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Abstract

We characterize the downsets of integer partitions (ordered by contain-
ment of Ferrers diagrams) and compositions (ordered by the generalized
subword order) which have finite dimension in the sense of Dushnik and
Miller. In the case of partitions, while the set of all partitions has infinite
dimension, we show that every proper downset of partitions has finite di-
mension. For compositions we identify four minimal downsets of infinite
dimension and establish that every downset which does not contain one
of these four has finite dimension.

1 Introduction

The notion of the dimension of a poset P = (X, <) was introduced by Dushnik and
Miller [3], who defined it as the least d so that P embeds into a product of d linear
orders. In particular, the dimension of a countable poset P is the least d so that P
embeds into RY, the definition given by Ore [11]. Here we consider the dimension of
downsets of integer partitions and compositions.

The partial order on partitions we consider is simply the one of Young’s lattice,
namely containment of Ferrers diagrams, and we establish the result below.

Theorem 1.1. A downset of integer partitions is finite dimensional if and only if it
does not contain every partition.

We go on to study the dimension of downsets of compositions under the generalized
subword order. In this order we view compositions as words over the positive integers
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P; we denote the set of these words by P* and the empty word by € € P*. Given two
compositions u = u(1)---u(k) and w = w(1) - --w(n), we say that u is contained in
w and write u < w if there are indices 1 < < --- < i < n such that u(j) < w(i;)
for all j.

This order can be illustrated graphically by way of skyline diagrams (which are
merely a symmetry of Ferrers diagrams). The skyline diagram of the composition
w = w(l)---w(n) consists of n columns of cells, with the ith column having w(z) cells.
For compositions u and w, we have u < w if the skyline diagram of u can be embedded
into that of w. For example, the diagrams below show that 3413 < 141421143.

The generalized subword order on compositions has received some attention since
it was first considered by Bergeron, Bousquet-Mélou, and Dulucq [1], who studied
saturated chains in this poset. Snellman [14] extended their work. Later, Sagan and
Vatter [13] determined the Mdbius function of this poset, and Bjérner and Sagan [2]
showed that this Mobius function has a rational generating function. Finally, Vat-
ter [15] considered the analogue of the Reconstruction Conjecture in this poset. We
also remark that Young’s lattice (the poset of partitions) is the subposet of this poset
of compositions consisting precisely of the compositions whose parts are weakly de-
creasing.

To state the analogue of Theorem 1.1 for compositions, we need to introduce a
bit more notation and extend our viewpoint to include infinite compositions. A
possibly-infinite composition is represented by a word over the alphabet P u {n* :
n € P} U {w,w*}. In such a word, n¥ stands for an infinite number of parts all
equal to n, w stands for an infinite part, and w* stands for an infinite number of
infinite parts. Given a word u over the alphabet Pu {n“ : n € P} u {w,w“}, the age
of u, denoted Age(u) is the set of all compositions which embed into it (this term
dates to Fraissé [4]). For example, Age(www) is the set of compositions with at most
three parts, Age(2¥) is the set of all compositions with all parts at most two, and
Age(1¥w2131%) consists of all compositions which embed into the skyline diagram
below.

We can now state our result for compositions.

Theorem 1.2. A downset of compositions in the generalized subword order is finite
dimensional if and only if it does not contain Age(www), Age(1¥21v21%),
Age(wl¥wl¥), or Age(1¥wl“w).
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We also use the concept of ages in the partition setting, where the age of a word u
over the alphabet Pu {n“ : n € P} U{w,w*} is the set of all (finite) integer partitions
which embed into . While notationally identical, it will always be clear from the
context whether an age consists of partitions or compositions.

Dimension is a monotone property in that the dimension of a poset is at least that
of any of its subposets. Thus to show that a poset is infinite dimensional we show
that it contains subposets of arbitrarily large dimension. In particular, we recall that
the crown on the 2n elements {ay,...,a,,b1,...,b,} is the poset in which the only
comparisons are of the form a; < b; for i # j, as depicted in the Hasse diagram
below.

by by .. b,

alz azg “ee Zan

It is easily seen that the crown on 2n elements has dimension n, so we refer to it as the
crown of dimension n. It is often referred to as the standard example of dimension n.

To establish that the poset of all integer partitions is infinite dimensional, it suffices
to find arbitrarily large crowns of partitions. One such family of crowns is defined

by taking
a; = (n—1)" and b = \/aj,
J#i
i.e., taking a; to be the partition consisting of ¢ parts equal to n — i and b; to be the

join (in Young’s lattice) of all a; for j # 1.

Similarly, one direction of Theorem 1.2 can be established by finding arbitrarily
large crowns in the four stated ages. For example, we see that Age(www) contains
the crown of dimension n — 3 shown below for all n > 5.

In(n—3) _2n(n—4) _ 3n(n—>5) é - (n—3)nl
2(n—2) 3(n—3) 4d(n —4) (n—2)2

A slight modification of this crown shows that Age(1¥2121“) is infinite dimension,
as it contains the crown of dimension n — 3 shown below for all n > 5.

1t21m21n=3 ;221”21”4 132172175 § > 173217211

12217172 1321n73 142177,74 e 1n72212

The last two ages stated in Theorem 1.2 are isomorphic, so it suffices to show that
Age(wl“wl¥) is infinite dimensional. This age contains the crown of dimension n— 1
shown below for all n > 3.
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Thus it suffices to prove that downsets of compositions not containing any of these
four ages are finite dimensional. Note that Age(2¥) is infinite dimensional—this
follows from the fact that it contains Age(1¥2121“), or more easily by observing that
it contains the crown of dimension n defined by a; = 1°°121"% and b; = 20711277
Consequently, the age of any (infinite) composition which includes any symbol of
the form w® or n* for n > 2 is necessarily infinite dimensional. Therefore when
characterizing the finite dimensional ages of infinite compositions we may restrict
our attention to ages of words over the alphabet P u {1¢ w}.

2 Tools

In this section we introduce the tools we use to establish the other directions of
Theorems 1.1 and 1.2. A poset P is well quasi-ordered if it contains neither infinite
antichains nor infinite strictly decreasing chains, i.e., g > z; > ---. We begin by
recalling the following well-known result.

Higman’s Lemma [5]. If (P, <) is well quasi-ordered then P*, the poset of words
over P ordered by the generalized subword order, is also well quasi-ordered.

As the poset of partitions is a subposet of P* and the poset of compositions is precisely
the poset P*, Higman’s Lemma implies that both posets are well quasi-ordered. This
allows us to appeal to the following result.

Proposition 2.1. Downsets of well quasi-orders satisfy the descending chain condi-
tion, i.e., there does not exist a sequence of downsets satisfying C° 2C' 2C?> 2 ---

Proof. Suppose to the contrary that the well quasi-ordered downset C were to contain

an infinite strictly decreasing sequence of subdownsets C =C° 2C' 2C2 2 ---. For
each i > 1, choose x; € C*"'\C'. The set of minimal elements of {z1,zs,...} is an
antichain and therefore finite, so there is an integer m such that {xi,zs,..., 2}

contains these minimal elements. In particular, x,,,1 = x; for some 1 < i < m.
However, we chose z,,1 € C"™\C™"!, and because .1 = 2;, Z;ni1 does not lie in C*
and thus cannot lie in C™, a contradiction. 0

Because of Proposition 2.1, we can consider minimal (with respect to set contain-
ment) counterexamples to prove Theorems 1.1 and 1.2. Our next result shows that
such minimal counterexamples cannot be unions of two proper subdownsets, but be-
fore proving it we need to make some more general remarks about dimension, and
in particular, our approach to establishing that downsets are finite dimensional.
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A realizer of the poset P is a collection R of linear extensions of the poset such that
x <p y if and only if x < y for each L € R. If R is a realizer of the poset P, we
say that R realizes P. Given that the elements of a realizer are extensions of the
original poset, this is equivalent to saying that for each pair z,y € P of incomparable
elements, there is some L € R such that y < z.

A refinement of the poset P is another partial order, say <g, such that x <g y for
all pairs x,y € P with © <p y. Because every refinement can be extended to a linear
extension, to establish that the dimension of the poset P is at most n, it suffices to
find a collection R of n refinements of P such that x <p y if and only if x <z y
for each R € R. Frequently we go a step further than this. As every refinement
of a subposet of P can be extended to a linear extension of P, to show that P
has dimension at most n it suffices to find a collection R of n partial refinements
(meaning refinements of subposets of P) with this property.

In constructing and analyzing these refinements or partial refinements, we use two
additional terms. If the refinements R; and Ry satisfy x <p, vy and y <g, = (or vice
versa) then we say that the pair Ry, Ry breaks the incomparability between x and y.
Finally, every homomorphism between a poset (or subposet of it) to a totally ordered
set (typically N here) induces a refinement or partial refinement on the poset. In this
situation we often say that the induced refinement sorts the objects of P according
to the homomorphism. For example, a natural refinement of the either the poset of
partitions or of compositions is the one that sorts them according to length (number
of parts).

The following result, which is fundamental to our approach, is folklore, but we include
a proof for completeness.

Proposition 2.2. Let (P, <) be a poset, and let C,D < P be downsets of dimension
m and n respectively. Then C U D is a downsetl of dimension at most m + n.

Proof. Certainly C u D is a downset, so it suffices to show it has dimension at most
m+n. Let {Ry, Ry, ..., Ry} and {51, 5s,...,S,} be realizers of C and D respectively.
First, note that every member of C\D is incomparable with every member of D\C.
Define the refinements

Ry =Ri®(D\C), ..., R, = R, ®(D\C)
and
Si=8@®(C\D),..., S, =5,®(C\D),

where A @ B is the ordinal sum of A and B, including all relations within both A
and B, as well as all relations of the form a < b where a € A and b e B.

The collection {R},..., R, S, ..., S/} realizes C U D, as it breaks all incomparabil-
ities between elements of C\D and D\C and realizes each of C and D. This shows
that C U D has dimension at most m + n. O
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We note that the hypothesis that C and D are both downsets in Proposition 2.2 is
essential, as shown by the fact that the crown of dimension n can be expressed as
the union of two antichains (which are thus each 2-dimensional).

The downsets of compositions which are not unions of proper subdownsets are pre-
cisely the ages, as shown by the following theorem of Fraissé (which we have special-
ized to our contexts here). This result implies it suffices to prove Theorems 1.1 and
1.2 for ages.

Theorem 2.3 (Fraissé [4]; see also Hodges [6, Section 7.1]). The following are equiv-
alent for a downset C of integer partitions or compositions:

(1) C cannot be expressed as the union of two proper subdownsets,

(2) C satisfies the joint embedding property meaning that for every a,b € C there
1s some c € C such that a,b < ¢, and

(3) C = Age(u) for some word u e (P U {n* : neP}u {w w})".

We conclude this section by providing the only specific dimension results of the paper.
To realize the downset Age(ww) of compositions, we use a pair of linear extensions
Ly and L, and a refinement Rs. The first, L, orders compositions according to the
shortlex order, which sorts compositions first by their length, and within each length
sorts compositions according to the lexicographical ordering. The second, Lo, orders
compositions according to the shortcolex order, which sorts compositions first by their
length, and within each length sorts compositions according to the colexicographical
ordering (lexicographical order, but sorting from right to left). Lastly, the refinement
R3 sorts compositions first by their largest part and then by their second largest part.
Note that this sometimes leaves a composition and its reverse incomparable, and thus
is not a linear extension.

These three refinements constitute a realizer of Age(ww), implying that the dimension
of Age(ww) is at most 3. Observing that this age contains the crown of dimension 3
below allows us to conclude that the dimension of Age(ww) equals 3.

13 z 31 z 22
21 12 3

Proposition 2.4. The dimension of Age(ww) is 3.

Similar methods can be applied to show that the dimension of Age(w1®) is 2, and
that the dimensions of Age(1“w1¥), Age(wwl¥), and Age(wl“w) are each 4.
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Figure 1: The Ferrers diagram of the infinite partition w*¢«.

3 Partitions

Having observed in the introduction that the poset of all integer partitions is infi-
nite dimensional, Theorem 1.1 will follow once we show that all proper downsets of
partitions are finite dimensional, which we do here. By Theorem 2.3, every proper
downset of partitions can be written as a finite union of ages of the form Age(u)
for some word u € (P U {n* : neP}u{w})*. Because the parts of partitions are
ordered, each such age is contained in an age of the form Age(w*#*) for nonnegative
integers k and ¢. The Ferrers diagram of such a partition is shown in Figure 1.

By Proposition 2.2, it suffices to show that each such age is finite dimensional. We
see that Age(w"(*) is isomorphic (as a poset) to the product Age(w”) x Age(¢~). The
first of these ages is finite dimensional because it is isomorphic to a subposet of N¥.
The second of these ages is finite dimensional because it is isomorphic to Age(w’),
via conjugation, and that age is in turn isomorphic to a subposet of N*. Thus the
dimension of Age(w®#*) is at most k + £. This completes the proof of Theorem 1.1.

4 Compositions

We have shown in Section 1 that Age(www), Age(1921¥21%), Age(wl®wl®), and
Age(1“wl*w) are infinite dimensional, and in Section 2 we showed that it suffices to
show that the maximal ages not containing the four distinguished infinite dimensional
ages are finite dimensional. The two types of these maximal ages are those of the
forms Age(awbl“cl¥dwe) and Age(al“bwcwdl¥e) for finite compositions a, b, ¢, d,
and e.

We establish the finite dimensionality of these two types of ages with a series of
results. Our first such result implies that we may assume a and e are empty.

Proposition 4.1. If Age(u) is finite dimensional for u € (PU{1%,w})", then Age(ku)

15 finite dimensional for all k € N.

Proof. We proceed by induction on k. The base case of £ = 0 is tautological, so let
k € P be given, and assume Age((k — 1)u) is finite dimensional. Let A = Age(u), let
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B = Age(ku)\A, and for each 1 < j < k, define
A; ={jae A} and B; = {jac B}.

as well as Aoy = {fae A : [ > k}.

By induction, A U B; is finite dimensional for each 1 < j < k — 1. Furthermore, B
is finite dimensional as it is isomorphic to a subposet of N x A by the mapping that
sends the word fa to (¢,a); note that if fa < ¢'a’ for fa,¢'a’ € B then we must have
¢ < 0 and a < da because otherwise we would have fa < o', but that would imply
that fa € A, a contradiction to its choice.

We claim that it suffices to establish that A; U By, and A.j U By are finite dimen-
sional for each 1 < j < k. To see this, suppose that each of these unions is finite
dimensional. This means that there are finite realizers of AU B, forall 1 < j < k-1,
of B, and of A; U By, and A.j U By, for all 1 < j < k. We can consider each of these
finite realizers as a finite set of partial refinements of the entire poset A U B, and it
follows that the union of all of those partial refinements does indeed break all of the
incomparabilities that need to be broken.

Now fix 1 < j < k. Given ja; € A; and kay € By, we have ja; < kay if and only if
a1 < ay. For this reason, we define

Al ={a : jae A;} and By ={a : kae B},

and consider a realizer {L1,...,L,} of A;- v By, which is finite dimensional as it is

contained in A. For each 1 < i < n, we expand L; into a linear extension IA/Z of a set
containing A; u By. To do so, we replace the instance of each composition v in L;
with the two element chain {jv, kv}. If ja; € A; and kay € By, with ja; < kas, then
a1 < az. Thus ay precedes a; in some L;, meaning kas precedes ja; in L.

Lastly, given fa, € A~ and kas € By, we have fa; < kas if and only if fa; < as. Let
{Ry,..., Ry} be arealizer of A.; U By, which is finite dimensional as it is contained
in A. For each 1 <7 < m, we expand R; into a linear extension RZ of Ao u B;. To
do so, we replace the instance of a € By in R; with ka.

Then, if la, € A~ and kas € By, with fa; < Z{:ag, then fa; < as. Thus as precedes
lay in some R;, meaning kas precedes fa; in R;. O

By applying Proposition 4.1 twice, we obtain the following.

Corollary 4.2. For all compositions a and b, both Age(al“b) and Age(awb) are finite
dimensional.

The proof of our next result is more complicated.

Proposition 4.3. For all compositions ¢, Age(1“cl¥) is finite dimensional.
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Proof. We partition the age of interest into a finite collection of intervals and then
construct a family of linear extensions which break the incomparabilities between
these intervals. These intervals are [a, 1¥al¥) = {d € Age(1¥al¥) : d = a} for each
a=a(l)---a(m) € Age(c), where the first and last parts of a are at least 2. Because
of this condition on a, we see that

[a,1al1¥) = {1"al? : i,j e N},

so each such interval is isomorphic to N? and thus finite dimensional. Let R denote
the (finite) collection of linear extensions realizing each [a, 1¥al¥).

It suffices to consider the union of a pair of such intervals. Let a,b < ¢ where
a=a(l)---a(m) and b = b(1) - - - b(n) have the property that the first and last parts
of each a and b are at least 2. Note that there are only finitely many such pairs a, b
because c¢ is a finite composition. First, if ¢ and b are such that b < a, then none
of the elements of [b, 1“b1*) embed into any of the elements of [a, 1¥al1¥), and these
incomparabilities can be broken with the refinement [a, 1“a1¥) @ [b, 1¥b1¥). Let S
be the (finite) collection of these refinements for each a,b with b < a.

This leaves us to consider the case where a and b are comparable with a < b, and
the only incomparabilities left to break are those of the form 1*al’ < 1¥b1¢.

The bulk of the proof consists of contending with the fact that a may have several
embeddings into b. Of these, it suffices to consider the compact embeddings, meaning
those which cannot be shrunk. More precisely, let a; < --- < o, denote the begin-
nings of these compact embeddings and 3, < --- < 3, denote the ends. Because
these are embeddings, for all p we have

a < b(ay)b(ap +1)---b(By),
and because they are compact, we have both

a < b(ay, + 1)b(ay, +2)---b(5,),
a < b(ap)b(ay, +1) - b(8, — 1).

Consider an incomparability between elements of these two intervals, 17al’ < 1¥b1°.
This means that, in N2, we have incomparabilities of the form

(i,§) < (k+ap— 1,0 +n— ()

for each 1 < p < ¢. The set of points {(k +a, — 1,0 +n—0,) : 1 < p < ¢} is
an antichain in N? that lies weakly above and to the right of (k,¢) in the plane, as
shown on the left of Figure 2.

We now introduce two refinements of [a, 1¥a1¥) U [b, 19b1*). The first sorts compo-
sitions by the largest r such that 17a is contained in them, while the second sorts
compositions by the largest s such that a1® is contained in them. For a given k and
¢, these two refinements break all incomparabilities of the form 1°al’ < 1¥b1¢ where



M. ENGEN AND V. VATTER / AUSTRALAS. J. COMBIN. 74 (1) (2019), 98-111 107

(k+a1—1,0+n—p1)
[ ]
[ J
[ ]

° T S
(k+ag—1,04+n—B4) . .. ‘.

(k?g) (k, ) o 0

Figure 2: (Left) A point (k,f) representing 1¥b1¢ together with associated
points representing the minimal compositions of the form 1°a1’ which do not
embed into 1¥p1°. (Center) A point (k,¢) representing 1¥61° and its associ-
ated set T}, ; representing compositions of the form 1‘al’. (Right) The shaded
regions indicate part of a family of compositions included in one refinement
constructed at the end of the proof of Proposition 4.3.

t>k+a,—1orj>{l+n— 3. Still thinking of k£ and ¢ as fixed, this leaves us with
a finite set of incomparabilities of the form 1'al? < 1%b1° to break, as illustrated in
the center of Figure 2. Let T}, denote the finite set of compositions of the form 1'al’
whose incomparabilities with 1¥61¢ have not been dealt with. Thus T}, is the set

('al/ = (i, 7)

(4, 5)

We identify each composition 1‘al’ € T}, with the point (i,7) in the plane. Thus
the points corresponding to the compositions in T} , are contained in the rectangle

(k+a,—1,0+n—p;) and

<
<(k+a,—1,0+n—p,) forall 1 <p<q}

[k k+a,— 1] x [£,0+n— B].

Given k, ¢, we define a refinement Ry, of {1’“()15} U T} ¢ in which 1¥b1 is less than each
element of Ty 4. All that remains is to combine the collection of refinements Ry, ¢ into
finitely many refinements of [a, 1“a1*) U [b,1b1¥). We achieve this by partitioning
N? into equivalence classes with respect to the equivalence relation (k,€) ~ (k',¢')
if £k = Fmoda, and ¢ = ¢'modn — B + 1. We further write [(k,¢)] to denote
the equivalence class containing (k, £). Note that there are only finitely many such
equivalences classes.

The motivation for this equivalence relation is that if (k, £) ~ (k’, ') then the relations
defined by Ry, and Ry ¢ do not conflict. Thus for any (k, £) € N2, all of the relations

R
(k") (k:0)]

can be combined into a single refinement. The compositions involved in one such
refinement are drawn on the right of Figure 2.

As there are only finitely many such equivalence classes in N2, and only finitely
many pairs a,b with @ < b < ¢, this (finite) set of refinements, together with the
refinements of R and S, realizes Age(1¥cl1¥), completing the proof. O
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With Proposition 4.3 established, showing that ages of the forms Age(wal“bl¥cw)
and Age(1¥awbwcl®) are finite dimensional is accomplished by first proving that ages
of the forms Age(wal“bl¥) and Age(1¥awbl®) are finite dimensional. Each of these
steps relies on Proposition 4.3.

Proposition 4.4. For all compositions a and b, Age(wal”bl¥) is finite dimensional.

Proof. Let m denote the maximum entry in a or b and let m = m + 1. By Proposi-
tions 4.1 and 4.3 we have that Age(mal“b1¥) is finite dimensional, so let {L1, ... L,}
be a realizer of it. For each 1 < ¢ < n, we expand L; into a linear extension L;
of Age(wal®“bl¥). To do so, we replace the instance of mz in L; with the linearly
ordered interval [mx,wx).

The only incomparabilities yet to be handled are those of the form kyx; < kyzo where
mx; < mxy and ky > ko = m. These are fixed by including a single refinement which
sorts elements of Age(wal“bl®) by their largest entry. O

Proposition 4.5. For all compositions a, b, and ¢, Age(wal“bl¥cw) is finite dimen-
sional.

Proof. We proceed by defining six sets, each of which is finite dimensional and whose
union is the age of interest, and then construct a family of refinements which break
the incomparabilities between the sets. Let m denote the maximum entry in a, b, or
c,let m=m+1,let m=m + 1, and define

A = [e,mal¥bl¥cm),
By = [m,mal¥bl¥cm),
By = [m,mal“bl¥cm),
Cy = [mm,wal®bl¥cm),
Cy = [mm,mal¥bl¥cw),
D [mm,wal“bl¥cw),

where we recall that £ denotes the empty word. Now, the complement of D,

Age(wal®bl®cw)\D = Au By u By u Cy L Cy
= Age(wal®bl¥cem) U Age(mal®bl¥cw)

is finite dimensional by Propositions 2.2, 4.1, and 4.4. Also, C; u Cy u D is finite
dimensional as it is isomorphic to a subposet of Nx Age(al“b1¥c) x N. Thus it suffices
to show that the incomparabilities between A U B; U By and D can be broken with
finitely many refinements.

Let {Ly,..., L,} be a realizer for Age(mal“bl“cm). For each 1 < i < n, we expand
L; into a refinement L; of Age(wal“bl¥cw). To do so, for each v, we replace the
instance of mvm in L; with the interval [mvm,wvw). If u € AU By U By and
kivky € D for integers ki, ko = m and u < kivksy, then u < mom, so mum is less
than u in some L;, and thus kyvks is less than u in [:i. This completes the proof. [
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The proofs of our next two results are very similar to those of Propositions 4.4
and 4.5.

Proposition 4.6. For all compositions a and b, Age(1¥awbl®) is finite dimensional.

Proof. Let m denote the maximum entry in a or b and let m = m + 1. By Propo-
sition 4.3 we have that Age(1“ambl®) is finite dimensional, so let {L,...L,} be
a realizer of it. For each 1 < ¢ < n, we expand L; into a linear extension iz of
Age(1¥awbl®). To do so, we replace the instance of zmy in L; with the linearly
ordered interval [xmy, zwy).

The only incomparabilities yet to be handled are those of the form z1kiy; < zokoyo
where z1my; < xomys and ky > ko = m. These are fixed by including a single
refinement which sorts elements of Age(1“awbl”) by their largest entry. O

Proposition 4.7. For all compositions a, b, and ¢, Age(1¥awbwcl®) is finite dimen-
stonal.

Proof. Let m denote the maximum entry in a, b, or ¢, let m = m+1, let m = m + 1,

and define

A = g 1“’ambmcl“’)
By = [m, ambmcl”),
By = [m,1¥ambmcl?),
C, = [mm 1¥awbmel?),
Cy = [mm,1¥Yambwcl?),
D [mm, 1“awbwcl®).

The complement of D,

Age(1¥awbwcl®) = AU By u By u Cy L Cy
= Age(1¥ambwcl®) U Age(1¥awbmel®)

is finite dimensional by Propositions 2.2, 4.1, and 4.6. Also, C; u Cy u D is finite
dimensional as it is isomorphic to a subposet of Age(1“a) x Nx Age(b) x N x Age(cl1¥).
Thus it suffices to show that the incomparabilities between A U B; U By and D can
be broken with finitely many refinements.

Let {L1,..., Ly} be a realizer for Age(1“ambmel®). For each 1 < i < n, we expand
L; into a refinement L; of AU By u By u D. To do so, for each x,y, z, we replace the
instance of xmymz in L; with the interval [xmymz, rwywz).

Then, if u e AU By U By and xk1yksz € D with ki, ky = m, and u < xkyksz, then
we have u < zmymz. Thus xmymz is less than u in some L;, and thus xkiyksz is
less than u in L;. This completes the proof. O

With Propositions 4.5 and 4.7 established, we note that the proof of Theorem 1.2 is
complete, given the remarks at the beginning of Section 4.
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5 Concluding Remarks

Theorems 1.1 and 1.2 characterize the finite dimensional downsets in the posets of
integer partitions and compositions, respectively. There are several similar contexts
in which the analogous questions have yet to be considered. One such context is the
poset of permutations under the permutation pattern order. We refer to the second
author’s survey [16] for more information on this order. A related example is the
poset of set partitions, first studied by Klazar [7-9] and Sagan [12]. Another natural
context would be the generalized subword order over an arbitrary poset P, a context
where McNamara and Sagan [10] have recently determined the Méobius function.
Indeed, even the special case of words over a two-element antichain appears to be
untouched.
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