
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 74(3) (2019), Pages 476–485

Destroying the Ramsey property
by the removal of edges

Mark Budden Elijah DeJonge

Department of Mathematics and Computer Science
Western Carolina University

Cullowhee, NC 28723
U.S.A.

mrbudden@email.wcu.edu ehdejonge1@catamount.wcu.edu

Abstract

For any two graphs G and H , the Ramsey number R(G,H) is the mini-
mum number of vertices required in a complete graph to guarantee that
every red/blue coloring of the edges of that complete graph contains ei-
ther a red subgraph isomorphic to G or a blue subgraph isomorphic to
H . Hence, the removal of a single vertex in the complete graph destroys
this property. Rather than remove a vertex (along with all of its incident
edges), we consider the problem of selecting a vertex and removing edges
incident with it. Our goal is to determine, for various pairs of graphs G
and H , the exact number of edges that must be removed in this way in
order to destroy the Ramsey property. We give precise evaluations of this
number in the cases where G is a tree and H is a complete graph and in
the cases where G and H are both stars. Partial results are obtained in
other cases in which G and H are trees, not both of which are stars.

1 Introduction

If G and H are any two graphs, the Ramsey number R(G,H) is defined to be the
least natural number p such that every red/blue coloring of the edges of the complete
graph Kp of order p contains a red subgraph isomorphic to G or a blue subgraph
isomorphic to H . In a recent note, Cowen [7] built on the work of Golomb [10] by
showing that whenever the Ramsey number R(Km, Kn) = p, there exists a red/blue
coloring of the edges in Kp − e (a complete graph of order p with a single edge
removed) that lacks a red Km and a blue Kn. In other words, the Ramsey property
is destroyed by removing a single edge. It can be observed that this result easily
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extends to multicolor Ramsey numbers, but we will not need the multicolor version
here.

The statement R(G,H) = p has two implications. First, every red/blue coloring
of the edges in Kp results in a red subgraph isomorphic to G or a blue subgraph
isomorphic to H . Second, there exists some red/blue coloring of the edges in Kp−1

that lacks a red G and a blue H as subgraphs. Hence, for any pair of graphs, the
removal of a vertex (and all of its incident edges) destroys the Ramsey property.
Our focus will be on determining the exact number of edges incident with a given
vertex that must be removed in order to destroy the Ramsey property. For k ∈ N,
define the k-deleted Ramsey number Dk(G,H) to be the least p ∈ N such that every
red/blue coloring of the edges in Kp−E(K1,k) contains a red subgraph isomorphic to
G or a blue subgraph isomorphic to H . Here, E(K1,k) is the edge set of the complete
bipartite graph K1,k in which the partite sets have cardinalities 1 and k. The graph
K1,k is a tree that is usually referred to as a star. By convention, we set

D0(G,H) := R(G,H).

In 1973, Chvátal and Harary [6] defined the number R(G,F , c), where G is a
graph, F is a family of graphs, and c is a positive integer, to be the greatest integer
n such that every coloring of G using c colors results in at least n monochromatic
occurrences of members of F . When F = {F}, we write R(G,F, c) in place of
R(G,F , c). In this regard, our symbol Dk(F, F ) is the least positive integer p such
that

R(Kp−1 −E(K1,k), F, 2) = 0 and R(Kp − E(K1,k), F, 2) > 0.

If we note that every red/blue coloring of Kp+1 − E(K1,k) contains a red/blue
coloring of Kp (remove the vertex in the partite set with cardinality 1 in K1,k), then
it follows that

Dk(G,H) ≤ R(G,H) + 1.

On the other hand, if every red/blue coloring of Kp − E(K1,k) results in a red G or
a blue H , then so does every red/blue coloring of Kp. Hence,

R(G,H) ≤ Dk(G,H).

Since the various Ramsey numbers only take on values from N, it follows that
Dk(G,H) is either equal to R(G,H) or R(G,H) + 1. Following this observation,
Cowen’s result [7] is equivalent to

D1(Km, Kn) = R(Km, Kn) + 1.

For all k′ ≤ k, we find that

Dk′(G,H) ≤ Dk(G,H),
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since every red/blue coloring of Kp−E(K1,k′) contains a red G or a blue H whenever
every red blue coloring of Kp −E(K1,k) contains a red G or a blue H . Thus, for any
pair of graphs, G and H , define the deleted edge number de(G,H) to be the least
k ∈ N such that

Dk−1(G,H) < Dk(G,H).

That is, de(G,H) is the least k such that

Dk−1(G,H) = R(G,H) and Dk(G,H) = R(G,H) + 1.

Cowen’s result [7] is then equivalent to de(Km, Kn) = 1 for all m,n ∈ N . Since
removing a vertex and all of its incident edges destroys the Ramsey property, it
follows that

1 ≤ de(G,H) ≤ R(G,H)− 1.

While the definition of de(G,H) was motivated by Cowen’s paper [7], it may
be viewed as a variation of the size Ramsey number r̂(G,H) introduced by Erdős,
Faudree, Rousseau, and Schelp [9] and the upper and lower size Ramsey numbers,
u(G,H) and �(G,H), respectively, considered by Erdős and Faudree [8]. Here,
r̂(G,H) is defined to be the minimum number of edges in a graph F such that
every red/blue coloring of the edges of F results in a red copy of G or a blue copy
of H . The main result of Cowen’s note [7] actually follows from the evaluation of
r̂(Km, Kn) given in Theorem 1 of [9].

The upper and lower size Ramsey numbers discussed in [8] are related to r̂(G,H),
but focus on subgraphs ofKR(G,H). The upper size Ramsey number u(G,H) is defined
to be the minimum number such that if a subgraph L of KR(G,H) has at least u(G,H)
edges, then every red/blue coloring of the edges of L contains a red G or a blue H .
The lower size Ramsey number is the minimum number of edges in any subgraph L
of KR(G,H) such that every red/blue coloring of the edges of L contains a red G or a
blue H . Since de(G,H) is determined by removing edges from KR(G,H) in a specified
way, it follows that

�(G,H) ≤
(

r
2

)
− de(G,H) + 1 ≤ u(G,H).

This inequality implies that

r2 − r + 2

2
− u(G,H) ≤ de(G,H) ≤ r2 − r + 2

2
− �(G,H).

As we shall discover, de(G,H) serves as a measure of connectivity for the pair of
graphs G and H . Therefore, our primary focus in this paper will be on the compu-
tation of de(G,H) when G and H are at the extremes of connectivity. Specifically,
we consider the cases where G and H are complete graphs or trees. Section 2 offers
an exact evaluation of de(T,Kn), where T is any tree. In Section 3, we focus on the
evaluation of de(T, T ′), where T and T ′ are trees. Here, we are able to provide exact
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evaluations when T and T ′ are stars, and partial results in other cases. We conclude
the paper by listing open problems and some potential applications of deleted edge
numbers.

2 Trees Versus Complete Graphs

In this section, we focus on the evaluation of de(G,H), where G is a tree and H is
a complete graph. It is well known that if Tm is a tree of order m, then

R(Tm, Kn) = (m− 1)(n− 1) + 1.

The fact that this number is a lower bound for R(Tm, Kn) was proved by Chvátal
and Harary [5], and that it is an upper bound was shown by Chvátal [4]. Since
T2 = K2, we already know that de(T2, Kn) = 1. The remaining tree versus complete
graph cases are addressed by the following theorem.

Theorem 2.1. Let Tm be a tree of order m ≥ 2 and assume that n ≥ 3. Then
de(Tm, Kn) = m− 1.

Proof. This result will follow from showing that

Dm−2(Tm, Kn) = R(Tm, Kn) = (m− 1)(n− 1) + 1 (1)

and
Dm−1(Tm, Kn) = R(Tm, Kn) + 1 = (m− 1)(n− 1) + 2. (2)

Equation (1) will follow from proving that

Dm−2(Tm, Kn) ≤ (m− 1)(n− 1) + 1.

We will proceed by (strong) induction on m+n. Our initial case was handled above:

D0(T2, K3) = R(T2, K3) = 3.

Assume that
Dm′−2(Tm′ , Kn′) ≤ (m′ − 1)(n′ − 1) + 1

for all m′ + n′ < m+ n and consider a red/blue coloring of the edges of

K(m−1)(n−1)+1 − E(K1,m−2).

Denote the vertices of the missing star by a and b1, b2, . . . , bm−2, where a is the center
(i.e., the vertex of degree m−2). Denote by T ′ the tree formed by removing a single
leaf from Tm and let x be the vertex in T ′ that was adjacent to the removed leaf.
First, we apply the inductive hypothesis to the K(m−1)(n−2)+1 formed by removing
the vertices a, b1, b2, . . . , bm−2. Then there exists a red Tm or a blue Kn−1. In the
former case, we are done, so assume there is a blue Kn−1 and observe that it does not
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include any of the vertices a, b1, b2, . . . , bm−2. Removing the vertices in this complete
subgraph, we obtain a red/blue coloring of

K(m−2)(n−1)+1 − E(K1,m−2).

By the inductive hypothesis, there exists a red T ′ or a blue Kn. Assume the for-
mer case. Hence, the original coloring contains a red T ′ and a blue Kn−1 that are
disjoint. Since the Kn−1 does not contain any of the vertices a, b1, b2, . . . , bm−2, all
edges connecting x to the vertices in the Kn−1 are included. If any such edge is red,
we obtain a red Tm. Otherwise, they are all blue, and we obtain a blue Kn. This
completes the proof of Equation (1).

Equation (2) will follow from proving that

Dm−1(Tm, Kn) > (m− 1)(n− 1) + 1.

That is, we must provide a red/blue coloring of

K(m−1)(n−1)+1 −E(K1,m−1)

that lacks a red Tm and a blue Kn. Begin with n− 1 copies of red Km−1-subgraphs,
interconnected by blue edges. The resulting K(m−1)(n−1) lacks a red Tm since the
largest connected red subgraph has order m − 1 and it lacks a blue Kn since every
complete blue subgraph contains at most one vertex from each red Km−1. Select
one of the red Km−1-subgraphs and denote its vertices by b1, b2, . . . , bm−1. Add in
vertex a and connect it via blue edges to all vertices in the K(m−1)(n−1), except for
b1, b2, . . . , bm−1 (these will be the missing edges). The result is a red/blue coloring of

K(m−1)(n−1)+1 −E(K1,m−1)

that lacks a red Tm and a blue Km. Equation (2) follows, completing the proof of
the theorem.

3 Trees Versus Trees

Now we turn our attention to trees versus trees, starting with the case of stars versus
stars. In [14], it was proved that if m,n ≥ 1, then

R(K1,m, K1,n) =

{
m+ n− 1 if m and n are both even
m+ n if m or n are odd,

and in [2], this result was generalized to more than two stars. We will prove that
whenever m,n ≥ 2 are both even, D1(K1,m, K1,n) ≥ m + n, from which it follows
that de(K1,m, K1,n) = 1. This result was first observed by Erdős and Faudree [8],
but for the sake of completion, we give a proof.
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Theorem 3.1. If m,n ≥ 2 are both even, then de(K1,m, K1,n) = 1.

Proof. To prove this result, we must show that D1(K1,m, K1,n) ≥ m+ n, which can
be achieved by producing a red/blue coloring of Km+n−1−e that lacks a red K1,m and
a blue K1,n. We start with the observation that since m+n−2 is even, the complete
graph Km+n−2 has a 1-factorization (see Theorem 9.1 of Harary’s book [13]). Now,
we observe that the subgraph spanned by the red edges contains a matching of size
at least m−2

2
. If we switch the edges in such a matching from red to blue, we produce

a red/blue coloring of Km+n−2 that contains m − 2 vertices with red degree m − 2
and blue degree n−1 and n−1 vertices with red degree m−1 and blue degree n−2.
Denote the set containing the first collection of vertices by A and the set containing
the second collection of vertices by B. Finally, we introduce a new vertex, connecting
it via red edges to the vertices in A and via blue edges to all but one vertex in B.
No vertex in the resulting Km+n−1 − e has a red degree exceeding m − 1 or a blue
degree exceeding n− 1.

It was observed by Erdős, Faudree, Rousseau, and Schelp (see Theorem 2 of [9])
that every red/blue coloring of the edges of K1,m+n−1 produces a red K1,m or a blue
K1,n. This leads to the following theorem.

Theorem 3.2. If m ≥ 1 or n ≥ 1 is odd, then de(K1,m, K1,n) = m+ n− 1.

Proof. It is known that when m or n are odd,

R(K1,m, K1,n) = m+ n.

Consider a red/blue coloring of Km+n and note that the removal of m+ n− 2 edges
incident with a fixed vertex leaves at least one vertex having degree m + n − 1.
Hence, all edges incident with a fixed vertex must be removed in order to destroy
the Ramsey property.

Before we consider deleted edge numbers involving non-star trees we state the
following special case of Lemma 2.3 given by Guo and Volkmann in [11]. Note that
for any vertex x in a graph G, we denote by degG(x) the degree of x in G. The
minimum and maximum degrees in G are then defined by the following:

δ(G) := min{degG(x) | x ∈ V (G)} and Δ(G) := max{degG(x) | x ∈ V (G)}.
Lemma 3.3. Let G be a connected graph satisfying δ(G) ≥ n ≥ 2 and having order
|G| ≥ n + 2. If T is any non-star tree of order n + 2, then G contains a subgraph
isomorphic to T .

Although we are unable to determine de(T,K1,n) for all non-star trees T , the
following theorem provides an upper bound for the corresponding 1-deleted Ramsey
numbers.
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Theorem 3.4. Let Tm be a non-star tree of order m ≥ 4 and n ≥ 1. Then

D1(Tm, K1,n) ≤ m+ n− 1.

Proof. Consider a red/blue coloring of the edges of Km+n−1−e. Denote the subgraph
spanned by the red edges by GR and the subgraph spanned by the blue edges by
GB. If the coloring lacks a blue K1,n, then Δ(GB) ≤ n − 1. Since two vertices in
Km+n−1 − e have degree m+ n− 3 (call them a and b), it follows that

δ(GR) ≥ m+ n− 3− (n− 1) = m− 2.

Before we can apply Lemma 3.3, it is necessary to argue that GR contains a connected
component having order at least m. Let G be the largest connected component of
GR. Then G must contain some vertex x other than a or b, as including only a
and/or b would result in G being an empty graph. Such an x has degree

degG(x) ≥ m+ n− 2− (n− 1) = m− 1

in G, forcing G to have order at least m. Thus, we are able to apply Lemma 3.3,
from which it follows that G contains a subgraph isomorphic to Tm.

In order to consider the implications of Theorem 3.4 on the deleted edge number,
observe that de(G,H) ≥ k if and only if

Dk−1(G,H) ≤ R(G,H),

for graphs G and H . Hence, if Tm is a non-star tree of order m ≥ 4 that satisfies

R(Tm, K1,n) = m+ n− 1,

then de(Tm, K1,n) ≥ 2. In 1974, Burr [1] proved that if Tm is any tree of order m for
which (m− 1)|(n− 1), then

R(Tm, K1,n) = m+ n− 1.

Burr’s result, combined with Theorem 3.4, implies the following corollary.

Corollary 3.5. Let Tm be a non-star tree of order m ≥ 4. Then for all n ≥ 2 such
that (m− 1)|(n− 1), de(Tm, K1,n) ≥ 2.

The following theorem is motivated by Theorem 3.2 in [11]. Using the notation
introduced by Guo and Volkmann in [11], we denote by T ∗

m a tree of order m with
Δ(T ∗

m) = m−2. Such a tree is necessarily a broom, with one vertex of degree m−2,
one vertex of degree 2, and all other vertices having degree 1.

Theorem 3.6. Let T ∗
m and T ∗

n be trees of orders m ≥ 4 and n ≥ 4 satisfying

Δ(T ∗
m) = m− 2 and Δ(T ∗

n) = n− 2.

Then D1(T
∗
m, T

∗
n) ≤ m+ n− 3.
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Proof. Consider a red/blue coloring of Km+n−3− e that lacks a blue T ∗
n . Let GR and

GB denote the graphs spanned by the red and blue edges, respectively. If Δ(GB) ≤
n− 3, then Δ(GR) ≥ m− 2, and by Lemma 3.3, GR contains a subgraph isomorphic
to T ∗

m. If Δ(GB) ≥ n − 2, choose a vertex v having blue degree degGB
(v) = n − 2.

Pick a vertex set A ⊆ N(v,GB) with cardinality |A| = n− 2, where N(v,GB) is the
set of all vertices in GB that are adjacent to v (i.e., the neighbors of v in GB). Also,
define the set

B := V (Km+n−3 − e)− (A ∪ {v}),
which necessarily has cardinality |B| = m − 2. Since the original red/blue coloring
of Km+n−3 − e lacks a blue T ∗

n , it follows that all edges interconnecting A and B
must be red. We claim that the subgraph spanned by these red edges contains a
red T ∗

m, despite the possibility that one of them is the missing edge. Without loss of
generality suppose that ab is the missing edge with a ∈ A and b ∈ B. Since n ≥ 4,
A contains some other vertex x �= a, which is adjacent via red edges to all vertices in
B. Let x be the vertex in the red T ∗

m having degree m− 2. Since m ≥ 4, B contains
some other vertex y �= b, which forms the vertex of degree 2 in T ∗

m by including
the red edge ay. Hence, we have shown that every red/blue coloring of Km+n−3 − e
contains a red T ∗

m or a blue T ∗
n , completing the proof of the theorem.

As with Theorem 3.4 and Corollary 3.5, we can compare the previous theorem
to the exact Ramsey numbers determined in Theorem 3.2 in [11]. Specifically, when
(m− 1)|(n− 3) or (n− 1)|(m− 3), it is known that

R(T ∗
m, T

∗
n) = m+ n− 3,

resulting in the following corollary.

Corollary 3.7. If (m − 1)|(n − 3) or if (n − 1)|(m − 3) where m,n ≥ 4, then
de(T ∗

m, T
∗
n) ≥ 2.

4 Conclusion

Most of the proofs given in this paper mirror the analogous proofs for Ramsey num-
bers, but we find that we can “take up the slack” in the original proofs. The lim-
itations for continuing to evaluate deleted edge numbers for other pairs of graphs
is only restricted to those whose Ramsey numbers are known. In this regard, fu-
ture research into deleted edge numbers may involve cycles, books, wheels, complete
graphs missing a single edge, and other graphs not studied here. We conclude by
listing some additional problems for future inquiry.

1. While we know the exact values of very few of the classical Ramsey numbers
R(Km, Kn), we are hopeful that the observation

D1(Km, Kn) = R(Km, Kn) + 1
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may offer some assistance in improving the known bounds for some m and n.
For example, if the best known upper bound is R(Km, Kn) ≤ p, then proving

D1(Km, Kn) ≤ p

would imply the improved lower bound

R(Km, Kn) ≤ D1(Km, Kn)− 1 ≤ p− 1.

Radziszowski’s dynamic survey [15] offers a comprehensive listing of the best
known bounds for classical Ramsey numbers and would be a good starting
point for initiating such applications.

2. When G andH are trees, we found examples at the opposite ends of the interval

1 ≤ de(G,H) ≤ R(G,H)− 1.

Are there trees G and H for which the deleted edge number is not one of the
extremes (i.e., 1 < de(G,H) < R(G,H)−1)? Guo and Volkmann’s results [11]
involving non-star trees and Burr and Robert’s results involving paths [2, 3]
seem like good starting points in seeking out such an example.

3. In a sense, the deleted edge number seems to offer a measure of connectivity
for the given pair of graphs. For pairs of complete graphs, the deleted edge
number is 1, but when Tm is a tree of order m, we found that

de(Tm, Kn) = m− 1.

Is it true that if G is a connected graph of order m, then

1 ≤ de(G,Kn) ≤ m− 1?

If so, the deleted edge number can serve as a measure of connectivity for G.

4. Variations of classical Ramsey numbers such as Gallai-Ramsey numbers (e.g.,
see [12]) lead one to define a rainbow triangle-free deleted edge number. In this
regard, one can study the number of edges necessary to destroy the Ramsey
property for the t-colored Gallai-Ramsey number grt(G), defined to be the
least natural number p such that every rainbow triangle-free t-coloring of Kp

contains a monochromatic copy of G.

5. An analogue of Cowen’s result [7] holds for r-uniform hypergraphs. While fewer
exact Ramsey numbers are known in the hypergraph setting, the deleted edge
number for r-uniform hypergraphs can certainly be considered in such cases.
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[6] V. Chvátal and F. Harary, Generalized Ramsey Theorems for Graphs I. Diagonal
Numbers, Period. Math. Hungar. 3 (1973), 115–124.

[7] R. Cowen, Deleting Edges from Ramsey Minimal Examples, Amer. Math.
Monthly 122 (2015), 681–683.
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