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Abstract

We introduce a natural parameter in the game of Cops and Robbers, the
damage number of a graph, which is the minimum number of distinct
vertices the robbers can visit without capture. Minimizing robbers’ ac-
cess to vertices becomes a natural and wise cops’ decision when dealing
with networks with vulnerable vertices or in networks with less than cop
number cops, where capture is not possible. Clearly, in cop-win graphs
the damage number is bounded by the capture time; however, we show
that for some graph classes the damage number is approximately half of
the capture time. We also prove that in almost all graphs the damage
number is less than n

2
, where n is the order of a graph, confirm this result

for graphs of small order and find graphs whose damage numbers exceed
n
2
. We also find or bound the damage number for a variety of classes of

graphs and study the damage density of a graph.

1 Introduction

The game of Cops and Robbers is a pursuit-evasion game played on a reflexive graph
G = (V,E); i.e., a graph that has a loop at every vertex. There are two opposing
sides namely a set of k > 0 cops and a set of robbers; however, most games, including
the study of this paper, involve only one robber. The two sides play in rounds where
each round consists of a move from each side with the cops going first followed by
the robber’s move. Before the game starts, or at round 0, the cops begin the game
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by each choosing a vertex to occupy, and then the robber chooses a vertex; a vertex
may be occupied by multiple players any time during the game. The two sides move
alternately by sliding along an edge or along a loop (i.e. pass) from vertex to vertex.
This is a perfect information game and the cops win if a cop captures the robber
by moving onto the vertex that is occupied by the robber after a finite number of
moves; else the robber wins. Graphs for which one cop suffices to win are called cop-
win and the graphs for which k > 1 cops can guarantee a win are called k-cop-win.
Cop-win and k-cop-win graphs have been completely characterized in [8, 9] and [5],
respectively.

A multitude of variations of the game of Cops and Robbers have been introduced
in the past years; burning number, firefighters and seepage are only a few examples [3,
4, 6]. In this article, we introduce a variation of the game where the robber damages
the vertices he visits. The minimum number of vertices of G that can be damaged
by the robber is called the damage number of G. We assume that the damage is
permanent, but the damaged vertices are part of the graph and may be used by
the players in their subsequent moves. The robber is unable to damage any more
vertices if he is captured by the cops. The damage is done when the robber completes
a move; that is if the robber moves from u to v, then u is damaged. The damage
number is so broad that it can be studied for the games with single or multiple
cops and robbers and also for k-cop-win and robber-win graphs. Note that here we
assume that the players play optimally, in the sense that the robber strategy is to
visit as many distinct vertices as possible in order to inflict the most damage and the
cops’ strategy is to minimize the damage; that is to minimize the number of distinct
vertices the robber visits.

The motivation for this article lies in considering situations where the nature of
the damage done by an intruder is severe or costly, or situations where not enough
cops are available to guarantee capture of a robber. In these scenarios containing
the damage becomes the highest priority as chasing down the robber until capture
is not wise or may not be possible.

We follow the standard graph theory notations as in [10]. In Section 2 we formally
define the damage number of a graph, present bounds in terms of known graph
parameters and show that in almost all graphs the damage number is less than n

2
,

where n is the order of a graph. In Section 3, we study the damage number of all
graphs with order at most eight; in these graphs the damage number is at most n

2
.

We show that the Pappus graph has a damage number exceeding n
2
. For the graph

class Hn as defined in [7], a class of cop-win graphs with maximum capture time, the
damage number is shown to be �n−3

2
� − 1. We also present bounds on the damage

number of classes of strongly regular graphs. In particular, we find a lower bound
for the damage number of strongly regular graphs, compute the damage number of
the Petersen graph, and bound the damage number of Paley graphs as a function of
n. In Section 5, we define the damage density of a graph and conclude by proposing
future research directions.
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2 Definitions, Motivation and Early Results

In this section we will formally define the damage number of a graph and present
some bounds in terms of known graph parameters. We compare the damage number
and capture time as defined in [1] and we show that with extreme probability, the
robber can damage less than half of the vertices. Although this version of the game
and our definitions are stated for any number of cops, our paper studies the game
with one cop and one robber, represented as C and R.

Definition 2.1 We say a vertex u is damaged by the robber if the robber occupies
u in round i ≥ 0 and moves to a neighbouring vertex in the next round.

We can imagine the damage is inflicted in the time period between moving onto
u in round i and moving from it in round i+1. Note that the robber may move from
u to u, as our graphs are reflexive.

Definition 2.2 The damage number of G, denoted dmg(G), is the minimum number
of unique vertices that can be damaged by the robber.

In the following example we use P6 to illustrate how the vertices are damaged by
the robber at each time step after R visits them and how to compute the damage
number.

Example 2.3 Three rounds of the game on the path P6 are shown in Figure 1. Since
R cannot inflict any more damage, dmg(P6) = 2.

C R
(a)

C
v5

R
(b)

C R

v6
(c)

Figure 1: (a) Round 0: cop and robber initial positions; (b) Round 1: R moves and
v5 is damaged (c) Round 2: R passes and v6 is damaged

As noted in the introduction, both sides are assumed to play optimally. In the
path graph P6, had the robber chosen any other vertex, for example v6, then the
capture time might have been the same but the number of damaged vertices would
have been less than 2. It is easy to see that the optimal cop strategy is to start on
a central vertex of the path.

An undamaged vertex is one that has not been damaged. The cop is protecting
a vertex or a number of vertices if they are in the closed neighbourhood of the
cop’s position. We note that a protected vertex could be an undamaged vertex or a
damaged vertex. When we say the cop passes in all the rounds, we mean he passes
unless capture becomes possible, in which case he captures the robber.
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Example 2.4 If G is a complete multi-partite graph, then dmg(G) ≤ 1. If G has a
universal vertex, then dmg(G) = 0. Else, C passes in all the rounds and R starts on
a vertex in the same partition as the cop.

The following theorem gives the damage number for an n-cycle, which is not
cop-win when n ≥ 4.

Theorem 2.5 If n ≥ 4, dmg(Cn) = �n−1
2
�.

Proof. We show that C has a strategy to prevent damage to at least �(n + 1)/2�
vertices and R can damage at least �(n − 1)/2� vertices. Let the vertices of Cn be
v1, v2, . . . , vn in clockwise order. The cop starts on v1, and the robber starts on vi
for some 3 ≤ i ≤ n − 1. In the first round, C passes and in the following rounds,
he passes whenever R passes. Otherwise, he moves the opposite direction of the R’s
move unless he is protecting a neighbour of R, in which case he passes. This ensures
that C can prevent damage to �(n+ 1)/2� vertices.

Now we show that R can damage �(n − 1)/2� vertices. If C starts on v1, then
without loss of generality, R starts on v3. Regardless of the subsequent moves C

makes, R can continue to move clockwise, guaranteeing that vertices v3 through
v�n+1

2
� are damaged. If n is even, we are done. If n is odd and v�n

2
�+1 can be

damaged, then the robber has achieved damaging �(n− 1)/2�, else the cop must be
on v�n

2
�+2, which guarantees that R can move counterclockwise to damage v2. In

each case, R damages at least �(n− 1)/2� vertices. �
In a cop-win graph, a vertex may be visited multiple times by the robber before he

is captured and the robber cannot inflict any more damage after capture. Therefore,
we have the following lemma where capt(G) is the capture time of G.

Lemma 2.6 If G is a cop-win graph, then dmg(G) ≤ capt(G)− 1.

This bound is tight for some families of graphs, such as graphs with a universal
vertex and trees. However, as is illustrated in Example 2.7, the bound given in
Lemma 2.6 is not tight for all cop-win graphs. In fact, the damage number can be
significantly less than the capture time.

Example 2.7 Figure 2 shows a graph with capt(G) = n−4 = 4; see [7]. However, if
the cop begins at the vertex labelled C and passes in all the rounds, then the robber
can occupy one of the two vertices not adjacent to C to avoid capture; therefore,
dmg(G) = 1.

By Theorem 1 of [7] and Lemma 2.6, we have the following corollary.

Corollary 2.8 For a cop-win graph G of order n ≥ 7, dmg(G) ≤ n− 5.

For any graph G, we have the following bound.

Theorem 2.9 If G is a graph on n vertices, then � rad(G)
2

� ≤ dmg(G) ≤ n − Δ − 1
where rad(G) is the radius of the graph.
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C

Figure 2: A graph G with capt(G) = |V (G)| − 4 whose damage number is 1

Proof. If C starts on a vertex v of degree Δ, then he can protect N [v] by passing
in all the rounds to stay on v; thus dmg(G) ≤ n− (Δ + 1).

Now consider placing C on a central vertex w and place R on a vertex rad(G)
away. Every path between R and C is at least rad(G) in length. If at the end of each
round the distance between C and R decreases, as the cop and robber move toward
each other along a path then at least � rad(G)

2
� vertices are damaged, as they meet in

the middle of a path of length rad(G). �
Perhaps surprisingly, many families of graphs on n vertices have a damage number

of less than half the order of the graph.

Theorem 2.10 For a graph of order n, with extreme probability a robber can damage
less than (1 + o(1))n

2
vertices.

Proof. It is known that if p ∈ (0, 1), then random graph G ∈ G(n, p) has a vertex
of degree (1+ o(1))pn. Assuming p = 1/2, then G has a vertex of degree (1+ o(1))n

2
,

implying the cop can save at least (1 + o(1))n
2
vertices. �

3 Damage Number in Graphs of Small Orders

In this section, we investigate the damage number of small graphs and verify that the
robber can damage at most half of the vertices when n ≤ 8 and, more importantly,
we find an example showing that the robber can damage more than half the vertices
in a graph.

3.1 Graphs of Small Orders

We show that in graphs of order at most 8, the robber can damage at most half of
the vertices.

Theorem 3.1 If n ≤ 8, then dmg(G) ≤ �n
2
�.

Proof. If G is chordal, it is known that capt(G) ≤ �n
2
� (see [1]) and therefore,

by Theorem 2.5 and Lemma 2.6, we only need to show dmg(G) ≤ n
2
when G is not

chordal and is not a cycle. Such a graph G has a vertex v with degG(v) ≥ 3. If the
cop starts at v and passes in all the rounds, then he can protect at least four vertices
and dmg(G) ≤ n− 4 ≤ n

2
when n ≤ 8. �

It is easy to verify the information in Table 1 for n = 1, 2, . . . , 7 and Theorem 3.2
confirms the case n = 8.
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n Maximum dmg(G) Example of a graph with maximum damage number

1, 2, 3 0 Any
4 1 C4

5 2 C5

6 2 C6

7 3 C7

8 4 The Möbius ladder M8

Table 1: Maximum damage number of all graphs with 1 ≤ n ≤ 8

Theorem 3.2 For the Möbius ladder M8, dmg(M8) = 4.

u1 u2

u3

u4

u5u6

u7

u8

Figure 3: The Möbius ladder M8

Proof. The Möbius ladder M8 is shown in Figure 3. Observe that M8 does not
have a 3-cycle, every pair of vertices have at most two common neighbours, and each
vertex u of M8 has a non-neighbour v such that |N(u) ∩ N(v)| = 2. We prove the
theorem in two steps.

Step 1: The robber can damage three vertices in the first three consecutive moves.
Without loss of generality, assume that C starts at u1. Then the robber starts on u6,
the non-neighbour of C that has two common neighbours with cop’s position. We
now show that regardless of the cop’s moves in the next two rounds, R can move
onto two more consecutive undamaged vertices. We discuss three cases based on
cop’s move in round 1.

1. If the cop passes: First, R moves to u7. Then he moves to u8 if C moves to u2 or
u5. Likewise, R moves to u3 if C passes or moves to u8.

2. If the cop moves to u5 (or u2 similarly): First, the robber moves to u2. If the cop
passes or moves back to u1, R moves to u3. If cop moves to u4 or u6, R moves to
u1.

3. If the cop moves to u8: First, the robber moves to u2. If the cop passes or moves
back to u1, R moves to u3. If cop moves to u4 or u7, R moves to u1.

Next we show that R can move onto another undamaged vertex without capture.
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Step 2: The robber can damage a fourth vertex. Now that we know the robber can
move onto three consecutive undamaged vertices, let his path be uvw with w being
his current position as shown in Figure 4 (a). Due to the absence of 3-cycles, w
has two undamaged neighbours and it is now the cop’s turn to move. If the cop
cannot move onto a vertex to protect the two undamaged neighbours of w, then R

in his next move can enter an undamaged vertex and we are done. If C moves to
a vertex, say v1, that is adjacent to both undamaged neighbours of R, say v2 and
v3, then the robber back-tracks to v (note that C’s position v1 is not adjacent to v,
otherwise w and v1 would have three common neighbours). Let v4 be the undamaged
neighbour of v. For v5, the last vertex of M8, we have uv5 ∈ E(M8); otherwise, it
would be impossible to complete the adjacencies into a cubic graph isomorphic to
M8. Also, v1v5 /∈ E(M8), else any collection of possible edges will create a bipartite
graph whereas M8 has a 5-cycle. Let’s go back in time where R was on v and C

moves to protect v4.
Now we have the following two cases.

1. If v1v4 ∈ E(M8), then v4v5 ∈ E(M8) and the rest of the edges are as shown in
Figure 4 (b). The cop either passes to stay on v1 or moves to v4 to protect v4.
Then, R moves back to u which has two undamaged neighbours v5 and v3. Either
way, the cop does not have a move from his current position to protect both v5
and v3 at the same time.

uv5

v

w

v3
v2

v4

v1

(a)

v5 u

v

w

v3v2

v1

v4
(b)

Figure 4: (a) A subgraph of M8 showing damaged vertices u, v, w and some of the
edges; (b) M8 showing all the vertices and edges assuming v1v4 ∈ E(M8)

2. If v1u ∈ E(M8), then v2v5, v3v4 ∈ E(M8) or v2v4, v3v5 ∈ E(M8). Firstly, if
v2v5, v3v4 ∈ E(M8), then the rest of the edges are as in Figure 5 (b) and for
the cop to protect v4, he has to move to v3. Then R moves to u which has two
undamaged neighbours v1 and v5. It turns out that the cop cannot move to a
vertex that can protect both v1 and v5. Secondly, if v2v4, v3v5 ∈ E(M8), then the
rest of the edges are as in Figure 5 (c) and for the cop to protect v4, he must
move to v2. Again, R moves to u which has two undamaged neighbours v5 and
v1. In cop’s turn from v2, he does not have a move that puts him in a position to
protect both of the robber’s undamaged neighbours.

In any case, from u, the robber safely moves onto a fourth undamaged vertex. �
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uv5

v

w

v3
v2

v4

v1

(a)

v5 u

v

w

v3v2

v1

v4
(b)

v5 u

v

w

v3v2

v1

v4
(c)

Figure 5: (a) A subgraph of M8 showing damaged vertices u, v, w and some of the
edges assuming v1u ∈ E(M8); (b)M8 assuming v1u ∈ E(M8) and v2v5, v3v4 ∈ E(M8);
(c) M8 assuming v1u ∈ E(M8) and v2v4, v3v5 ∈ E(M8)

v2

v1

v6

v5

v4

v3

v14

v13
v18

v17
v16

v15

v8

v7

v12

v11

v10

v9

v14

v13
v18

v17
v16

v15

Figure 6: Pappus graph

3.2 Damage Number Exceeding n
2

In this subsection we show that the damage number can exceed half the order of the
graph. The only known such graph is the Pappus graph (Figure 6), a symmetric,
3-regular, bipartite graph on 18 vertices for which we will show that dmg(G) ≥ 10.

Theorem 3.3 The damage number of the Pappus graph is at least 10.

Proof. Let G be the Pappus graph. As G is bipartite, we will consider the scenarios
where C forces R to complete an even length cycle, and when he does not.

First suppose R does not complete a cycle by revisiting a damaged vertex. Since
G is 3-regular, the robber always has a choice of two neighbouring vertices to move
to and as the Pappus graph is bipartite and non-adjacent vertices have at most one
common neighbour, the cop cannot protect both the undamaged neighbours. Since
the robber is not forced to complete a cycle by revisiting a damaged vertex, R can
damage at least 10 vertices.

We now consider if a cycle is completed. Clearly, if C forces R to complete a
10-cycle or larger cycle, we are done. Now suppose that C forces R to complete a
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smaller cycle. Since G is a bipartite graph of girth 6, we need only consider if R is
forced to complete a 6-cycle or an 8-cycle.
Case 1: The 6-cycle

v6

v1

v7

v18 v14

v2

v3

v5

v11

v18 v16

v4

v3

Figure 7: Possible moves for R when v6 can be damaged.

In this case the robber will need to damage at least four more vertices. Every
6-cycle can be mapped via graph automorphisms to C = v12v13v8v15v10v17, so we
need only consider if the robber is on this cycle.

Assume that C forces R to complete C. Once the cycle is completed, by rotation
starting on v12 is the same as starting on v8 or v10 and starting on v13 is the same as
starting on v15 or v17, thus we need only consider if R is on v12 or v13. There is an
automorphism that maps v13 onto v12. Assume that R is on v13 and then moves to
v12 to complete a cycle.

We will look at two cases.

1) First assume that R can damage v6. Figure 7 shows the undamaged vertices that
R moves onto from v6. Clearly if R moves onto v11 or v7, we are done.

If R must move to v2 or v4, we have several scenarios to consider. We will suppose
that R moves onto v2 (moving onto v4 is a similar argument). Since C was protecting
v7 they are on v7, v18 or v14. For each scenario we will show that R can damage the
required fourth vertex.

If C is on v7 or v18 that is far enough away that R can damage v3 and we are
done.

If C is on v14 then his next move must be to v9 to protect v3, thus the robber
moves to v8. If C stays on v9 or moves to v3, the robber can damage v18. If instead
C moves to v16 then R will move to v15 and v10, forcing C to v11 and v5, then R can
damage v14 in subsequent moves. Lastly, if from v9 the cop moves back to v14, the
robber will move to v15, forcing C to v7, then R can damage v4 in subsequent moves.

Thus, if v6 is damaged the damage of the Pappus graph is at least 10.
2) Assume that R cannot damage v6. In this case R completes a cycle by moving to
v12. This means that in the previous round R was unable to move from v13 to v16,
thus C was on v11 and when R moved to v12, C then moved to v5 to protect v6 from
damage.

In the next two rounds R can move to v14. Figure 8 shows the undamaged vertices
the robber can move to from v14. Clearly if the robber moves onto v1 or v3 we are
done.
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v14

v7

v1

v2 v6

v18

v11

v9

v3

v4 v2

v16

v11

Figure 8: Possible moves for R when v14 is damaged.

Suppose that R must move to v16 (a similar argument holds for v18). This means
that C must be on v2, v3 or v4 in order to protect v3. For each scenario we will show
that R can damage the required fourth vertex.

If C is on v2 or v3 then R can move to v11 and we are done.
Assume C is on v4 and R moves to v16. Then C must move to v5, and R chooses

to move to v13.
If C stays on v5 then R can damage v2. If C moves back to v4 then R moves to v8,

which forces C to v3, thus R can damage v18 in two moves. If C moves to v6 then R

can move to v15 in two moves, forcing C onto v1 then v7, which allows R to damage
v4 in subsequent rounds.

Thus if v6 is not damaged the damage of the Pappus graph is at least 10.

Case 2: The 8-cycle
In this scenario, the robber will need to damage at least two undamaged vertices

to ensure a damage number of at least 10. All 8-cycles can be mapped by an auto-
morphism onto C = v2v8v13v12v17v10v4v3, thus we need only consider if R is forced
to complete C.

We should note if R moves onto any undamaged vertex other than v15 then R

can damage at least one more vertex, as each of those undamaged vertices have at
least two undamaged neighbours. We have three scenarios to consider, R is on v12,
v13, v8. We will show that in each scenario R can move onto an undamaged vertex
that is not v15.

Suppose R is on vertex v12. By an automorphism this is the same as R being on
v3. If the robber can damage v6 we’re done, otherwise regardless of the cops next
two moves, the robber can move onto one of v14 or v16.

Now suppose R is on v13. By symmetry a similar argument will hold if the robber
is on v17 and by an automorphism this is the same as R being on v2 or v4. If v16
is not protected then we are done. Otherwise R can move to v12 and we are in the
previous case.

Lastly, assume R is on v8. By symmetry a similar argument will hold if the robber
is on v10. The cop can not protect both v13 and v2, so the robber can move onto one
of those vertices and we are in the previous case.

Hence, regardless of whether the robber completes a cycle or not, dmg(G) ≥ 10.
�
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4 Classes of Cop-win Graphs and Strongly Regular Graphs

In this section, we look at the damage number of a few classes of graphs that are
known to be cop-win or to be robber-win. In Example 2.7, we saw a graph whose
damage number is much smaller than the capture time. Next, we look more closely
at the class of cop-win graphs that the graph belongs to; i.e., a class of graphs with
maximum capture time.

4.1 Cop-win Graphs with Maximum Capture Time

Consider the family of graphs Hn as shown in Figure 9 and described in [7]. This
family has the capture time of n−4; i.e., it achieves the upper bound for the capture
time of a graph on n vertices. Although the capture time for this family is extreme,
the damage number is not.

v6

v7

v5
v2

v3

v1
v4v8v9v10vn

Figure 9: A graph Hn with capt(Hn) = |V (Hn)| − 4

Theorem 4.1 If n ≥ 7, then dmg(Hn) = �n−3
2
� − 1.

Proof. If n = 7, 8, then C begins on v4 and the damage number is 1. Let n ≥ 9.
Suppose that C and R initial positions are of distance two on the path v7v8 . . . vn.
When the robber comes off the path and onto vertex v7, if the cop is right behind,
the robber can only damage four vertices in H7. Assume that C starts on vertex
v5+(�n−3

2
�−1). If R starts anywhere on the path to the left of C, he will damage at

most �n−3
2
� − 1 vertices. Suppose R starts to the right of C. If they are of distance

two, then �n−3
2
� − 1 vertices will be damaged by the robber.

Should the cop start on a vertex to the right of vertex v5+(�n−3
2

�−1), at least

�n−3
2
� − 1 vertices will be damaged, as the path to the left of C will be at least

�n−3
2
� in length. If the cop starts to the left of vertex v5+(�n−3

2
�−1), then the robber

potentially damages at least one more vertex in the path leading up to H7, thus the
damage number is �n−3

2
� − 1. �

The robber’s strategy to obtain the capture time of n−4 has him visiting all but
five vertices. To contrast, the damage number for this graph is approximately half
of the capture time.

We now turn our attention to a family of graphs that are not cop-win.
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a
b

fc

de

g

Figure 10: Robber’s path on Petersen graph damaging four consecutive vertices

4.2 Strongly Regular Graphs

A regular cop-win graph is a complete graph, so we may assume that G 
= Kn. A
k-regular graph G on n vertices in which each pair of adjacent vertices has exactly
λ common neighbours and each pair of non-adjacent vertices has exactly μ common
neighbours is called strongly regular, denoted SRG(n, k, λ, μ). It is natural to first
compute the damage number of Petersen graph, SRG(10, 3, 0, 1). If the cop starts
on some vertex v and passes on all his moves, then he can protect four vertices.
In addition, the subgraph induced by V (P ) \ N [v] is connected and therefore the
robber can damage all the remaining six vertices. So this, possibly, is not the best
cop strategy and actually as we see in the following theorem, the damage number of
Petersen graph is 5.

Theorem 4.2 For the Petersen graph P , dmg(P ) = 5.

Proof. The girth of the Petersen graph is five. We note that the cop can move
to protect any vertex of the Petersen graph. This is because P is SRG(10, 3, 0, 1)
and thus every vertex is either adjacent to C’s position (already protected) or has a
common neighbour with it (cop can move onto that common neighbor). A subgraph
of P illustrating the proof is shown in Figure 10.

To prove our claim, we show that (a) regardless of the cop’s movements, R can
visit five consecutive undamaged vertices at least, and that (b) the cop can protect
five vertices by preventing R from damaging a sixth vertex.

(a) R can visit five consecutive undamaged vertices: Since girth of the graph is
five and each vertex has three neighbours, R can visit four consecutive undamaged
vertices say a, b, c and d in the first four moves. This is because, as long as the
robber has two undamaged neighbours, he can move onto one of them since the
cop can be adjacent or on at most one of the undamaged neighbours, else the girth
would be ≤ 4. Assume that R is now on d and it is his move. By the structure of
the graph, the second neighbour of d is an undamaged neighbour of a, say f , and
its third neighbour is some undamaged vertex e. The robber can move to either of
the vertices and damage a fifth vertex. At this point however, the cop can force the
robber to move to f by protecting e. So, the robber’s fifth vertex to visit is f .

(b) C can prevent R from damaging a sixth vertex: At this point all the remaining
vertices have either one or two undamaged neighbours, all damaged vertices have one
undamaged neighbour and the robber’s current position, f , has only one undamaged
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neighbour, g. It is now cop’s turn and the cop can prevent the robber from moving
onto g. In turns out that C can prevent the robber from moving onto an undamaged
vertex in all the following moves by protecting R’s undamaged neighbour.

We note that as long as the robber is on a vertex with two undamaged neighbours,
he can move onto an undamaged vertex, whereas if he has only one undamaged
neighbour, the cop is able to protect that undamaged neighbour after his move.
That is why the cop forced the robber to move into f in round 4 and also why
revisiting a damaged vertex does not help the robber at any stage. �

In general, for SRG(n, k, λ, μ) we can say:

Theorem 4.3 If G is a SRG(n, k, λ, μ), then dmg(G) ≥ min{k − λ, k − μ+ 1}.

Proof. Assume that we are in a state of the game where R has done all the damage
and cannot inflict any more damage. Let vr and vc be the cop and robber current
positions and assume that it is robber’s turn. If vrvc ∈ E(G), then vr has k − λ− 1
neighbours that the robber can move onto without getting caught. Since no more
vertices can be damaged, it turns out that all those k − λ− 1 vertices were already
damaged. These plus the damaged vr make a total of at least k−λ damaged vertices.

Now assume that vrvc /∈ E(G). By a similar argument, the k − μ neighbours of
the robber that are not adjacent to the cop must have been already damaged. These
damaged vertices and the damaged vr make a total of at least k − μ + 1 vertices.
Therefore, dmg(G) ≥ min{k − λ, k − μ+ 1}. �

Theorem 4.4 For a Paley graph Pn with n > 9, n+3
4

+ 1 ≤ dmg(Pn) ≤ n−1
2
.

Proof. Paley graph Pn is SRG(n, n−1
2
, n−5

4
, n−1

4
). If C passes in all the rounds to

occupy one vertex, then he can protect n−1
2
+1 vertices and therefore, dmg(Pn) ≤ n−1

2
.

Now we establish the lower bound. By Theorem 4.3, damage number is at least
n+3
4
. Now we show that the robber can damage at least one more than n+3

4
vertices.

Let X = {vr1 , vr2, . . . , vrn+3
4

} be the set of first n+3
4

vertices damaged by the robber

and assume that R is at vrn+3
4

and that it is the robber’s turn. Note that Pn[X]

cannot be a clique as the maximum clique in a Paley graph of order n has
√
n

vertices. We have the following two cases:

Case 1: vrn+3
4

is not adjacent to all the vertices in X. So there is an undamaged

vertex not adjacent to C that the robber can move onto.

Case 2: vrn+3
4

is adjacent to every vertex in X. Since Pn[X ] is not a clique, there is

some vertex in X, say vi, which is adjacent to no more than n+3
4

−2 vertices of X . If
all common neighbours of C and R are undamaged vertices, then C is not adjacent to
any vertex in X and in particular C is not adjacent to vi. Therefore, R safely moves
to vi. In the next round, C can not become adjacent to all the undamaged vertices
adjacent to vi (because vi has at least n+3

4
undamaged neighbours and vi have at

most n−1
4

common neighbours with a vertex), and therefore, R can move from vi to
one more undamaged vertex.
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Therefore, the damage number is at least n+3
4

+ 1. �
If C passes in all the rounds to occupy one vertex, the subgraph induced by the set

of his non-neighbours, B, is a (n−1
4
)–regular graph and |B| = n−1

2
. Therefore, Pn[B]

is Hamiltonian and the robber can cause damage to all the vertices in B. Given that
dmg(P9) = 3 (this is easily seen considering that P9 = C3�C3, where � denotes the
Cartesian product), we propose the following conjecture.

Conjecture 4.5 For a Paley graph Pn, dmg(Pn) =
n−1
2

for n > 9.

5 Density of the Damage of a Graph

Thus far we have been looking at the number of vertices that can be damaged by
the robber. Another quantity that we can study is the proportion of the graph that
is damaged by the robber. This is the damage density of the graph and is computed
as

Ddmg(G) = dmg(G)/|V (G)|.
Similar such ratios have been investigated for cop-number and capture time [1, 2].

For example, for the path P2n, Ddmg(P2n) =
2n−2
4n

, so as n gets arbitrarily large, the
damage density approaches 1/2. In fact, using a family of trees, we can show the
following:

Theorem 5.1 Given any r ∈ [0, 1/2] and ε < 5/4−√
16r2 − 8r + 25/4 we can find

a graph G such that Ddmg(G) is within ε of r.

Proof. We define the graph P2�,y, � ≥ 1, to be P2� with y leaves incident to vertex
�. Let r ∈ (0, 1/2) and 0 < ε < 5/4−√

16r2 − 8r + 25/4. Without loss of generality
we can assume that 0 < r − ε < r + ε < 1/2.

It is the case that dmg(P2�,y) = dmg(P2�) =
2�−2
2

= �− 1. Our claim is that for a
given r and ε there exist � and y such that Ddmg(P2�,y) is within ε of r. That is, we
want to find � and y so that

r − ε <
�− 1

2�+ y
< r + ε. (1)

From Equation 1 we find the following bounds on y:

(�− 1)− (r + ε)(2�)

r + ε
< y <

(�− 1)− (r − ε)(2�)

r − ε
.

If this interval has a length of at least 1 and has values all greater than 0, then
such a P2�,y exists. We will first find the values of � for which the width of the interval
is at least 1.

By basic algebra we can show that

(�− 1)− (r − ε)(2�)

r − ε
− (�− 1)− (r + ε)(2�)

r + ε
≥ 1
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when

� ≥ (r − ε)(r + ε)

2ε
+ 1.

So given r and ε, if we pick � as above, then our interval will have width at least
1, so it will contain an integer. Let

f(�, r, ε) =
(�− 1)− (r + ε)(2�)

r + ε
.

To ensure the interval contains a positive integer, we want f(�, r, ε) ≥ 0, so that
the lower bound of our interval is at least 0. When r− ε < 1/2, which is always true,
f(� + 1, r, ε) > f(�, r, ε), so if f(�, r, ε) ≥ 0 for � = [(r − ε)(r + ε)/2ε] + 1, it is true
for larger values of � as well.

When � = (r−ε)(r+ε)
2ε

+ 1, f(�, r, ε) = 2ε2−2r2−5ε+r
2ε

and this is at least 0 for ε <

5/4 − √
16r2 − 8r + 25/4, thus we can find positive integers � and y such that for

r ∈ [0, 1/2] we can find a graph P2�,y so that Ddmg(P2�,y) is arbitrarily close to r. �

6 Future Work

We end this article with open problems and future research directions.

Problem 6.1 For cop-win graphs, clearly 0 ≤ dmg(G)
capt(G)

< 1, but what is the closure

of the values this ratio can take on? For any r ∈ [0, 1], can we find a graph G such

that
dmg(G)
capt(G)

is arbitrarily close to r?

Problem 6.2 Find families of graphs whose damage number is extreme, that is
dmg(G) = n−Δ− 1.
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