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Abstract

We characterize the downsets of integer partitions (ordered by contain-
ment of Ferrers diagrams) and compositions (ordered by the generalized
subword order) which have finite dimension in the sense of Dushnik and
Miller. In the case of partitions, while the set of all partitions has infinite
dimension, we show that every proper downset of partitions has finite di-
mension. For compositions we identify four minimal downsets of infinite
dimension and establish that every downset which does not contain one
of these four has finite dimension.

1 Introduction

The notion of the dimension of a poset P “ pX,ďq was introduced by Dushnik and
Miller [3], who defined it as the least d so that P embeds into a product of d linear
orders. In particular, the dimension of a countable poset P is the least d so that P
embeds into R

d, the definition given by Ore [11]. Here we consider the dimension of
downsets of integer partitions and compositions.

The partial order on partitions we consider is simply the one of Young’s lattice,
namely containment of Ferrers diagrams, and we establish the result below.

Theorem 1.1. A downset of integer partitions is finite dimensional if and only if it
does not contain every partition.

We go on to study the dimension of downsets of compositions under the generalized
subword order. In this order we view compositions as words over the positive integers
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P; we denote the set of these words by P
˚ and the empty word by ε P P

˚. Given two
compositions u “ up1q ¨ ¨ ¨upkq and w “ wp1q ¨ ¨ ¨wpnq, we say that u is contained in
w and write u ď w if there are indices 1 ď i1 ă ¨ ¨ ¨ ă ik ď n such that upjq ď wpijq
for all j.

This order can be illustrated graphically by way of skyline diagrams (which are
merely a symmetry of Ferrers diagrams). The skyline diagram of the composition
w “ wp1q ¨ ¨ ¨wpnq consists of n columns of cells, with the ith column having wpiq cells.
For compositions u and w, we have u ď w if the skyline diagram of u can be embedded
into that of w. For example, the diagrams below show that 3413 ď 141421143.

ď

The generalized subword order on compositions has received some attention since
it was first considered by Bergeron, Bousquet-Mélou, and Dulucq [1], who studied
saturated chains in this poset. Snellman [14] extended their work. Later, Sagan and
Vatter [13] determined the Möbius function of this poset, and Björner and Sagan [2]
showed that this Möbius function has a rational generating function. Finally, Vat-
ter [15] considered the analogue of the Reconstruction Conjecture in this poset. We
also remark that Young’s lattice (the poset of partitions) is the subposet of this poset
of compositions consisting precisely of the compositions whose parts are weakly de-
creasing.

To state the analogue of Theorem 1.1 for compositions, we need to introduce a
bit more notation and extend our viewpoint to include infinite compositions. A
possibly-infinite composition is represented by a word over the alphabet P Y tnω :
n P Pu Y tω, ωωu. In such a word, nω stands for an infinite number of parts all
equal to n, ω stands for an infinite part, and ωω stands for an infinite number of
infinite parts. Given a word u over the alphabet PY tnω : n P Pu Y tω, ωωu, the age
of u, denoted Agepuq is the set of all compositions which embed into it (this term
dates to Fräıssé [4]). For example, Agepωωωq is the set of compositions with at most
three parts, Agep2ωq is the set of all compositions with all parts at most two, and
Agep1ωω2131ωq consists of all compositions which embed into the skyline diagram
below.

We can now state our result for compositions.

Theorem 1.2. A downset of compositions in the generalized subword order is finite
dimensional if and only if it does not contain Agepωωωq, Agep1ω21ω21ωq,
Agepω1ωω1ωq, or Agep1ωω1ωωq.
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We also use the concept of ages in the partition setting, where the age of a word u
over the alphabet PYtnω : n P PuYtω, ωωu is the set of all (finite) integer partitions
which embed into u. While notationally identical, it will always be clear from the
context whether an age consists of partitions or compositions.

Dimension is a monotone property in that the dimension of a poset is at least that
of any of its subposets. Thus to show that a poset is infinite dimensional we show
that it contains subposets of arbitrarily large dimension. In particular, we recall that
the crown on the 2n elements ta1, . . . , an, b1, . . . , bnu is the poset in which the only
comparisons are of the form ai ă bj for i ‰ j, as depicted in the Hasse diagram
below.

a1 a2 ¨ ¨ ¨ an

b1 b2 ¨ ¨ ¨ bn

It is easily seen that the crown on 2n elements has dimension n, so we refer to it as the
crown of dimension n. It is often referred to as the standard example of dimension n.

To establish that the poset of all integer partitions is infinite dimensional, it suffices
to find arbitrarily large crowns of partitions. One such family of crowns is defined
by taking

ai “ pn ´ iqi and bi “
ł
j‰i

aj,

i.e., taking ai to be the partition consisting of i parts equal to n ´ i and bi to be the
join (in Young’s lattice) of all aj for j ‰ i.

Similarly, one direction of Theorem 1.2 can be established by finding arbitrarily
large crowns in the four stated ages. For example, we see that Agepωωωq contains
the crown of dimension n ´ 3 shown below for all n ě 5.

2pn ´ 2q 3pn ´ 3q 4pn ´ 4q ¨ ¨ ¨ pn ´ 2q2

1npn ´ 3q 2npn ´ 4q 3npn ´ 5q ¨ ¨ ¨ pn ´ 3qn1

A slight modification of this crown shows that Agep1ω21ω21ωq is infinite dimension,
as it contains the crown of dimension n ´ 3 shown below for all n ě 5.

1221n´2 1321n´3 1421n´4 ¨ ¨ ¨ 1n´2212

1121n21n´3 1221n21n´4 1321n21n´5 ¨ ¨ ¨ 1n´321n211

The last two ages stated in Theorem 1.2 are isomorphic, so it suffices to show that
Agepω1ωω1ωq is infinite dimensional. This age contains the crown of dimension n´1
shown below for all n ě 3.
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21n 31n´1 41n´2 ¨ ¨ ¨ n12

110n1n´1 211n1n´2 312n1n´3 ¨ ¨ ¨ pn ´ 1q1n´2n11

Thus it suffices to prove that downsets of compositions not containing any of these
four ages are finite dimensional. Note that Agep2ωq is infinite dimensional—this
follows from the fact that it contains Agep1ω21ω21ωq, or more easily by observing that
it contains the crown of dimension n defined by ai “ 1i´121n´i and bi “ 2i´112n´i.
Consequently, the age of any (infinite) composition which includes any symbol of
the form ωω or nω for n ě 2 is necessarily infinite dimensional. Therefore when
characterizing the finite dimensional ages of infinite compositions we may restrict
our attention to ages of words over the alphabet P Y t1ω, ωu.

2 Tools

In this section we introduce the tools we use to establish the other directions of
Theorems 1.1 and 1.2. A poset P is well quasi-ordered if it contains neither infinite
antichains nor infinite strictly decreasing chains, i.e., x0 ą x1 ą ¨ ¨ ¨ . We begin by
recalling the following well-known result.

Higman’s Lemma [5]. If pP,ďq is well quasi-ordered then P ˚, the poset of words
over P ordered by the generalized subword order, is also well quasi-ordered.

As the poset of partitions is a subposet of P˚ and the poset of compositions is precisely
the poset P˚, Higman’s Lemma implies that both posets are well quasi-ordered. This
allows us to appeal to the following result.

Proposition 2.1. Downsets of well quasi-orders satisfy the descending chain condi-
tion, i.e., there does not exist a sequence of downsets satisfying C0 Ľ C1 Ľ C2 Ľ ¨ ¨ ¨ .

Proof. Suppose to the contrary that the well quasi-ordered downset C were to contain
an infinite strictly decreasing sequence of subdownsets C “ C0 Ľ C1 Ľ C2 Ľ ¨ ¨ ¨ . For
each i ě 1, choose xi P Ci´1zCi. The set of minimal elements of tx1, x2, . . .u is an
antichain and therefore finite, so there is an integer m such that tx1, x2, . . . , xmu
contains these minimal elements. In particular, xm`1 ě xi for some 1 ď i ď m.
However, we chose xm`1 P CmzCm`1, and because xm`1 ě xi, xm`1 does not lie in Ci

and thus cannot lie in Cm, a contradiction.

Because of Proposition 2.1, we can consider minimal (with respect to set contain-
ment) counterexamples to prove Theorems 1.1 and 1.2. Our next result shows that
such minimal counterexamples cannot be unions of two proper subdownsets, but be-
fore proving it we need to make some more general remarks about dimension, and
in particular, our approach to establishing that downsets are finite dimensional.



M. ENGEN AND V. VATTER/AUSTRALAS. J. COMBIN. 74 (1) (2019), 98–111 102

A realizer of the poset P is a collection R of linear extensions of the poset such that
x ďP y if and only if x ďL y for each L P R. If R is a realizer of the poset P , we
say that R realizes P . Given that the elements of a realizer are extensions of the
original poset, this is equivalent to saying that for each pair x, y P P of incomparable
elements, there is some L P R such that y ďL x.

A refinement of the poset P is another partial order, say ďR, such that x ďR y for
all pairs x, y P P with x ďP y. Because every refinement can be extended to a linear
extension, to establish that the dimension of the poset P is at most n, it suffices to
find a collection R of n refinements of P such that x ďP y if and only if x ďR y
for each R P R. Frequently we go a step further than this. As every refinement
of a subposet of P can be extended to a linear extension of P , to show that P
has dimension at most n it suffices to find a collection R of n partial refinements
(meaning refinements of subposets of P ) with this property.

In constructing and analyzing these refinements or partial refinements, we use two
additional terms. If the refinements R1 and R2 satisfy x ăR1 y and y ăR2 x (or vice
versa) then we say that the pair R1, R2 breaks the incomparability between x and y.
Finally, every homomorphism between a poset (or subposet of it) to a totally ordered
set (typically N here) induces a refinement or partial refinement on the poset. In this
situation we often say that the induced refinement sorts the objects of P according
to the homomorphism. For example, a natural refinement of the either the poset of
partitions or of compositions is the one that sorts them according to length (number
of parts).

The following result, which is fundamental to our approach, is folklore, but we include
a proof for completeness.

Proposition 2.2. Let pP,ďq be a poset, and let C,D Ď P be downsets of dimension
m and n respectively. Then C Y D is a downset of dimension at most m ` n.

Proof. Certainly C Y D is a downset, so it suffices to show it has dimension at most
m`n. Let tR1, R2, . . . , Rmu and tS1, S2, . . . , Snu be realizers of C and D respectively.
First, note that every member of CzD is incomparable with every member of DzC.
Define the refinements

R1
1 “ R1 ‘ pDzCq, . . . , R1

m “ Rm ‘ pDzCq
and

S 1
1 “ S1 ‘ pCzDq, . . . , S 1

n “ Sn ‘ pCzDq,
where A ‘ B is the ordinal sum of A and B, including all relations within both A
and B, as well as all relations of the form a ă b where a P A and b P B.

The collection tR1
1, . . . , R

1
m, S

1
1, . . . , S

1
nu realizes C YD, as it breaks all incomparabil-

ities between elements of CzD and DzC and realizes each of C and D. This shows
that C Y D has dimension at most m ` n.
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We note that the hypothesis that C and D are both downsets in Proposition 2.2 is
essential, as shown by the fact that the crown of dimension n can be expressed as
the union of two antichains (which are thus each 2-dimensional).

The downsets of compositions which are not unions of proper subdownsets are pre-
cisely the ages, as shown by the following theorem of Fräıssé (which we have special-
ized to our contexts here). This result implies it suffices to prove Theorems 1.1 and
1.2 for ages.

Theorem 2.3 (Fräıssé [4]; see also Hodges [6, Section 7.1]). The following are equiv-
alent for a downset C of integer partitions or compositions:

(1) C cannot be expressed as the union of two proper subdownsets,

(2) C satisfies the joint embedding property meaning that for every a, b P C there
is some c P C such that a, b ď c, and

(3) C “ Agepuq for some word u P pP Y tnω : n P Pu Y tω, ωωuq˚.

We conclude this section by providing the only specific dimension results of the paper.
To realize the downset Agepωωq of compositions, we use a pair of linear extensions
L1 and L2 and a refinement R3. The first, L1, orders compositions according to the
shortlex order, which sorts compositions first by their length, and within each length
sorts compositions according to the lexicographical ordering. The second, L2, orders
compositions according to the shortcolex order, which sorts compositions first by their
length, and within each length sorts compositions according to the colexicographical
ordering (lexicographical order, but sorting from right to left). Lastly, the refinement
R3 sorts compositions first by their largest part and then by their second largest part.
Note that this sometimes leaves a composition and its reverse incomparable, and thus
is not a linear extension.

These three refinements constitute a realizer of Agepωωq, implying that the dimension
of Agepωωq is at most 3. Observing that this age contains the crown of dimension 3
below allows us to conclude that the dimension of Agepωωq equals 3.

21 12 3

13 31 22

Proposition 2.4. The dimension of Agepωωq is 3.

Similar methods can be applied to show that the dimension of Agepω1ωq is 2, and
that the dimensions of Agep1ωω1ωq, Agepωω1ωq, and Agepω1ωωq are each 4.
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k ¨ ¨ ¨

�

...

Figure 1: The Ferrers diagram of the infinite partition ωk�ω.

3 Partitions

Having observed in the introduction that the poset of all integer partitions is infi-
nite dimensional, Theorem 1.1 will follow once we show that all proper downsets of
partitions are finite dimensional, which we do here. By Theorem 2.3, every proper
downset of partitions can be written as a finite union of ages of the form Agepuq
for some word u P pP Y tnω : n P Pu Y tωuq˚. Because the parts of partitions are
ordered, each such age is contained in an age of the form Agepωk�ωq for nonnegative
integers k and �. The Ferrers diagram of such a partition is shown in Figure 1.

By Proposition 2.2, it suffices to show that each such age is finite dimensional. We
see that Agepωk�ωq is isomorphic (as a poset) to the product AgepωkqˆAgep�ωq. The
first of these ages is finite dimensional because it is isomorphic to a subposet of Nk.
The second of these ages is finite dimensional because it is isomorphic to Agepω�q,
via conjugation, and that age is in turn isomorphic to a subposet of N�. Thus the
dimension of Agepωk�ωq is at most k ` �. This completes the proof of Theorem 1.1.

4 Compositions

We have shown in Section 1 that Agepωωωq, Agep1ω21ω21ωq, Agepω1ωω1ωq, and
Agep1ωω1ωωq are infinite dimensional, and in Section 2 we showed that it suffices to
show that the maximal ages not containing the four distinguished infinite dimensional
ages are finite dimensional. The two types of these maximal ages are those of the
forms Agepaωb1ωc1ωdωeq and Agepa1ωbωcωd1ωeq for finite compositions a, b, c, d,
and e.

We establish the finite dimensionality of these two types of ages with a series of
results. Our first such result implies that we may assume a and e are empty.

Proposition 4.1. If Agepuq is finite dimensional for u P pPYt1ω, ωuq ,̊ then Agepkuq
is finite dimensional for all k P N.

Proof. We proceed by induction on k. The base case of k “ 0 is tautological, so let
k P P be given, and assume Ageppk ´ 1quq is finite dimensional. Let A “ Agepuq, let
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B “ AgepkuqzA, and for each 1 ď j ď k, define

Aj “ tja P Au and Bj “ tja P Bu.
as well as Aąk “ t�a P A : � ą ku.
By induction, A Y Bj is finite dimensional for each 1 ď j ď k ´ 1. Furthermore, B
is finite dimensional as it is isomorphic to a subposet of N ˆ A by the mapping that
sends the word �a to p�, aq; note that if �a ď �1a1 for �a, �1a1 P B then we must have
� ď �1 and a ď a1 because otherwise we would have �a ď a1, but that would imply
that �a P A, a contradiction to its choice.

We claim that it suffices to establish that Aj Y Bk and Aąk Y Bk are finite dimen-
sional for each 1 ď j ď k. To see this, suppose that each of these unions is finite
dimensional. This means that there are finite realizers of AYBj for all 1 ď j ď k´1,
of B, and of Aj Y Bk and Aąk Y Bk for all 1 ď j ď k. We can consider each of these
finite realizers as a finite set of partial refinements of the entire poset A Y B, and it
follows that the union of all of those partial refinements does indeed break all of the
incomparabilities that need to be broken.

Now fix 1 ď j ď k. Given ja1 P Aj and ka2 P Bk, we have ja1 ď ka2 if and only if
a1 ď a2. For this reason, we define

A1
j “ ta : ja P Aju and B1

k “ ta : ka P Bku,
and consider a realizer tL1, . . . , Lnu of A1

j Y B1
k, which is finite dimensional as it is

contained in A. For each 1 ď i ď n, we expand Li into a linear extension L̂i of a set
containing Aj Y Bk. To do so, we replace the instance of each composition v in Li

with the two element chain tjv, kvu. If ja1 P Aj and ka2 P Bk with ja1 ­ď ka2, then

a1 ­ď a2. Thus a2 precedes a1 in some Li, meaning ka2 precedes ja1 in L̂i.

Lastly, given �a1 P Aąk and ka2 P Bk, we have �a1 ď ka2 if and only if �a1 ď a2. Let
tR1, . . . , Rmu be a realizer of Aąk YB1

k, which is finite dimensional as it is contained
in A. For each 1 ď i ď m, we expand Ri into a linear extension R̂i of Aąk Y Bk. To
do so, we replace the instance of a P B1

k in Ri with ka.

Then, if �a1 P Aąk and ka2 P Bk with �a1 ­ď ka2, then �a1 ­ď a2. Thus a2 precedes
�a1 in some Ri, meaning ka2 precedes �a1 in R̂i.

By applying Proposition 4.1 twice, we obtain the following.

Corollary 4.2. For all compositions a and b, both Agepa1ωbq and Agepaωbq are finite
dimensional.

The proof of our next result is more complicated.

Proposition 4.3. For all compositions c, Agep1ωc1ωq is finite dimensional.
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Proof. We partition the age of interest into a finite collection of intervals and then
construct a family of linear extensions which break the incomparabilities between
these intervals. These intervals are ra, 1ωa1ωq “ td P Agep1ωa1ωq : d ě au for each
a “ ap1q ¨ ¨ ¨apmq P Agepcq, where the first and last parts of a are at least 2. Because
of this condition on a, we see that

ra, 1ωa1ωq “ t1ia1j : i, j P Nu,
so each such interval is isomorphic to N

2 and thus finite dimensional. Let R denote
the (finite) collection of linear extensions realizing each ra, 1ωa1ωq.
It suffices to consider the union of a pair of such intervals. Let a, b ď c where
a “ ap1q ¨ ¨ ¨apmq and b “ bp1q ¨ ¨ ¨ bpnq have the property that the first and last parts
of each a and b are at least 2. Note that there are only finitely many such pairs a, b
because c is a finite composition. First, if a and b are such that b ­ď a, then none
of the elements of rb, 1ωb1ωq embed into any of the elements of ra, 1ωa1ωq, and these
incomparabilities can be broken with the refinement ra, 1ωa1ωq ‘ rb, 1ωb1ωq. Let S
be the (finite) collection of these refinements for each a, b with b ­ď a.

This leaves us to consider the case where a and b are comparable with a ă b, and
the only incomparabilities left to break are those of the form 1ia1j ­ď 1kb1�.

The bulk of the proof consists of contending with the fact that a may have several
embeddings into b. Of these, it suffices to consider the compact embeddings, meaning
those which cannot be shrunk. More precisely, let α1 ă ¨ ¨ ¨ ă αq denote the begin-
nings of these compact embeddings and β1 ă ¨ ¨ ¨ ă βq denote the ends. Because
these are embeddings, for all p we have

a ď bpαpqbpαp ` 1q ¨ ¨ ¨ bpβpq,

and because they are compact, we have both

a ­ď bpαp ` 1qbpαp ` 2q ¨ ¨ ¨ bpβpq,
a ­ď bpαpqbpαp ` 1q ¨ ¨ ¨ bpβp ´ 1q.

Consider an incomparability between elements of these two intervals, 1ia1j ­ď 1kb1�.
This means that, in N

2, we have incomparabilities of the form

pi, jq ­ď pk ` αp ´ 1, � ` n ´ βpq
for each 1 ď p ď q. The set of points tpk ` αp ´ 1, � ` n ´ βpq : 1 ď p ď qu is
an antichain in N

2 that lies weakly above and to the right of pk, �q in the plane, as
shown on the left of Figure 2.

We now introduce two refinements of ra, 1ωa1ωq Y rb, 1ωb1ωq. The first sorts compo-
sitions by the largest r such that 1ra is contained in them, while the second sorts
compositions by the largest s such that a1s is contained in them. For a given k and
�, these two refinements break all incomparabilities of the form 1ia1j ­ď 1kb1� where
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‚̋pk, �q

‚ ‚
‚ ‚

pk ` α1 ´ 1, � ` n ´ β1q

pk ` α4 ´ 1, � ` n ´ β4q ‚̋pk, �q

‚ ‚
‚ ‚

Tk,�

‚̋

‚ ‚ ‚‚

‚̋

‚ ‚ ‚‚

‚̋

‚ ‚ ‚‚

‚̋

‚ ‚ ‚‚

Figure 2: (Left) A point pk, �q representing 1kb1� together with associated
points representing the minimal compositions of the form 1ia1j which do not
embed into 1kb1�. (Center) A point pk, �q representing 1kb1� and its associ-
ated set Tk,� representing compositions of the form 1ia1j . (Right) The shaded
regions indicate part of a family of compositions included in one refinement
constructed at the end of the proof of Proposition 4.3.

i ą k `αq ´ 1 or j ą �`n´β1. Still thinking of k and � as fixed, this leaves us with
a finite set of incomparabilities of the form 1ia1j ­ď 1kb1� to break, as illustrated in
the center of Figure 2. Let Tk,� denote the finite set of compositions of the form 1ia1j

whose incomparabilities with 1kb1� have not been dealt with. Thus Tk,� is the set

t1ia1j : pi, jq ď pk ` αq ´ 1, � ` n ´ β1q and

pi, jq ­ď pk ` αp ´ 1, � ` n ´ βpq for all 1 ď p ď qu.
We identify each composition 1ia1j P Tk,� with the point pi, jq in the plane. Thus
the points corresponding to the compositions in Tk,� are contained in the rectangle

rk, k ` αq ´ 1s ˆ r�, � ` n ´ β1s.

Given k, �, we define a refinement Rk,� of t1kb1�uYTk,� in which 1kb1� is less than each
element of Tk,�. All that remains is to combine the collection of refinements Rk,� into
finitely many refinements of ra, 1ωa1ωq Y rb, 1ωb1ωq. We achieve this by partitioning
N

2 into equivalence classes with respect to the equivalence relation pk, �q „ pk1, �1q
if k ” k1 modαq and � ” �1 modn ´ β1 ` 1. We further write rpk, �qs to denote
the equivalence class containing pk, �q. Note that there are only finitely many such
equivalences classes.

The motivation for this equivalence relation is that if pk, �q „ pk1, �1q then the relations
defined by Rk,� and Rk1,�1 do not conflict. Thus for any pk, �q P N

2, all of the relations
ď

pk1,�1qPrpk,�qs
Rk1,�1

can be combined into a single refinement. The compositions involved in one such
refinement are drawn on the right of Figure 2.

As there are only finitely many such equivalence classes in N
2, and only finitely

many pairs a, b with a ď b ď c, this (finite) set of refinements, together with the
refinements of R and S, realizes Agep1ωc1ωq, completing the proof.
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With Proposition 4.3 established, showing that ages of the forms Agepωa1ωb1ωcωq
and Agep1ωaωbωc1ωq are finite dimensional is accomplished by first proving that ages
of the forms Agepωa1ωb1ωq and Agep1ωaωb1ωq are finite dimensional. Each of these
steps relies on Proposition 4.3.

Proposition 4.4. For all compositions a and b, Agepωa1ωb1ωq is finite dimensional.

Proof. Let m denote the maximum entry in a or b and let sm “ m ` 1. By Proposi-
tions 4.1 and 4.3 we have that Agep sma1ωb1ωq is finite dimensional, so let tL1, . . . Lnu
be a realizer of it. For each 1 ď i ď n, we expand Li into a linear extension L̂i

of Agepωa1ωb1ωq. To do so, we replace the instance of smx in Li with the linearly
ordered interval r smx, ωxq.
The only incomparabilities yet to be handled are those of the form k1x1 ­ď k2x2 where
smx1 ď smx2 and k1 ą k2 ě sm. These are fixed by including a single refinement which
sorts elements of Agepωa1ωb1ωq by their largest entry.

Proposition 4.5. For all compositions a, b, and c, Agepωa1ωb1ωcωq is finite dimen-
sional.

Proof. We proceed by defining six sets, each of which is finite dimensional and whose
union is the age of interest, and then construct a family of refinements which break
the incomparabilities between the sets. Let m denote the maximum entry in a, b, or
c, let sm “ m ` 1, let s̄m “ sm ` 1, and define

A “ rε,ma1ωb1ωcmq,
B1 “ r sm,ma1ωb1ωcsmq,
B2 “ rm,ma1ωb1ωcmq,
C1 “ r smsm,ωa1ωb1ωcsmq,
C2 “ r smsm, sma1ωb1ωcωq,
D “ r s̄m s̄m,ωa1ωb1ωcωq,

where we recall that ε denotes the empty word. Now, the complement of D,

Agepωa1ωb1ωcωqzD “ A Y B1 Y B2 Y C1 Y C2

“ Agepωa1ωb1ωcsmq Y Agep sma1ωb1ωcωq
is finite dimensional by Propositions 2.2, 4.1, and 4.4. Also, C1 Y C2 Y D is finite
dimensional as it is isomorphic to a subposet of NˆAgepa1ωb1ωcqˆN. Thus it suffices
to show that the incomparabilities between A Y B1 Y B2 and D can be broken with
finitely many refinements.

Let tL1, . . . , Lnu be a realizer for Agep sma1ωb1ωcsmq. For each 1 ď i ď n, we expand
Li into a refinement L̂i of Agepωa1ωb1ωcωq. To do so, for each v, we replace the
instance of smv sm in Li with the interval r smv sm,ωvωq. If u P A Y B1 Y B2 and
k1vk2 P D for integers k1, k2 ě s̄m and u ­ď k1vk2, then u ­ď smv sm, so smv sm is less
than u in some Li, and thus k1vk2 is less than u in L̂i. This completes the proof.
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The proofs of our next two results are very similar to those of Propositions 4.4
and 4.5.

Proposition 4.6. For all compositions a and b, Agep1ωaωb1ωq is finite dimensional.

Proof. Let m denote the maximum entry in a or b and let sm “ m ` 1. By Propo-
sition 4.3 we have that Agep1ωasmb1ωq is finite dimensional, so let tL1, . . . Lnu be
a realizer of it. For each 1 ď i ď n, we expand Li into a linear extension L̂i of
Agep1ωaωb1ωq. To do so, we replace the instance of xsmy in Li with the linearly
ordered interval rxsmy, xωyq.
The only incomparabilities yet to be handled are those of the form x1k1y1 ­ď x2k2y2
where x1 smy1 ď x2 smy2 and k1 ą k2 ě sm. These are fixed by including a single
refinement which sorts elements of Agep1ωaωb1ωq by their largest entry.

Proposition 4.7. For all compositions a, b, and c, Agep1ωaωbωc1ωq is finite dimen-
sional.

Proof. Let m denote the maximum entry in a, b, or c, let sm “ m` 1, let s̄m “ sm` 1,
and define

A “ rε, 1ωambmc1ωq,
B1 “ r sm, 1ωambsmc1ωq,
B2 “ r sm, 1ωasmbmc1ωq,
C1 “ r smsm, 1ωaωbsmc1ωq,
C2 “ r smsm, 1ωasmbωc1ωq,
D “ r s̄m s̄m, 1ωaωbωc1ωq.

The complement of D,

Agep1ωaωbωc1ωq “ A Y B1 Y B2 Y C1 Y C2

“ Agep1ωasmbωc1ωq Y Agep1ωaωbsmc1ωq
is finite dimensional by Propositions 2.2, 4.1, and 4.6. Also, C1 Y C2 Y D is finite
dimensional as it is isomorphic to a subposet of Agep1ωaqˆNˆAgepbqˆNˆAgepc1ωq.
Thus it suffices to show that the incomparabilities between A Y B1 Y B2 and D can
be broken with finitely many refinements.

Let tL1, . . . , Lnu be a realizer for Agep1ωasmbsmc1ωq. For each 1 ď i ď n, we expand
Li into a refinement L̂i of AYB1 YB2 YD. To do so, for each x, y, z, we replace the
instance of xsmy smz in Li with the interval rxsmy smz, xωyωzq.
Then, if u P A Y B1 Y B2 and xk1yk2z P D with k1, k2 ě s̄m, and u ­ď xk1yk2z, then
we have u ­ď xsmy smz. Thus xsmy smz is less than u in some Li, and thus xk1yk2z is
less than u in L̂i. This completes the proof.

With Propositions 4.5 and 4.7 established, we note that the proof of Theorem 1.2 is
complete, given the remarks at the beginning of Section 4.
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5 Concluding Remarks

Theorems 1.1 and 1.2 characterize the finite dimensional downsets in the posets of
integer partitions and compositions, respectively. There are several similar contexts
in which the analogous questions have yet to be considered. One such context is the
poset of permutations under the permutation pattern order. We refer to the second
author’s survey [16] for more information on this order. A related example is the
poset of set partitions, first studied by Klazar [7–9] and Sagan [12]. Another natural
context would be the generalized subword order over an arbitrary poset P , a context
where McNamara and Sagan [10] have recently determined the Möbius function.
Indeed, even the special case of words over a two-element antichain appears to be
untouched.
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[13] B. E. Sagan and V. Vatter, The Möbius function of a composition poset,
J. Algebraic Combin. 24 (2) (2006), 117–136.

[14] J. Snellman, Standard paths in another composition poset, Electron. J. Combin.
11 (1) (2004), P.76, 8 pp.

[15] V. Vatter, Reconstructing compositions, Discrete Math. 308 (9) (2008), 1524–
1530.

[16] V. Vatter, Permutation classes, In Handbook of Enumerative Combinatorics,
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