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Táncsics Mihály utca 1/A
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Abstract

We consider coverings of the square flat torus (the quotient of the plane
by the lattice generated by two unit perpendicular vectors) by congru-
ent discs of minimal radius. These are periodic discs coverings of the
Euclidean plane by congruent discs of minimal radius. Let r(k) be the
greatest lower bound of the radius of k congruent discs such that the
square flat torus can be covered by these discs. It will be proved that
r(1) =

√
2/2, r(2) = 1/2, r(3) = 5

√
2/18 and r(4) ≤ 5/16.

1 Introduction

The unit discs D1, . . . , Dk cover the planar body B if the body B is contained by
the union of the discs. It is a classical problem to determine the smallest radius of k
equal circles that can cover the unit circle, the equilateral triangle, the unit square
or, alternatively, a rectangle. Optimality proofs exist only for a few cases. The com-
putational complexity can be measured by the fact that the standard discretizations
of similar problems are NP-complete [9].

Let rB(k) be the minimal radius of k congruent discs that cover the body B.
The covering problem for the unit circle has been solved by K. Bezdek [1] for

k = 5, 6 and by Fejes Tóth [8] for k = 8, 9, 10. The known values can be found in
Table 1.

For the case of the equilateral triangle, the covering problem has been solved by
A. Bezdek and K. Bezdek [2] for k ≤ 6, k = 9, k = 10. Melissen [16] rediscovered
the results for k ≤ 6. The known values can be found in Table 2.

The covering problem for the unit square has been solved in [2] for k ≤ 5 and
k = 7. The known values can be found in Table 3. Nurmela and Östergard presented
arrangements in several cases [20].
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k rB(k) approximation source
2 1/2 0.5 elementary

3
√
3/2 0.8660 . . . elementary

4 1/
√
2 0.5 elementary

5 0.60938 . . . 0.60938 . . . [1]
6 0.555 . . . 0.555 . . . [1]
7 1/2 0.5 elementary
8 1/(1 + 2 cos(2π/7)) 0.4450 . . . [8]
9 1/(1 + 2 cos(2π/8)) 0.4142 . . . [8]
10 1/(1 + 2 cos(2π/9)) 0.3949 . . . [8]

Table 1: The known values of rB if B is the unit circle.

k rB(k) approximation source
2 1/2 0.5 elementary

3 1/(2
√
3) 0.2886 . . . [2], [16]

4 1/(2 +
√
3) 0.2679 . . . [2], [16]

5 1/4 0.25 [2], [16]

6
√
3/9 0.1924 . . . [2], [16]

9 1/6 0.1666 . . . [2]

10
√
3/12 0.1443 . . . [2]

Table 2: The known values of rB if B is the equilateral triangle of side length 1.

Heppes and Melissen [14] solved the problem for a general rectangle for k ≤ 5.
Moreover Heppes and Melissen [14] have found the best radius for k = 7 if the aspect
ratio of the rectangle is either between 1 and 1.34457 . . ., or larger than 3.43017.
Melissen and Schuur [17] extended the first range of the aspect ratio to the range
between 1 and 1.422202580 . . .. Melissen and Schuur [17] presented coverings of
rectangles in the case k = 6 for any aspect ratio and proved the optimality if the
aspect ratio is on the interval [3.118 . . . , 3.464 . . .].

k rB(k) approximation source

2
√
5/4 0.5590 . . . elementary

3
√
65/16 0.5038 . . . [2]

4
√
2/4 0.3535 . . . [2]

5 0.3261 . . . 0.3261 . . . [2]

7 1/(1 +
√
7) 0.2742 . . . [2]

Table 3: The known values of rB if B is the unit square.

There are results about partial covering of the unit disc with three [22] (Szalkai),
four [12] (Tarnai, Gáspar, Hincz) or five [10, 11] (Tarnai, Gáspar, Hincz) discs.

Let R
2 be the Euclidean plane and let Λ2 be a 2-rank lattice in R

2. A torus
may be regarded geometrically as a quotient R

2/Λ2 of the Euclidean plane by a
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rank 2 lattice Λ2. Let Z
2 be the lattice generated by the vectors (1, 0) and (0, 1).

The square flat torus is the quotient of the Euclidean plane by the lattice Z
2. In

Figure 1 (Figure 2, respectively), a covering of the square flat torus by three (four,
respectively) congruent discs can be found.

Numerous results can be found in the literature about packing circles in a flat
torus; see e.g. [3–6, 13, 15, 17, 19, 22] and in higher dimensions [23]. To our knowledge
the present work is the first to consider coverings of the square flat torus. Our aim
is to cover the square flat torus by congruent discs of minimal radius. This is the
dual problem of packing circles on a flat torus. As usual it can be realized that to
prove the covering problem is more difficult than to prove the packing problem. The
result is the following.

Theorem 1 If r(k) is the greatest lower bound of the radius of k congruent discs
covering the square flat torus, then

r(1) =

√
2

2
, r(2) =

1

2
, r(3) =

5
√
2

18
= 0.3928 . . . .

Observe the covering in Figure 1 is a covering of the Euclidean plane but it is
different from the most efficient covering of the Euclidean plane presented by Fejes
Tóth [7]; moreover r(3) < rB(3) if B is the unit square.

The sketch of the proof of r(3) is the following. The arrangement in Figure 1
is a candidate for the optimal covering. Using particular points and assuming that
three congruent discs of radius less than 5

√
2/18 can cover the torus, three cases are

distinguished. In each case can be found a point on the torus outside the discs, thus
the covering assumption is contradicted.

Figure 1: An optimal arrangement for k = 3. Figure 2: A conjecture for k = 4.

The arrangement in Figure 2 is a candidate for the optimal covering for k = 4.
Of course from this arrangement comes r(4) ≤ 5/16.
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Conjecture 1 If r(k) is the greatest lower bound of the radius of k congruent discs
covering the square flat torus, then r(4) = 5/16 (Figure 2).

2 Notation

Let T = [0, 1)2 be the 2-dimensional square flat torus, S = [0, 1]2 the unit square,
C(c, r) the circle of radius r center c and D(c, r) the disc of radius r center c. For
convenience points and vectors are identified. Let s1 (s2, s3, s4 respectively) be the
point (0, 0) ((1, 0), (1, 1), (0, 1) respectively) on the Euclidean plane. In general, the
coordinates of the point b1 is denoted by (b1x, b1y).

If the side t1t2 of a triangle t1t2t3 is changed for a circular arc t1t2, then the planar
convex body which vertices are t1, t2, t3 and sides are the circular arc t1t2 and the
segments t2t3, t3t1 is called semi-triangle (e.g. s2p5p6 is a semi-triangle in Figure 1).
Semi-quadrangle can be defined similarly.

Throughout this paper, ab will also denote the length of the segment ab.

A lift of a point q on T is any point q̄ on the plane that maps to q under the
universal covering map. Observe the fundamental domain can be the region in the
unit square with vertices s1, s2, s3 and s4.

If there is no confusion, then we will not write where the arrangement is considered
(on R

2 or on T ).

3 Preliminaries

The following lemma will be used several times.

Lemma 1 Let 0 < r < 1/2 be a fixed number and D(s1, r), D(c2, r) discs on T . If
0 ≤ c2x < 1 − 2r or 0 ≤ c2y < 1 − 2r or 2r < c2x < 1 or 2r < c2y < 1, then the
remaining part of T can not be covered by a disc of radius r.

Proof. Using the symmetry of the square flat torus, it may be assumed that
0 ≤ c2x < 1 − 2r. Let p21 (p22 respectively) be the intersection point of C(s2, r)
(C(s3, r) respectively) and the segment s1s2 (s3s4 respectively) (on the Euclidean
plane) (Figure 3). Since the interior of the disc D(c2, r) (on T ) and the segment
p21p22 (on R

2) are disjoint, a disc of radius r can not cover the vertical segment
p21p22. �

4 The Proof of Theorem 1

Let D(c1, r(k)), . . ., D(ck, r(k)) be the k discs on T . By translation, it may be
assumed that c1 = s1 (Figure 4). Thus s1, s2, s3, s4 are the same point and the center
of the disc D(c1, r(k)) on T .

The proof of r(1) =
√
2/2 is trivial.
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Figure 3: Lemma 1. Figure 4: The square S.

For completeness, it will be proved that r(2) = 1/2 as well. If k = 2, then
the arrangement C(s1, 1/2) and C((1/2, 1/2), 1/2) shows that r(2) ≤ 1/2. Let it
be assumed that there is a radius r′2 such that r′2 < 1/2 and the discs D(s1, r

′
2),

D(c′2, r
′
2) cover T . Let p1 (p2 respectively) be the intersection point of the circle

C(s1, r
′
2) (C(s3, r

′
2) respectively) and the segment s1s2 (s3s4 respectively) (on the

Euclidean plane). Since the segment p1p2 (on R
2) and the interior of D(s1, r

′
2) (on

T ) are disjoint and p1p2 > 1, this segment can not be covered by a disc of radius r′2,
a contradiction. Thus r(2) = 1/2.

It will be proved that r(3) = 5
√
2

18
. Let r3 =

5
√
2

18
. Let c2(1/3, 1/3) and c3(2/3, 2/3).

The arrangement D(s1, r3), D(c2, r3) and D(c3, r3) shows that r(3) ≤ r3 (Figure 1).
Let p3, . . . , p12 be points on the Euclidean plane as in Figure 1. For completeness
p3(2/3−r3/

√
2,−1/3+r3/

√
2), p4(1/3+r3/

√
2, 1/3−r3/

√
2), p5(1−r3/

√
2, r3/

√
2),

p6(2/3+ r3/
√
2, 2/3− r3/

√
2), p7(4/3− r3/

√
2, 1/3+ r3/

√
2), p8(1/3+ r3/

√
2, 4/3−

r3/
√
2), p9(2/3− r3/

√
2, 2/3 + r3/

√
2), p10(r3/

√
2,

1 − r3/
√
2), p11(1/3 − r3/

√
2, 1/3 + r3/

√
2) and p12(−1/3 + r3/

√
2, 2/3 − r3/

√
2).

Observe p3p10 = 2r3, p4p11 = 2r3, etc. Since p3 = p9 − (0, 1), p3 is a lift of the point
p9. Similarly p7 (p8, p12 respectively) is a lift of the point p11 (p4, p6 respectively).

Let it be assumed that there is a radius r′3 such that r′3 < r3 and three discs of
radius r′3 cover T . Let D′

1 = D(s1, r
′
3), D

′
2 = D(c′2, r

′
3) and D′

3 = D(c′3, r
′
3) be the

three discs in this covering on T . The points p3, . . . , p12 can not be covered by D′
1 on

T . It may be assumed that p11 lies in D′
2. From now on through the paper on the

pictures can be seen circles of radius r3. Assuming that p11 is in D′
2 there are three

possibilities: Case 1 where p3 covered by D′
2, Case 2 where p5 is covered by D′

2, and
Case 3 where p3 and p5 are not covered by D′

2.

Case 1. The point p3 is covered by the disc D′
2.

To cover the points p11 and p3 on the torus with disc D′
2, lift them to the Euclidean

plane and analyze the arrangement. When lifting it may be assumed that p11 is in



A. JOÓS /AUSTRALAS. J. COMBIN. 75 (1) (2019), 113–126 118

the fundamental domain and it must be figured out which lifts of p3 are less than
2r3 from p11 so that they both can possibly be covered by disc D′

2. The four possible
lifts for p3 are

1. p3

2. p3 + (0, 1) = p9

3. p3 + (−1, 1)

4. p3 + (−1, 0)

The last case is eliminated because the distance from p11 to p3+(−1, 0) is the same as
the distance p3p7 and p3p7 > 2r3 which is too large. The first case and the third case
are the same because the relationship between p3+(−1, 1) and p11 is the same p9 and
p7 (’translate’ both by vector (1, 0)) and this is the same at the relationship between
p11 and p3 (reflect over the line s4s2). This leads to two distinguished subcases:
Subcase 1.1 where D′

2 contains p11 and p3 and Subcase 1.2 where D′
2 contains p11

and p9.

Subcase 1.1. The center c′2 lies in the intersection of the discs D(p3, r3) and
D(p11, r3) (or in the intersection of the discs D(p7, r3) and D(p9, r3)) (Figure 5).
Let p111 be the intersection point of the circles C(p3, r3) and C(p11, r3) as in Fig 5.
Observe p111(1/3, 1/3). Thus p4, p5 and p10 are covered neither by D′

1 nor by D′
2.

After lifting it can be realized that by Lemma 1, c′3 must lie in D(p4, r3) or D(p4 +
(0, 1), r3). Similarly c′3 must lie inD(p10, r3)∩D(p5, r3) orD(p10, r3)∩D(p5+(0, 1), r3)
or D(p10−(0, 1), r3)∩D(p5, r3) or D(p10, r3)∩D(p5−(1, 0), r3) or D(p10+(1, 0), r3)∩
D(p5, r3). Since neither D(p10, r3)∩D(p5−(1, 0), r3) nor D(p10+(1, 0), r3)∩D(p5, r3)
lie in D(p4, r3) or D(p4 + (0, 1), r3), there are two distinguished subcases: Subcase
1.1.1 where the center c′3 lies in the intersection of the discs D(p4, r3) and D(p10, r3),
and Subcase 1.1.2 where the center c′3 lies in the intersection of the discs D(p5, r3)
and D(p10 − (0, 1), r3).

Subcase 1.1.1. The center c′3 lies in the intersection of the discs D(p4, r3) and
D(p10, r3) (Figure 6).
Let p1111 (p1112 respectively) be the intersection point of the circles C(p4, r3) and
C(p10, r3) (C(s3, r3) and C(p1111, r3) respectively) as in Figure 6. Observe the point
p1112 is covered neither by D′

1 nor by D′
2 nor by D′

3 on T , a contradiction.

Subcase 1.1.2. The center c′3 lies in the intersection of the discs D(p5, r3) and
D(p10 − (0, 1), r3) (Figure 7).
Let A1 (A2 respectively) be the segment (0, 2r3)(1, 2r3) ((0, 1 − 2r3)(1, 1 − 2r3)

respectively). By Lemma 1, 1− 2r3 ≤ c′3y ≤ 2r3, a contradiction.

Subcase 1.2. The center c′2 lies in the intersection of the discs D(p9, r3) and
D(p11, r3) (Figure 8).
By Lemma 1, c′2x ≥ 1−2r3 and c′2y ≤ 2r3. Observe p5 is covered neither by D′

1 nor by
D′

2. Let p121 be the intersection point of the circles C(p9, r3) and C(p11, r3) as in Fig-
ure 8. Let p122 (p123 respectively) be the point (1/3, 2/3) ((1−2r3, 2r3) respectively).
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Figure 5: Subcase 1.1. Figure 6: Subcase 1.1.1.

Figure 7: Subcase 1.1.2. Figure 8: Subcase 1.2.

Let p124 (p125 respectively) be the intersection point of the circle C(p9, r3) and the
segment (1− 2r3, 0)(1− 2r3, 1) ((1/3, 0)(1/3, 1) respectively) (Figure 9). Since there
is reflective symmetry over the segment s2s4 in T , it may be assumed c′2y ≤ 1− c′2x.
There are two distinguished subcases. Subcase 1.2.1 where c′2 lies in the semi-triangle
p121p123p124 and not to the right of x = 1/3 and Subcase 1.2.2 where c′2 lies in the
semi-triangle p121p123p124 and not to the left of x = 1/3.

Subcase 1.2.1. The center c′2 lies in the semi-quadrangle p122p123p124p125 (Fig-
ure 10).
Let p1211 and p1212 be the intersection points of the circles C(p122, r3) and C(s3, r3)
as in Figure 10. Since p123p122p1212∠ = π/2 and p125p122p1211∠ > π/2, the point p122
is the point in the semi-quadrangle p122p123p124p125 that is closest to points p1211 and
p1212. Thus the points p5, p1211 and p1212 are covered neither by D′

1 nor by D′
2. Since
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Figure 9: The points Figure 10: Subcase 1.2.1.

p1211(p1212 − (0, 1)) = 2r3 and by Lemma 1, 1− 2r3 ≤ c′3y ≤ 2r3, the center c′3 lies in
the intersection of the discs D(p1212, r3) and D(p5, r3).
By Lemma 1, c′3x ≤ 2r3. Let p1213 be the intersection point of the circles C(p1212, 2r3)
and C(s2, r3) as in Figure 10. Observe p1213 is covered neither by D′

1 nor by D′
2 nor

by D′
3 on T , a contradiction.

Subcase 1.2.2. The center c′2 lies in the semi-triangle p121p122p125 (Figure 11).
Let p1221 (p1222 respectively) be the intersection point of the circles C(p122−(0, 1), r3)

Figure 11: Subcase 1.2.2 Figure 12: Case 2.1.

and C(s2, r3) (C(s1, r3) respectively) as in Figure 11. The points p5, p1221 and p1222
are covered neither by D′

1 nor by D′
2 (∠p121p122(p1221+(0, 1)) = π

2
and p121p122(p1222+

(0, 1)) > π
2
). Since (p1221+(0, 1))p1222 > 2r3, p1221(p1222+(1, 0)) = 2r3 and p5(p1222+

(0, 1)) > 2r3, the center c′3 lies in the intersection of the discs D(p5, r3), D(p1221, r3)
andD(p1222, r3). By Lemma 1, 1−2r3 ≤ c′3y ≤ 2r3. Let p1223 be the intersection point
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of the circles C(p1221, r3) and C(p1222, r3) as in Figure 11. Observe p1223(2/3, 1/3).
Let p1224 and p1225 be the intersection points of the circles C(p1223, r3) and C(s3, r3)
as in Figure 11. Since p1221p1225 = 2r3 and p1222p1224 = 2r3, the points p1224 and
p1225 are covered neither by D′

1 nor by D′
3. The distance between the points p121 and

p1224 is greater than r3. In order to cover p1224 by D′
2 the center c′2 lies in the disc

D(p1224 − (1, 0), r3). Since (p1224 − (1, 0))p1225 = 2r3, p1225 is covered neither by D′
1

nor by D′
2 nor by D′

3 on T , a contradiction.

Case 2. The point p5 is covered by the disc D′
2.

After lifting it may be assumed that p11 is in the fundamental domain. The three
possible lifts for p5 are p5 or p5−(1, 0) or p5+(−1, 1). This leads to three distinguished
subcases: Subcase 2.1 where the center c′2 lies in D(p5, r3) ∩D(p11, r3) and Subcase
2.2 where the point c′2 lies in D(p5, r3) ∩D(p7, r3) and Subcase 2.3 where the point
c′2 lies in D(p5 + (0, 1), r3) ∩D(p7, r3).

Subcase 2.1. The center c′2 lies in the intersection of the discs D(p5, r3) and
D(p11, r3) (Figure 12).
Let p211 be the intersection point of the circles C(p5, r3) and C(p11, r3) as in Figure
12. Observe p211(1/3, 1/3). The points p6 and p9 are covered neither by D′

1 nor

Figure 13: Subcase 2.1.1 Figure 14: Case 2.1.2.

by D′
2. Let p212 be the intersection point of the circle C(s4, r3) and the segment

s1s4. After lifting it may be assumed that p9 lies in the fundamental domain. The
three possible lifts for p6 are p12 or p6 + (0, 1) or p6 + (−1, 1). This leads to three
distinguished subcases: Subcase 2.1.1 where the point c′3 lies in D(p9, r3)∩D(p12, r3),
Subcase 2.1.2 where the point c′3 lies in D(p3, r3)∩D(p6, r3) and Subcase 2.1.3 where
the point c′3 lies in D(p3, r3) ∩D(p12, r3).

Subcase 2.1.1. The point c′3 lies in the intersection of the discs D(p9, r3) and
D(p12, r3) (Figure 13).
In this case the point p4 is covered neither by D′

1 nor by D′
2 nor by D′

3 on T , a
contradiction.
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Subcase 2.1.2. The point c′3 lies in the intersection of the discs D(p3, r3) and
D(p6, r3) (Figure 14).
In this case the point p212 is covered neither by D′

1 nor by D′
2 nor by D′

3 on T , a
contradiction.

Subcase 2.1.3. The point c′3 lies in the intersection of the discs D(p3, r3) and
D(p12, r3) (Figure 15).
Let p2131 (p2132 respectively) be the intersection point of the circles C(p5, r3) and

Figure 15: Subcase 2.1.3. Figure 16: Case 2.2.

C(p11, r3) (C(p2131, r3) and C(s3, r3) respectively) as in Figure 15. In this case the
point p2132 is covered neither by D′

1 nor by D′
2 nor by D′

3 on T , a contradiction.

Subcase 2.2. The point c′2 lies in the intersection of the discs D(p5, r3) and
D(p7, r3) (Figure 16).
By Lemma 1, 1 − 2r3 ≤ c′2x ≤ 2r3. Let p221 be the intersection point of the circle
C(s1, r3) and the segment (3r3 − 1, 0)(3r3 − 1, 1). Let p222 be the intersection point
of the circles C(p5, r3) and C(p7, r3) as in Figure 16. Observe p222(2/3, 2/3). Thus
p9, p10 and p221 are covered neither by D′

1 nor by D′
2 on T . After lifting it may be

assumed that p221 lies in the fundamental domain. The two possible lifts for p9 are
p9 or p9−(0, 1). The two possible lifts for p10 are p10 or p10−(0, 1). This leads to two
distinguished subcases: Subcase 2.2.1 where the point c′3 lies in D(p9, r3)∩D(p221, r3)
and Subcase 2.2.2 where the point c′3 lies in D(p3, r3) ∩D(p221, r3).

Subcase 2.2.1. The point c′3 lies in the intersection of the discs D(p9, r3) and
D(p221, r3) (Figure 17).
By Lemma 1, c′3x ≥ 1−2r3. Let p2211 be the intersection point of the circles C(s1, r3)
and C(p9, 2r3). Since p9p2211 > 2r3 and p7p2211 > 2r3, the point p2211 is covered
neither by D′

1 nor by D′
2 nor by D′

3 on T , a contradiction.

Subcase 2.2.2. The point c′3 lies in the intersection of the discs D(p3, r3) and
D(p221, r3) (Figure 18).
By Lemma 1, c′3x ≥ 1 − 2r3 and c′3y ≥ 1 − 2r3. Since p3p10 = 2r3, the point p10 is
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Figure 17: Case 2.2.1 Figure 18: Subcase 2.2.2

covered neither by D′
1 nor by D′

2 nor by D′
3 on T , a contradiction.

Subcase 2.3. The point c′2 lies in the intersection of the discs D(p5 + (0, 1), r3)
and D(p7, r3) (Figure 19).
Let A1 be the segment (0, 2r3)(1, 2r3). By Lemma 1, c′2y ≤ 2r3, a contradiction.

Figure 19: Case 2.3. Figure 20: Case 3.1.

Case 3. The points p3 and p5 are not covered by the disc D′
2.

The points p3 and p5 are covered by D′
3. After lifting it may be assumed that p5 lies

in the fundamental domain. The three possible lifts for p3 are p3 or p9 or p3 + (1, 0).
This leads to three distinguished subcases: Subcase 3.1 where the center c′3 lies in
D(p3, r3)∩D(p5, r3), Subcase 3.2 where the center c′3 lies in D(p5, r3)∩D(p9, r3) and
Subcase 3.3 where the center c′3 lies in D(p3, r3) ∩D(p5 − (1, 0), r3).

Subcase 3.1. The center c′3 lies in the intersection of the discs D(p3, r3) and
D(p5, r3) (Figure 20).
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Observe the reflected image of p7 (p5 respectively) is p3 (p5 respectively) over the line
s2s4. If s2 is changed for s3 in the proof of Subcase 2.2, then Subcase 3.1 is proved.

Subcase 3.2. The center c′3 lies in the intersection of the discs D(p5, r3) and
D(p9, r3) (Figure 21).
Since the reflected image of p11 (p5 respectively) is p9 (p5 respectively) over the line
s2s4, the proof comes from the proof of Subcase 2.1.

Figure 21: Case 3.2. Figure 22: Case 3.3.

Subcase 3.3. The center c′3 lies in the intersection of the discs D(p3, r3) and
D(p5 − (1, 0), r3) (Figure 22).
Since the reflected image of p5− (1, 0) (p3 respectively) is p5+(0, 1) (p7 respectively)
over the line s2s4, the proof comes from the proof of Subcase 2.3.

Thus r(3) = 5
√
2/18. �
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113–124.
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[11] Zs. Gáspár, T. Tarnai and K. Hincz, Partial covering of a circle by equal circles,
Part II: The case of 5 circles, J. Comput. Geom. 5 (2014), 126–149.
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