (11).

Case 2: We now consider when the chosen vertex v is in L \NG(S). Then S ′ = S
and L′ = (L ∪NG(v)) \ {v}. Thus, L′ has peak set SL′ with

S ⊆ SL′ ⊆ S ∪
[(

(L ∪NG(v)) \ {v}
)
\NG(S)

]
. (13)

By inserting the previously removed label n, indexed by v, back into L′, we either
create a peak at v (if degG(v) ≥ 2) or do not create a peak at v (if degG(v) < 2). In
either case, we also remove any previous peaks in vertices that are neighbors of v.
Using the containment relations in (13), we get that the peak set SL of L satisfies

S ⊆ SL ⊆ S ∪ (L\NG(S)),

which proves the containment in (11).

Proof of Theorem 2.8. Lemmas 2.9 and 2.10 prove the set B consisting of the outputs
of Algorithm 1 with input G, S, and L is P (S,G, L). Recall that when L = V<2(G),
the only potentially admissible peak set S ′ satisfying S ⊆ S ′ ⊆ S ∪ (L \NG(S)) is S
itself because none of the elements of L can be peaks. Hence P (S,G, L) = P (S;G)
in this case. This concludes the proof of Theorem 2.8.

3 Graph Joins

In some cases, rather than using the presented algorithm to construct the set P (S;G),
one can use combinatorial arguments to determine |P (S;G)|. In this section we
consider the join of two graphs in terms of the peak sets of the constituent graphs.
We prove three main results related to the peak sets of graph joins: Proposition 3.1
on the joins of two arbitrary graphs, Proposition 3.2 on the join of an arbitrary graph
with a complete graph, and Proposition 3.3 on the join of an arbitrary graph with a
null graph.

We recall that the join of G1 and G2, denoted G1 ∨G2, has vertex set V (G1) ∪
V (G2) and edge set E(G1) ∪ E(G2) ∪ {{v1, v2} | v1 ∈ V (G1), v2 ∈ V (G2)}. For
example, let Kn be the null graph given by an independent set on n vertices, and Kn

be the complete graph on n vertices. A star graph on n vertices is K1 ∨Kn−1 and a
complete bipartite graph is Km,n = Km ∨Kn (see Figure 3.1).

We first show that peak sets in G1∨G2 are completely contained in either V (G1)
or V (G2).

Proposition 3.1. Let G1 and G2 be graphs with vertex sets V1 and V2 respectively,
each with at least two vertices. Let S be a nonempty (G1 ∨ G2)-admissible peak set.
Then S ⊆ V1 or S ⊆ V2.
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Figure 3.1: A star graph on 5 vertices and the complete bipartite graph K3,2.

Proof. In any labeling of G1 ∨ G2, there is some vertex v labeled by the number
N = |V1 ∪ V2|. Assume the vertex v is in V1. Then no vertex of V2 can be a peak
because v is adjacent to every vertex in V2, so S ⊆ V1. Similarly, if v ∈ V2, then
S ⊆ V2.

The next two results consider an arbitrary graph G and a peak set S and give
explicit formulas for the number of labelings of the join of G with either the null
graph or the complete graph.

Proposition 3.2. Let S ⊆ V (Kn) be nonempty, G be any graph with |V (G)| > 1,
and G′ = Kn ∨G. Then the set S is G′-admissible in and

|P (S;G′)| = |S|! · |V (G)| · (|V (G′)| − |S| − 1)!

Proof. Let m = |V (G′)|. First we claim that the vertices in S must be labeled by
the set

I = {m,m− 1, . . . , m− |S|+ 1}.
Otherwise there are two possible cases: (1) Some vertex in V (G) will be labeled by
an element in I while some element of S will not. This contradicts that S is the
peak set. (2) A vertex in Kn (not in S) will be labeled by an element in I. In this
case, that vertex would be a peak contradicting that S is the peak set. We conclude
that the vertices in S must be labeled by the elements of I.

There are |S|! ways to assign these labels to vertices in S, and in any of these
labelings the label m − |S| must be assigned in V (G), otherwise there will be an
additional peak in V (Kn). There are |V (G)| such vertices to assign m − |S|, each
of which guarantees that none of the vertices in V (Kn)\S is a peak. None of the
remaining vertices are peaks, so we are free to assign them the labels 1, 2, . . . , m −
|S| − 2, m− |S| − 1 in any order. This completes the proof.

A similar result is obtained when replacing Kn by Kn in Proposition 3.2 and, as
the proof is analogous, we omit the details.

Proposition 3.3. Let G be an arbitrary graph and let G′ = Kn ∨G. If S ⊆ V (Kn),
then

|P (S;G′)| =
{
(|V (G′)| − 1)! if |S| = 1

0 otherwise.
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Many graph families can be constructed as the join of two graphs, one of which is
a null or a complete graph. We apply Propositions 3.2 and 3.3 to give closed formulas
describing |P (S;G)| for any admissible peak set S ⊆ V (G) when G is a star graph,
ternary star graph, complete bipartite graph, Dutch windmill graph, wheel graph,
fan graph, and cone graph. We compile these results in Table 1 below.

Graph Example Results

Star graph:
Sn = K1 ∨Kn−1

S8
v1 |P (S;Sn)| =

⎧⎪⎨⎪⎩
(n− 1)!(n− 1) if S = ∅
(n− 1)! if S = {v1}
0 otherwise.

Ternary Stars graph:

kSn = Kk ∨Kn−k

3S6
|P (S; kSn)| =

⎧⎪⎨⎪⎩
(N − 1)! if S ⊂ V (Kk) and |S| = 1

|S|! · |k| · (N − |S| − 1)! if S ⊂ V (KN−k)

0 otherwise.

Complete Bipartite:
Kn,m = Kn ∨Km

K3,4

|P (S;Kn,m)| =

⎧⎪⎨⎪⎩
|S|! ·m · (m+ n− |S| − 1)! if S ⊂ V (Kn)

|S|! · n · (m+ n− |S| − 1)! if S ⊂ V (Km)

0 otherwise.

Dutch Windmill graph:
Mn

k = (∪ni=1P2) ∨K1

M3
3 ∣∣P ({vi};Mk

n)
∣∣ = (n− 1)! where vi is a any noncentral vertex in Mk

n .

Wheel graph:
Wn = Cn ∨K1

W8 |P (S;Wn)| = n! if S = {v1} is the central vertex in Wn.

Fan graph:
Fn,m = Pn ∨Km

F3,4 |P (S;Fn,m)| = |S|! · n · (n +m− |S| − 1)! if S ⊂ V (Km).

m-gonal
n-cone graph:

Cm,n = Cn ∨Km

C7,2 |P (S;Cm,n)| = |S|! · n · (n+m− |S| − 1)! if S ⊂ V (Km).

Table 1: Applications of Propositions 3.2 and 3.3 to certain families of graphs.

4 Future Directions

The following are interesting topics for future consideration.

1. In 2012, Billey, Burdzy, and Sagan conjectured [5, Conjecture 19] and Kasraoui
[11, Theorem 1.1] proved that for permutations of n, the most probable peak
sets are

• if n ≡ 0 (mod 3), {3, 6, 9, . . .} ∩ {1, 2, . . . , n − 1} and {4, 7, 10, . . .} ∩
{1, 2, . . . , n− 1},
• if n ≡ 1 (mod 3), {3, 6, 9, . . . , 3s, 3s+2, 3s+5, . . .}∩{1, 2, . . . , n−1} with
1 ≤ s ≤ ⌊

n
3

⌋− 1 and |S| = s,

• if n ≡ 2 (mod 3), {3, 6, 9, . . .} ∩ {1, 2, . . . , n− 1}.
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Table 1 shows for a wheel graph, the empty set is the most probable peak
set, and for a complete graph any peak set of size 1 is most probable. For a
complete bipartite Kn,m = Kn ∧Km, with m > n, selecting the set S = V (Kn)
to be the largest part, yields the most probable peak set. This leads us to ask,
for a graph G, which peak sets are the most probable?

2. Davis, Nelson, Petersen, and Tenner recently introduced the study of pinnacle
sets of permutations in which they consider the set S to be the values sitting at
the peak positions, rather than the positions themselves [8]. We remark that
Algorithm 1 can be modified to create all labelings of a graph with a desired
pinnacle set, and pinnacle sets of graphs could be a fruitful direction of future
study.
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