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Abstract

We study the number of edges, e(G), in triangle-free graphs with a pre-
scribed number of vertices, n(G), independence number, α(G), and num-
ber of cycles of length 4, N(C4;G). In particular we show that

3e(G)− 17n(G) + 35α(G) + N(C4;G) ≥ 0

for all triangle-free graphs G. We also characterise the graphs that satisfy
this inequality with equality.

As a consequence we improve the previously best known lower bounds
on the independence ratio i(G) = α(G)/n(G) for graphs of average degree
at most 4 and girth at least 5, 6 or 7.

1 Introduction

1.1 Background

The (minimum) edge numbers, e(3, k, n), are defined as the minimum number of
edges in a triangle-free graph on n vertices without an independent set of size k.
These numbers, and constructions of related graphs, have successfully been used to
compute, or bound, the classical two-colour Ramsey numbers R(3, �). In particular
the edge numbers have been used when studying R(3, �) for � = 6 by Kalbfleisch
[8], for � = 7 by Graver and Yackel [4] and for � = 9 by Grinstead and Roberts
[5]. Among the useful upper bounds on the Ramsey numbers R(3, �) that have been
obtained by these considerations are those of Radziszowski and Kreher (e.g. [11]).

In particular Radziszowski and Kreher proved, in [11], that e(3, k+ 1, n) ≥ 6n−
13k for all non-negative integers n and k. One may differently phrase their result
by saying t(G) := e(G) − 6n(G) + 13α(G) ≥ 0 for all triangle-free simple graphs
G = (V,E), where e(G) = |E| denotes the number of edges, n(G) = |V | the number
of vertices and α(G) the independence number of G. Moreover the triangle-free
graphs G for which t(G) = 0 have been classified in part by Radziszowski and
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Kreher in [11] and completely by Backelin in [2]. The invariant t is just one in a
series of invariants of a similar kind, all of which give bounds on the edge-numbers
and for which there are classifications of the triangle-free graphs that satisfy them
with equality.

In this article we consider a related invariant, ν(G), which we define as

ν(G) = 3e(G)− 17n(G) + 35α(G) + N(C4;G),

where N(Ck;G) denotes the number of cycles of length k in G. We will, in particular,
show that ν(G) ≥ 0 for all triangle-free graphs G (see Theorem 1.1 in Section 1.2).

This affirmatively answers a question first considered in [1]. We also give a
classification of the graphs that satisfy this inequality with equality. We will see that
this bound is tight since there are (infinitely many) triangle-free graphs G for which
ν(G) = 0. These graphs seem to be closely related to those for which t(G) = 0. In
particular there are even infinitely many connected triangle-free graphs, G, for which
t(G) = ν(G) = 0.

We define the independence ratio of a graph G as i(G) = α(G)/n(G). The main
result of this article implies that i(G) ≥ 11

35
for all graphs of girth at least 5 and average

degree 4. This improves the previously known bounds obtained as special cases of
more general theorems by Hopkins and Staton in [6] (where we have the bound
i(G) ≥ 7

23
for graphs with maximum degree 4 and girth at least 6). The results of

Hopkins and Staton have also been improved and generalised upon by Lichiardopol
in [10]. The bound i(G) ≥ 11

35
improves the bounds given by Lichiardopol for graphs

with maximum degree 4 and girth 5, 6 or 7.

1.2 Graphs with ν-value zero and the main theorem

We will here describe all graphs with ν-value zero. That these are indeed all such
graphs will be demonstrated in the conclusion of this article. All graphs article will
be assumed to be non-empty.

We need to define the following class of graphs (which appears in [1, 2] as chains
denoted by Chk, in [11] as Fk and in [7] as Hk). These graphs will play an important
role in our proofs.

Definition 1.1. Let Ch2 be a cycle of length 5. We recursively define Chk+1 for k ≥
2. Let x ∈ V (Chk) be some vertex of degree 2. Let V (Chk+1) = V (Chk) ·∪{v, w1, w2}
and E(Chk+1) = E(Chk) ∪ {vw1, vw2, w1x} ∪ {w2y; y ∈ N(x)}.

It is easy to verify that Chk is then well-defined for k ≥ 2, i.e. up to isomorphism
the result does not depend on the choice of vertex of degree 2 in the recursive con-
struction. It is also easy to check that n(Chk) = 3k−1, e(Chk) = 5k−5, α(Chk) = k
and N(C4;Chk) = k − 2. Hence, ν(Chk) = 0 for all k ≥ 2.

There are also two connected 3-regular graphs with ν-value 0. These have been
characterised in [1]. Using the same notation as there we define the graphs (2C7)2i
and W5 as follows. Let V ((2C7)2i) = {a0, a1, . . . , a6} ∪ {b0, b1, . . . , b6} and the edges
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of (2C7)2i be such that both a0, a1, . . . , a6 and b0, b1, . . . , b6 form cycles of length 7
in (2C7)2i. Connect these two cycles by adding an edge bia2i for all i ∈ {0, 1, . . . , 6},
taking indices modulo 7.
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Figure 1: The graphs (2C7)2i and W5, respectively..

This graph is also known as a generalised Petersen graph, variously denoted
GP(7, 2) or P(7, 2).

Let V (W5) = {a0, a1} ∪ {b0, . . . , b4} ∪ {c0, . . . , c7} and the edges of W5 be such
that a0a1 are adjacent, b0, . . . , b4 are independent and c0, . . . , c7 form a cycle of length
8. Add edges biai for i ∈ {1, 2, 3, 4} taking ai-indices modulo 2. Also add edges bic2i
and bic2i+3 for i ∈ {1, 2, 3, 4} taking indices modulo 8.

We will in this article show that these two 3-regular graphs are the only 3-regular
connected graphs with ν-value zero. This extends a result in [1] that states that
these two graphs are the only two 3-regular graphs with ν-value zero that neither
contains cycles of length 3 nor of length 4.

Let BCk, k ≥ 4, be a graph consisting of an induced cycle on vertices c1, c2 . . . , c2k
and one induced cycle on vertices d1, d2 . . . , dk. Connect the cycles by edges dic2i−2

and dic2i+1 for i ∈ {1, . . . , k}, taking indices modulo 2k for ci’s and modulo k for
di’s. The graphs BCk have been called bicycles (in [1] and [2]) or extended k-chains
(in [7], denoted Ek) and Gk (in [11]).

Note that we have n(BCk) = 3k, e(BCk) = 5k. It is not difficult to show that
α(BCk) = k. Moreover, for k ≥ 5 we have N(C4;BCk) = k. Hence ν(BCk) = 0. In
the case k = 4 we have one “extra” cycle of length 4 formed by the vertices d1, d2, d3
and d4 and because of this we have ν(Ch4) = 1.

The main goal of this article is to establish the following theorem. We introduce
a notation for the family of graphs with ν-value zero that have been defined in this
section.

G := {W5, (2C7)2i} ∪ {Chk; k ≥ 2} ∪ {BCk; k ≥ 5}.
Theorem 1.1. If G is a triangle-free graph then ν(G) ≥ 0, and if ν(G) = 0, with G
connected, then G ∈ G.
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Figure 2: The graph BC5.

This means that the only triangle-free connected graphs with ν-value zero are
those that we have defined in this section. Since ν is linear (in the sense that if
H1+H2 is the disjoint union of graphs H1 and H2 then ν(H1+H2) = ν(H1)+ν(H2))
it is enough to classify the connected graphs with ν-value zero as in Theorem 1.1.

1.3 Outline of the proof of Theorem 1.1

To establish Theorem 1.1 in Section 1.4 we introduce some preliminary results which
we need later while simultaneously exhibiting the bulk of the notation used in the
article.

The entirety of Section 2.1 is dedicated to proving Lemma 2.2. Part (xi) of this
lemma immediately implies Theorem 1.1. The lemma is proved using simultaneous
induction over all of its eleven separate statements. Each statement relates the value
of ν(G) to some structure of the graph G. For example one such statement asserts
that the minimum degree of G is at most 4 whenever ν(G) ≤ 7. We successively ob-
tain stronger structural properties for G by strengthening the assumed upper bound
on ν(G).

Most of the assertions in the lemma are proved by showing that if the assertion
would not hold then G has a proper subgraph which does not satisfy one of the
assertions. In proving the crucial part (xi) of the lemma we mimic the work of
Radziszowski and Kreher in [11] with the use of a slight modification of their proof
mentioned by Backelin in [2]. This part of the proof mostly consists of reformulating
their results to make them fit into our particular context.

1.4 Preliminaries and notation

We start by stating some preliminary lemmas which we will use later. These are
for the most part easy to prove. For terminology and notation not explained in this
article we refer the reader to [3].

For edge sets T ⊆ E(G) we denote by G−T the graph (V (G), E(G) \T ) and for
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vertex sets S ⊆ V (G) we denote by G \ S the induced subgraph G[V (G) \ S]. For
this and other notation we may omit the use of set parentheses for singleton sets.
Note in particular the distinction between G− e and G \ e for e ∈ E(G).

If e ∈ E(G) is such that α(G− e) = α(G) we say that e is redundant, otherwise
it is called critical. The graph G is said to be edge-critical if all its edges are critical.
Its is easily verified that all graphs defined in the previous section are edge-critical.
A set of vertices S ⊆ V (G) is said to destabilise G if α(G \S) < α(G), and S is then
said to be a destabiliser. Inclusion-wise minimal destabilising sets are called minimal
destabilisers. If G has no destabilisers of size r then we say that G is r-stable.

For a vertex v ∈ V (G) the vertices at distance exactly 2 from v in G is denoted
by N2(v). The second degree of v in G is defined to be the sum of the degrees of the
vertices in N(v) and is denoted by d2(G; v), whereas the d(G; v) denotes the ordinary
degree of v in G.1

The length of a path will always refer to the number of vertices in the path. We
will use Vk(G), for k ≥ 0, to denote the set of all vertices in G of degree exactly k, i.e.
Vk(G) = {v ∈ V (G); d(v) = k}, and Gk denotes G[Vk(G)] unless G with subscript k
has been separately defined.

Lemma 1.1. (Lemma 2.2 in [2]) If G is a connected edge-critical triangle-free graph,
v ∈ V (G) and d(v) ≥ 2 then N2(v) is a destabiliser of Gv.

For a set of vertices W ⊆ V (G) we let N [W ] denote the closed neighbourhood of
the vertices in W , which is the set of vertices that are either in W or adjacent to
a vertex in W . If S is an independent set of vertices we let GS denote the graph
G\N [S], i.e. the graph obtained by removing all the vertices in S, all their neighbours
and edges incident to all such vertices. When it is unambiguous we may drop set
parenthesis in these notations, writing e.g. Gv for G{v}.

We now present a few lemmas, the proofs of which are standard and therefore for
the most part omitted.

Lemma 1.2. (Lemma 2.6 of [2]) Let G be an edge-critical, connected and triangle-
free graph. If v ∈ V (G) is a vertex of degree 2, then Gv is connected.

Lemma 1.3. If G is edge-critical, S ⊆ V (G) destabilises G and v ∈ V (G) \ S, then
S ∩ V (Gv) destabilises Gv.

Proof. Otherwise there would be a maximum independent set T of Gv avoiding
S ∩ V (Gv). |T | = α(Gv) = α(G) − 1 since G is edge-critical, whence T ∪ {v}
would be a maximum independent set of G avoiding S. This contradicts that S
destabilises G. �

We now classify the minimal destabilisers of minimum size in Chk-graphs. The
following two lemmas correspond to parts of a more general lemma in [1] and simple
stand-alone proofs may be found in [9].

1Here and in other similar notation we may drop the graph G from the notation whenever there
is no ambiguity, i.e. d(v) = d(G; v).
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Lemma 1.4. (Lemma 6.2(b) of [1]) If S destabilises G = Chk, where k ≥ 2, then
|S| ≥ 3 with equality if and only if S = N [v] for some v ∈ V (G) of degree 2.

For minimal destabilisers of size 4 we will not completely classify them, but the
following lemma tells us that in all but one case they are connected.

Lemma 1.5. (Lemma 6.2(e) of [1]) If S is a minimal destabiliser of G = Chk such
that |S| = 4 and S is not connected in G, then k = 3 and S = V2(Ch3).

For subsets of vertices A,B ⊆ V (G) we write EG(A,B) for the set of edges
with one endpoint in A and the other endpoint in B, i.e. EG(A,B) is the set of
edges E(G) ∩ {{a, b}; a ∈ A, b ∈ B}. The cardinality of this set will be de-
noted by eG(A,B). We will sometimes abuse the notation by writing EG(H1, H2) for
EG(V (H1), V (H2)) where H1 and H2 are two subgraphs of G.

Lemma 1.6. Let H be an induced subgraph of G and M ⊆ V (H) be the set of
vertices adjacent to V (G) \ V (H). If M does not destabilise H then every edge in
E(H,G \H) is redundant.

Proof. Supposing that e ∈ E(H,G\H) were not redundant, then α(G−e) = α(G)+1.
Let S be a maximum independent set of G− e. S ′ = S ∩ V (H) is independent in H .
Since M does not destabilise H there is a maximum independent set S ′′ of H such
that S ′′ ∩M = ∅. It follows that (S \ S ′) ∪ S ′′ is independent, in G − e, of size at
least α(G) + 1. But since (S \ S ′) ∪ S ′′ avoids e ∩ V (H) the set (S \ S ′) ∪ S ′′ would
also be independent in G, a contradiction. �

The distance between two vertices u, v ∈ V (G) is denoted distG(u, v) and is
defined to be the least number of edges in a path from u to v, or infinity if there is
no such path.

Lemma 1.7. If G is a triangle-free graph without cycles of length 4 which contains
a k-cycle C = c1, c2, . . . , ck, then for all v ∈ V (G) \ C we have |N(v) ∩ C| ≤ 	k

3

.

Proof. Let H := G[C] be the induced graph on C. By assumption we have that
∀u1, u2 ∈ N(v) : distG\v(u1, u2) ≥ 3. Hence, a fortiori, distH(u1, u2) ≥ 3 for all
u1, u2 ∈ N(v) ∩ C so indeed at most a third of the vertices of C can be in the
neighbourhood of v. �

In particular the previous lemma gives us that if we have a cycle of length 5 in
a subgraph of G then any vertex outside the cycle can be adjacent to at most one
vertex in the cycle. This fact will be used frequently in what follows.

We now define a collection of graphs with ν-value and minimum degree 2 which
will be needed in our proofs.

Definition 1.2. Let a1, a2, b1 and b2 be the vertices of degree 2 in G = Ch3, where
a1a2, b1b2 ∈ E(G). We define the shackled chain SCh1 by letting V (SCh1) = V (G) ·∪
{v, w1, w2} and E(SCh1) = E(G)∪ {vw1, vw2, w1a1, w1b1, w2a2, w2b2}. For k ≥ 2 we
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define SChk recursively as follows. Let a be any vertex of degree 2 in SChk−1 with
neighbours b1 and b2. We then set V (SChk) to be the set V (SChk−1) ·∪ {v, w1, w2}
and E(SChk) = E(SChk−1) ∪ {vw1, vw2, w1a, w2b1, w2b2}.

For example in Figure 3 the graphs SCh1 and SCh2 are shown.

b2

a1

b1

a2

w2

w1

v

b2

b1 a

w2

w1

v

Figure 3: The smallest shackled chains SCh1 (left) and SCh2 (right).

It is not difficult to prove that the definition does not depend (up to isomorphism)
on the choice of vertex of degree 2 in the recursive construction. It is also not hard to
see that n(SChk) = 3k+8, e(SChk) = 5k+11, α(SChk) = k+3 and N(C4;SChk) =
k for all k ≥ 1. Therefore we get that ν(SChk) = 2 for all k ≥ 1. Furthermore, if S
is a destabiliser of size 3 in SChk, then S = N [v] for some v ∈ V2(SChk).

2 Lemmas and the proof

Let C(G) denote the set of connected components of the graph G. Note in particular
that ν(G) =

∑
C∈C(G) ν(C). For S ⊆ V (G) we denote by N(H ;G, S) the number

of subgraphs of G that are isomorphic to H such that V (H) ∩ S �= ∅. Recall that
Gv = G \N [v].

Lemma 2.1. If G is a triangle-free graph, then

∀v ∈ V (G) : ν(Gv) ≤ ν(G)− 3d2(v) + 17d(v)− 18− N(C4;G,N(v)).

Proof. Note that n(Gv) = n(G) − d(v) − 1 and e(Gv) = e(G) − d2(v) (since G is
triangle-free). Also we have that α(Gv) ≤ α(G) − 1 since any maximum indepen-
dent set in G must either contain v or a vertex in the neighbourhood of v. Also,
N(C4;Gv) = N(C4;G) − N(C4;G,N(v)) since any cycle of length 4 through v also
goes through some of the neighbours of v.

Therefore, we get that

ν(Gv) ≤ ν(G)− 3d2(v) + 17d(v) + 17− 35−N(C4;G,N(v))

= ν(G)− 3d2(v) + 17d(v)− 18− N(C4;G,N(v)).

�

The rest of this article is dedicated to proving the following lemma which implies
Theorem 1.1, since it includes this theorem as statement (xi).
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Lemma 2.2. Let G be a connected triangle-free graph.

(i) If S destabilises G then

e(S) ≥
⌈
3
∑

v∈S d(v)− 17|S|+ 35− ν(G)

3

⌉
.

(ii) If δ(G) = δ and v ∈ V (G) is a vertex of degree d then either N2(v) destabilises
Gv or ν(G) ≥ 3δd+ 18d− 17.

(iii) If ν(G) ≤ 17 then G is 1-stable and δ(G) ≥ 1.

(iv) If ν(G) ≤ 7 then δ(G) ≤ 4.

(v) If ν(G) ≤ 6 and G is 2-regular then G ∼= C5.

(vi) if ν(G) ≤ 6 then either G is 2-stable (and, a fortiori, δ(G) ≥ 2) or G ∼= K2.

(vii) If ν(G) ≤ 4 and δ(G) ≥ 3 then G is 3-stable.

(viii) If ν(G) ≤ 3, G �∼= C5, α(G2) > 1, and N(C4;N(V2(G))) = 0, then there is an
edge e ∈ E(G) such that G− e ∼= C5 + G′ where G′ ∈ G \ {Chk; k ≥ 3}.

(ix) If ν(G) ≤ 2 then G is edge-critical.

(x) If ν(G) ≤ 2 and δ(G) = 2, then G ∼= Chk for some k ≥ 2 or G ∼= SCh� for
some � ≥ 1.

(xi) If ν(G) ≤ 0 then G ∈ G where G is as defined in Section 1.2.

2.1 Proof of Lemma 2.2

We will prove the above lemma by induction. All the statements hold trivially for
G ∼= K1. Assume that they hold for all graphs H such that n(H) < n(G) or
n(H) = n(G) ∧ e(H) < e(G). In particular all assertions in the lemma hold for
H � G.

We will now establish each of the assertions, in order, also for G. In the process
we establish several claims that we may by induction assume holds for all previous
graphs (in the inductive order). Note that ν(H) ≥ 0 for all H � G by (xi). This will
be used very frequently, in particular for H = GS where S is some independent set
of vertices.

Proof of (i). Inductively, by (xi), we have ν(G \ S) ≥ 0. The assertion follows easily
by noting that e(G \ S) = e(G) − ∑

v∈S d(v) + e(S), n(G \ S) = n(G) − |S| and
α(G \ S) ≤ α(G)− 1. �(i)
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Proof of (ii). Supposing that N2(v) does not destabilise Gv, then there is some inde-
pendent set, I, of size α(Gv) in Gv such that I ∩N2(v) = ∅. Since G is triangle-free
we get that I ∪ N(v) is an independent set of size α(Gv) + d in G. Therefore
ν(Gv) ≤ ν(G)+ 17− 18d− 3δd since α(G) ≥ α(Gv)+ d, n(G) = n(Gv)− (d+1) and
e(G) ≥ e(Gv) + δd. The assertion follows inductively from (xi). �(ii)

Proof of (iii). Otherwise ν(G \ S) ≤ 0 for some singleton set S = {v} with strict
inequality unless d(v) = 0. However, ν(K1) = 18. �(iii)

Proof of (iv). Follows immediately from Lemma 2.1 since if v ∈ V (G) has minimal
degree then d2(v) ≥ d(v)2 = δ(G)2. �(iv)

Proof of (v). Clear, since ν(Ck) ≥ 7 for k = 4 and k ≥ 6. �(v)

Proof of (vi) and (vii). These assertions are immediate consequences of (i), for |S| =
2 and |S| = 3, respectively. �(vi),(vii)

To simplify the proofs of statement (viii) through (xi) we employ some temporary
claims. The first two, those that we use to prove (viii), follow.

Claim 1. If ν(G) ≤ 3 and G �∼= C5 is edge-critical then C ∼= K1 or C ∼= K2 for all
C ∈ C(G2).

Proof of claim. By (v) and (vi), C is not 2-regular and G is 2-stable. If w is an
endpoint of a path component of length at least 3 in G2 then ν(Gw) ≤ ν(G) + 1 ≤ 4
but Gw is connected (by Lemma 1.2) and δ(Gw) = 1, whence Gw

∼= K2 by (vi). This
is easily seen to be impossible. �(claim)

Claim 2. If ν(G) ≤ 3, δ(G) = 2, G �∼= C5 is edge-critical, v1, v2 are two adjacent
vertices of degree 2, each of second degree 5, and N(C4;N(vi)) = 0 for both i ∈ {1, 2},
then

(a) if z ∈ V (G) \ {v1, v2}, dist(z, v1) ≤ 3 then d(z) ≥ 3, and

(b) if x ∈ V3(G) ∩N2(v1) then δ(Gv1,x) ≥ 2 and |C(Gv1,x)| = 1.

Proof of claim. Firstly note that Gvi �∼= C5 and ν(Gvi) ≤ ν(G) + 1 ≤ 4 by Lemma
1.7 and 2.1, respectively. Moreover, Gvi is connected by Lemma 1.2.

Let z ∈ V (G) \ {v1, v2} be such that d(z) ≤ 2. If dist(z, v1) = 2 then Gv1
∼= K2

by (vi). This is easily seen to be impossible. On the other hand if dist(z, v1) = 3
then ν(Gv2,u1) ≤ ν(Gv2)+1 ≤ 5, where {u1} = N(v1)\{v2}, since N(C4;N(v2)) = 0.
If Gv2,u1 is connected then, again by (vi), we have Gv2,u1

∼= K2, which is impossible.
Thus Gv2,u1

∼= K2 + C where C is 2-stable, but e(N(v2, u1), C) ≤ 2 contradicting
that G is edge-critical. This completes the proof of (a).

Let x ∈ V3(G) ∩ N2(v1). δ(Gv1,x) ≥ 2 follows from an argument analogous to
(a). Suppose Gv1,x = G′ + G′′ and define {x1, x2} := N(x) \ N(v1). By (a) we
have d(x1), d(x2) ≥ 3 and if d(Gv1 ; xi) ≤ 2 then e(xi;N(v1)) ≥ 1. In particular,
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d(Gv1 ; x1) + d(Gv1 ; x2) ≥ 5 since otherwise we would have N(C4;N({v1, v2})) > 0.
Now, by (vi) and δ(Gv1,x) ≥ 2 both G′ and G′′ are 2-stable.

Now, assume that v1 and x do not belong to a common cycle of length 5, whence
d(Gv1 ; x1) = d(Gv1 ; x2) = 3 and ν(Gv1,x) ≤ 2. Define A1 := N2(v1) ∩ V (Gv1,x),
A2 := N(x1) ∩ V (Gv1,x) and A3 := N(x2) ∩ V (Gv1,x). Each of the sets A1 ∪ A2,
A1 ∪ A3 and A2 ∪ A3 must destabilise one of G′ and G′′, and therefore contain at
least three vertices from the component that is destabilised. It is then easily seen
that this is not possible unless they destabilise the same component, e.g. say A1∪A2

and A1∪A3 destabilises G
′ then |V (G′′)∩A2|, |V (G′′)∩A3| ≤ 1, and therefore A2∪A3

also must destabilise G′. This either contradicts that G is connected or that G is
edge-critical.

Suppose, on the other hand, v1 and x do belong to a common cycle of length 5.
If A1, A2, A3 are defined as before then e(Gv1,x) ≤ e(G) − 6 − (|A1| + |A2| + |A3|),
n(Gv1,x) ≤ n(G) − 6 and α(Gv1,x) ≤ α(G)− 2. Therefore ν(Gv1,x) ≤ 17 − 3(|A1| +
|A2|+ |A3|), which gives us |A1|+ |A2|+ |A3| ≤ 5. Thus we have at most two edges
from N [v1, x] to one of the components G′ and G′′. Those edges would however be
redundant, contradicting that G is edge-critical. �(claim)

Proof of (viii). If G were not edge-critical then ν(G − e) ≤ 0, for some redundant
edge e, and G− e ∼= C5 + G′ since C5 is the only graph in G with minimum degree
2 and N(C4;N(v)) = 0. Now, ν(G′) ≤ 0 and, inductively by (xi), we get that
G′ ∈ G \ {Chk; k ≥ 3}.

Suppose therefore that G is edge-critical. Moreover, suppose v1 ∈ V2(G). If
d2(v1) = 6 then ν(Gv1) ≤ ν(G)−2 ≤ 1 and δ(Gv1) ≤ 2 since α(G2) > 1 and therefore
Gv1

∼= Chk for some k ≥ 2 (by (x) inductively). It is easy to see by Lemmas 1.4
and 1.5 that N(C4;N(v1)) �= 0 unless k = 3, in which case we get a contradiction
since then α(G2) = 1. Hence, d2(v1) = 5 by Claim 1. Let v2 be the neighbour of v1
of degree 2. The local structure around v1 and v2 have been illustrated in Figure 4.
Note that the vertices wij are not, a priori, distinct. If the vertices are not distinct
we assume that w11 = w21 =: w, and that y is some neighbour of w, and thus of
degree at least 3 by Claim 2.

u1 v1 v2 u2

w11

w12

w21

w22 u1 v1 v2 u2

w

w12 w22

y

Figure 4: The neighbourhood of v1 and v2 in G if |N(u1) ∩N(u2)| is 0 or 1, respec-
tively.

Note that either wi2 ∈ V3(G) and ν(Gvi,wi2
) ≤ ν(Gvi) − 2 ≤ 2 or d(wi2) ≥ 4

and ν(Gv3−i,ui
) ≤ ν(Gv3−i

) − 2 ≤ 2. We can therefore assume that there is some
x ∈ V3(G) ∩ N2(v1) such that ν(Gv1,x) ≤ 2. By Claim 2 and α(G2) > 1 we have
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δ(Gv1,x) = 2 and therefore, by (x), Gv1,x
∼= Chk for some k ≥ 2 or Gv1,x

∼= SCh�

for some � ≥ 1. Some vertex of degree 2 in Gv1,x must also have degree 2 in G,
and thus second degree 5 therein. It is easily checked that this is not possible since
N(C4;N(V2(G))) = 0. �(viii)

Proof of (ix). Trivial. �(ix)

Proof of (x). Assume that G �∼= Chk for all k ≥ 2. In particular G is not 2-regular
by (v), but G is 2-stable by (vi). By Claim 1 and Lemma 2.1; d2(v) ∈ {5, 6} for all
v ∈ V (G2).

Let v be a vertex of degree 2. If d2(v) = 6 then ν(Gv) ≤ ν(G) − 2 ≤ 0. In-
ductively, by (xi), Gv ∈ G (since G is edge-critical by (ix) and thus Gv is connected
by Lemma 1.2, and ν(Gv) = 0 yields N(C4;N(v)) = 0). We then have |N2(v)| = 4.
N2(v) is disconnected since if N2(v) induced C4, K1,3 or P4 then N(C4;N(v)) ≥ 1.
Furthermore, N2(v) is a minimal destabiliser by Lemma 1.4 and (vii).

It is easily checked that neither W5 nor (2C7)2i has disconnected destabilisers of
size 4. The same holds for all bicycles BCk (see e.g. [1, Lemma 6.3(e)]). The only
possibility is that δ(Gv) = 2 and Gv

∼= Chk for some k ≥ 2. But then, by Lemma
1.5, k = 3 and N2(v) = V2(Chk) which means precisely that G ∼= SCh1.

We may therefore assume that d2(v) = 5 for all v ∈ V2(G). We will show that
there is some v ∈ V2(G) such that N(C4;N(v)) ≥ 1. Note that this is sufficient to
prove the assertion since this would give ν(Gv) ≤ 2 and inductively Gv

∼= Chk or
Gv

∼= SCh�. It is easy to see by the recursive construction and destabilisers of size
3 that then G ∼= Chk+1 or G ∼= SCh�+1.

Suppose that N(C4;N(v)) = 0 for all v ∈ V2(G). Let v1 and v2 be two adjacent
vertices of degree 2. Then the situation is as illustrated in Figure 4 by Claim 2.

If d(w12) = 3 then ν(Gv1,w12) ≤ ν(Gv1) − 2 ≤ ν(G) + 1 − 2 ≤ 1. Therefore
d(Gv1,w12; u2) = 2 and H := Gv1,w12

∼= Chk, for some k ≥ 2, by Claim 2 and
induction. S := N2(w12) ∩ V (H) \ {w11} is a destabiliser of H having size 4. If
|N(u1) ∩ N(u2)| = 0 then |S ∩ V2(H)| ≤ 2 and α(V2(H) \ S) > 1 (since {u2, w11} /∈
E(H)). It is easily seen that if S is connected then N(C4;N(w12)) ≥ 2 giving
ν(H) ≤ −1, while for disconnected S we get a contradiction to Lemma 1.4 or 1.5.
Hence, |N(u1) ∩ N(u2)| = 1 and in the same way we get S = NH [u] ∪ {z} for some
u ∈ V2(H) and distH(z, u) ≥ 3. Define x1, x2, A1, A2, A3 in the same way as in the
proof of Claim 2, where x = w12. We may assume that u ∈ A3 and then A1 ∪ A2

neither contains a destabiliser of size 3, nor all of V2(H), but α(V2(H)∩(A1∪A2)) > 1.
Clearly then A1 ∪ A2 does not destabilise H .

Hence, d(w12) = 4, analogously d(w22) = 4 and, clearly, d(w) = 3. Let
H ′ := Gv2,u1 . If δ(H ′) = 2 then H ′ ∼= Chk for some k ≥ 2. Both S1 =
N({w12, w})\{u1, u2} and S2 = N({w12, u2})\{u1, u2, w} destabilises H ′ and G[Si] ⊆
K1,3. By Lemmas 1.4 and 1.5 we would either have G[Si] ∼= K1,3 for some i, or
G[Si] ∼= K1,2 +K1 for both i. In either case, N(C4;N(w12)) ≥ 2 which would imply
ν(H ′) ≤ −1. Therefore we may assume that all vertices at distance 3 from {v1, v2}
must have degree at least 4. Hence we get ν(Gv1,w12) ≤ ν(Gv1)−3 ≤ ν(G)+1−3 ≤ 0.
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But d(Gv1,w12 ; u2) = 2 and, by induction, Gv1,w12
∼= Chk for some k ≥ 2. It is easily

seen that k �= 2, and for k ≥ 3 we would have N(C4;N(w22)) ≥ 1 and therefore
ν(Gv2,w22) ≤ ν(Gv2)− 3− N(C4;N(w22)) ≤ −1. �(x)

To prove the inductive step for the final assertion of Lemma 2.2 and complete
the proof we make use of some further claims.

Claim 3. If ν(G) ≤ 0 and G /∈ G then N(C4;G) = 0.

Proof of claim. By (iii), (vi) and (x) we have δ(G) ≥ 3. We begin by showing
that N(C4;N [V3(G)] ∪ V4(G) ∪ V5(G)) = 0 by deriving contradictions in four cases.
The claim then follows by induction on d, the minimum degree of a vertex with
N(C4; v) > 0, using ν(Gv) ≤ ν(G)− 3d2(v) + 17d− 19 by Lemma 2.1.

Case (a): N(C4;V3(G)) > 0. Suppose v1 ∈ V3(G) is such that N(C4; v1) > 0.
Since ν(Gv1) ≤ 5 the opposite vertex of v1 in the 4-cycle must have degree at least
4. It is easy to see that necessarily the local structure in the neighbourhood is as
illustrated in Figure 5.

w1 v1 v2 w2

u2 u1

Figure 5: The structure around the vertex v1 of degree 3 in G.

Note that ν(Gv1) ≤ 2 and N2(v1) is a destabiliser of size at most 6 in Gv1 by e.g.
(ii). If Gv1 were not connected then |C(Gv1)| = 2 and δ(C) = 2 for both C ∈ C(Gv1)
by Lemma 1.6 and (vii). But then N2(v1) = NGv1

[x]∪NGv1
[x′], where x, x′ ∈ V2(Gv1),

by Lemma 1.4 and (x). It is then easily seen that N(C4;N(v1)) ≥ 3, which would
give ν(Gv1) ≤ −1.

Hence, |C(Gv1)| = 1. If d2(u1) ≤ 13 then S := {w2} ∪ N(u1) \ {v1} would be
four degree-2 vertices of Gv1

∼= Chk for some k ≥ 2. Either k = 2 or Gv1 [S]
∼=

2 ·K2, which are both clearly impossible. Hence, d2(u1) ≥ 14. If d2(u1) ≥ 15 then
|N(u1) ∪N(w2)| ≥ 2 and d2(w2) = 11 by (vi) since v2 has degree 1 in Gu1, but then
ν(Gw2) ≤ −2. Thus, d2(u1) = 14 and |S ∩ V2(Gv1)| ≥ 3. Therefore Gv1 �∼= SCh�

for any � ≥ 1. Thus, in Gv1 , u2 has one neighbour of degree 2 and one of degree
3 (Gv1 �∼= C5 is trivial). It is then readily verified that this is only possible if the
situation is as illustrated in Figure 6.

It is then clear that Gv1
∼= Chk for some k ≥ 4 by since N(C4;N(v1)) = 3. This

makes G ∼= BCk+1 since (BCk+1)v ∼= Chk where v is any vertex of degree 3. This,
however, goes against the assumption G /∈ G.

Case (b): N(C4;N(V3(G))) > 0. Suppose v is a vertex of degree 3 such that
N(C4;N(v)) > 0. By (a) at least one of the neighbours, w1, w2 and w3, of v must
have degree ≥ 4. We may assume d(w1) = d(w2) = 3, d(w3) = 4, since d2(v) < 11.
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w1 v1 v2 w2

u2 u1

y1

x1x2

y2

Figure 6: The structure around the vertex v1 of degree 3 in G.

Not both w1 and w2 can have second degree 11, since if they did w2 would belong
to a Chk-component for some k ≥ 2. It is however easy to exclude both k = 2 and
k ≥ 3 separately. There is therefore some vertex of degree 2 in Gv. In fact, by (x)
and (a) we have at least two vertices of degree 2 in Gv. Thus we must have either a
C5 in C(Gv) or at least eight vertices with different degree in G and Gv. The latter
is impossible since |N2(v)| = 7. The former is impossible since we would get that at
least one of w1 and w2 has two neighbours in a C5-component. This would yield a
cycle of length 4 through a vertex of degree 3, contradicting (a).

Case (c): N(C4;V4(G)) > 0. If C is a cycle of length 4 in G containing a vertex
v of degree 4 then all the vertices in C have degree 4 by (b).

Hence, d2(v) = 16 and therefore ν(Gv) ≤ ν(G)+2−N(C4;N(v)) ≤ 1. Let x ∈ C
be the vertex at distance 2 from v in C. Clearly we have d(Gv; x) = 2. One of the
two vertices in N(x) \ V (C) has two neighbours in N(x) \ V (C), and the other has
at least one, since Gv

∼= Chk by (x). This would however give ν(Gv) ≤ −1.

Case (d): N(C4;V5(G)) > 0. Let C be a cycle of length 4 on {c1, c2, c3, c4} where
c1c3 /∈ E(G), containing a vertex of degree 5, say c1.

Since c1 has no neighbours of degree 3 (by (b)) and at least two neighbours of
degree at least 5 we have d2(v) ≥ 2 · 5 + 3 · 4 = 22. This gives ν(Gv) ≤ 0. Hence,
in particular, all the vertices of C have degree 5 with three vertices of degree 4 and
two vertices of degree 5 as neighbours.

Let Mi = N(ci) \ V (C) for i ∈ [4]. We have that e(Mi,Mi+2) ≥ 2 for i ∈ [2]
since otherwise ci+2 would have degree 3 with second degree at least 11 in Gci. We
would moreover have that ν(Gci) ≤ 0. Thus, inductively by (xi), we get that all
components of Gci are in G, but in all of the graphs of G the vertices of degree 3 all
have second degree at most 10.

Each of the vertices in Mi (for i ∈ [4]) have at least one neighbour of degree 3,
since otherwise there would be some vertex m ∈ Mi such that d2(m) ≥ 17, which
easily is seen to be impossible. Thus, a fortiori, Gc1 contains some vertices of degree
2, and therefore at least four vertices of degree 2. Note also that |N2(c1)| = 16 and
N(C4;N(c1)) = 1, since ν(Gc1) = 0.

All vertices of degree 3 in Gc1, except possibly c3, must belong to W5- or (2C7)2i-
components since otherwise there would be a cycle of length 4 through such a vertex.
That vertex would then have to have degree at least 5 in G by (a)-(c). This however
would yield N(C4;N(c1)) ≥ 2.

Hence, C(Gc1) consists of C5’s, W5’s and (2C7)2i’s, at least one of which is a C5.
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Now, since d(Gc1; x) = 3 for all x ∈ M2 ∪ M4 ∪ {c3}, at least one of the vertices
in M1 must have two neighbours in the C5-component. This gives us again the
contradiction N(C4;N(c1)) ≥ 2. �(claim)

Claim 4. If ν(G) ≤ 0 and G /∈ G then G3 is 2-regular.

Proof of claim. Firstly, N(C4;G) = 0 by Claim 3. One can show that G is not 3-
regular (e.g. see [1, p. 202, v. 2015-07-16]). If v ∈ V (G3) has degree 1 in G3 then
ν(Gv) ≤ 0 and, by (xi), all components of Gv would be either W5 or (2C7)2i. The
neighbour of degree 3, u, of v would then have two neighbours of degree 4. Similarly
all components of Gu are W5 or (2C7)2i. This would give us that N(C4;G) �= 0.
Suppose now that there is a vertex v of degree 2 in G3 with a neighbour u of degree
3. It is easily seen that α((Gv)2) = 1, since otherwise, by (viii), Gv would contain
a C5 with at least four vertices of degree 2 but by Lemma 1.7 at most three of
these could belong to N2(v). This gives e(N(u) \ {v}) > 0, contradicting G being
triangle-free. �(claim)

Claim 5. If ν(G) ≤ 0 and G /∈ G then G3
∼=

(
|V3(G)|

5

)
· C5.

Proof of claim. As in the proof of Claim 4 we have N(C4;G) = 0 and may assume
δ(G) = 3 �= Δ(G). By Claim 4 the induced graph G3 consists of 2-regular com-
ponents. Clearly G3 does not contain any C4-components. If G3 were to contain
a cycle of length 6 or more, then let v be a vertex of that cycle. We would then
have δ(Gv) ≤ 2 with α((Gv)2) > 1, which is impossible for the same reason as
before. �(claim)

Claim 6. If ν(G) ≤ 0 and G /∈ G then G is 4-regular.

Proof of claim. By the previous claim G3 consists of only C5-components. If v1, v2,
. . . , v5 are the vertices of such a component (assuming it exists) then we can show
that their respective neighbours w1, w2, . . . , w5 that do not have degree 3 are such
that the distance between wi and wi+2 is exactly 2. Were the distance more than 2
then we can consider the graph G′ := G \ ({vi; i ∈ [5]} ∪ {w4}) + w1w2, for which it
is easily seen that α(G′) ≤ α(G)− 2. Therefore we would have ν(G′) ≤ −4. We can
do the same analogously for all other pairs of wi and wi+2.

It is then easy to show that if wiwi+2 ∈ E(G) for some i ∈ [5], then also wjwj+2

for all j ∈ [5] (taking indices modulo 5); consider e.g. Gvi and Gvi,vi+3
. Thus we

have that the induced graph in G on {vi, wi; i ∈ [5]} must be one of the two cases
illustrated in Figure 7.

The right case in Figure 7 is easily seen to be impossible since this case would make
the viwi-edges redundant. The remaining case is shown to lead to a contradiction as
well, as follows.

By (viii) for the Gwi
, d2(wi) = 15 for all i ∈ [5]. Suppose that d2(Gw1,v2; v4) = 6.

Then w5 belongs to a C5-component, C, of Gw1,v2,v4 . By the previous, however, V (C)
contains at least three vertices that have degree 4 in G. Hence, e(C,N(w1)∪N(v2)∪
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w1

w2

w3

w4 w5

v1
v2v3

v4 v5

w1

w2

w3

w4 w5

v1
v2v3

v4 v5

Figure 7: The two possible neighbourhoods of the C5 from G3 in G.

N(v4)\{v1}) ≥ 8, but |N(w1)∪N(v3)∪N(v4)\{v1}| ≤ 7, which would therefore give
a cycle of length 4 in G. Hence, d2(Gw1,v2; v4) ≤ 5. Since e(w4, N(v2)) = 0 we get
N(w1)∩N(w4) �= ∅. Completely analogously we may show that N(wi)∩N(wi+2) �= ∅
for all i ∈ [5].

This does however give us ν(Gv1,v3) ≤ ν(Gv1) − 2 ≤ ν(G) + 3 − 2 ≤ 1, and the
common neighbour of w1 and w3 has degree 2 in Gv1,v3, contradicting that wiwi+2 /∈
E(G) implies δ(Gvi,vi+2

) ≥ 3 for all i ∈ [5]. Thus δ(G) ≥ 4 and G is 4-regular by (iv)
and Lemma 2.1. �(claim)

Many of the following claims are quite close to the work of Radziszowski and
Kreher in [11] and the slight modification by Backelin in [2]. Some of the proofs are
just reworking their ideas to be able to use the previous properties in this article to
get an analogous result. We therefore skip the details except in the parts where new
ideas are used. For the detailed proofs see [9].

Claim 7. If ν(G) ≤ 2, δ(G) = 3, N(C4;G) = 0 then δ(G3) ≥ 1 and d(w) ≥ 4 for all
w ∈ N(V1(G3)).

Proof of claim. Obviously, δ(G3) ≥ 1. Suppose v ∈ V1(G3), then d2(G; v) = 11. By
(x) any vertex of degree 2 in Gv would belong to a C5-component. However, if there
were a C5-component, C, in Gv then we would have that all five vertices of C are
adjacent to some vertex in N(v). This would however give us a C4 in G. Thus there
are no vertices of degree 3 at distance 2 from v in G. �(claim)

In the remainder of this article assume that ν(G) ≤ 0, G /∈ G and H = Gv for
some vertex v ∈ V (G). Note that H3 is a graph on 12 vertices since G is 4-regular
and N(C4;G) = 0. Every vertex in H which does not have degree 3 has degree 4.
The following claim follows immediately from Lemma 1.7 and that G is 4-regular.

Claim 8. H3 contains no cycles of length 5.

Note that Claims 7 and 8 correspond to [11, Lemma 5.2.3]. We now define two
graphs on twelve vertices, S1 and S2, just as in [11].
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Definition 2.1. Denote the vertices of C12 by {c0, c1, . . . , c11} so that c0c1 . . . c11
forms the cycle of length 12. The graph S1 is formed by adding the edge c0c6 to C12

and the graph S2 is formed by adding the two edges c0c6 and c3c9 to the C12.

c0

c1
c2

c3c4
c5

c6

c7
c8 c9

c10
c11

S1

c0

c1
c2

c3c4
c5

c6

c7
c8 c9

c10
c11

S2

Figure 8: The two graphs S1 and S2.

We present a claim which consists of several statements, each being analogous
to some lemma of [11]. The proofs in that article are easily adapted to the present
situation using the above lemmas and properties.

Claim 9. The induced subgraph of H on vertices of degree 3, H3, has the following
properties.

(i) H3 contains no cycles of length 6.

(ii) Let x, y ∈ V (H3) have degree 2 in H3. Furthermore suppose NH(x) = {t, x1, x2}
and NH(y) = {t, y1, y2} where t, x1, y1 ∈ V (H3). Then both x1y2, y1x2 ∈ E(H).

(iii) If t ∈ V (H) has degree 3 in H3 then it has two neighbours of degree 2 and one
of degree 3 in H3.

(iv) If C ∈ C(H3), then C ∈ {K2, C8, C10, C12, S1, S2}.
(v) If C ∈ C(H3), then C /∈ {C8, C10, C12}.
(vi) If C ∈ C(H3), then C /∈ {S1, S2}.

Proof. (i); Analogous to [11, Lemma 5.2.4], (ii); analogous to [11, Lemma 5.2.5], (iii);
analogous to [11, Lemma 5.2.6], (iv); analogous to [11, Lemma 5.2.7], (v); analogous
to [11, Lemma 5.2.8], (vi); analogous to [11, Lemma 5.2.9], �(claim)

Note that by Claim 9 (parts (iv)-(vi)) we get that H3
∼= 6K2, since H3 has twelve

vertices. We will now prove that we must have some particular structure on the
cycles of length 5 and 6 in the graph G.

Claim 10.

(i) G contains no cycles of length 6.
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(ii) Through every pair of incident edges in G there is a cycle of length 5.

(iii) Two cycles of length 5 in G share at most one edge.

Proof. (i); Suppose that the vertices {c1, c2, . . . , c6} ⊆ V (G) formed a cycle of length
6 (labelled cyclically in order). If H = Gc1 , then since H3

∼= 6K2 we get that
d(H3; c3) = 1. However, c5 would also be of degree 3 in H and at distance 2 from c3,
contradicting Claim 7.

(ii); Suppose otherwise and let ux, xv ∈ E(G) be a pair of incident edges through
which there is no cycle of length 5. We have d2(u) = 16 and therefore ν(Gu) ≤
ν(G) + 2 ≤ 2. Since there is no cycle of length 5 through u, x, v we have that
e(N(u), N(v)) = 0 and therefore d2(Gu; v) = 12. This would however give ν(Gu,v) ≤
ν(Gv)− 3 ≤ −1.

(iii); Suppose otherwise, then the two cycles, C1 and C2, of length 5 would share
exactly two consecutive edges or we would get a cycle of length 4 or less inG. Suppose
therefore that the edges shared are x1v ∈ E(G) and vx2 ∈ E(G). Let x3 and x4 be
the two remaining neighbours of v, H = Gv and Xi = N(xi) \ {v}. Because of (ii)
there are also cycles of length 5 through the pairs of incident edges (x2v, vx3) and
(x2v, vx4), whence |E(X2, X3)|, |E(X2, X4)| ≥ 1. But since two of the vertices in X2

belong to C1 or C2, and as such get paired with a vertex in X1 we must have that
there are edges from X3 and X4 to the same vertex in X2, which then is of degree 2
in H3, contradicting that H3

∼= 6K2. �(claim)

We are now ready to complete the proof of Lemma 2.2.

Proof of (xi). (Analogous of an argument in the proof of [2, Theorem 3]) We will
prove that G contains at least one cycle of length 6, contradicting Claim 10(i).

Let uv ∈ E(G). By Claim 10(ii)-(iii) there are two cycles C,C ′ of length 5
through uv which do not share any other edge than uv. Let S = {x1, x2, x3, x4} =
N({u, v}) ∩ (V (C) ∪ V (C ′)) where x1, x2 are adjacent to u and x3, x4 are adjacent
to v. If the only edges between the neighbourhoods of the xi were the edges in
E(N(x1), N(x2)) and E(N(x3), N(x4)) guaranteed by (ii) then we would get ν(GS) ≤
−3. If e(N(xi), N(xi+1)) ≥ 2, where i ∈ {1, 3}, then we either get a cycle of length
4 or a cycle of length 6 through xi and xi+1.

If there are no cycles of length 6 through x1, x2 or x3, x4 we instead have an
edge in E(N(x1)∪N(x2) \ {u}, N(x3)∪N(x4) \ {v}) which gives a cycle of length 6
through uv. �
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