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Abstract

We investigate the smallest number A\.(G) of edges that can be removed
from a non-empty graph G so that the resulting graph has a smaller maxi-
mum degree. We prove that if m is the number of edges, k is the maximum
degree, and t is the number of vertices of degree k, then A\.(G) < m;,(f__ll)t.
We also show that \.(G) < 7 if G is a tree. For each of these two bounds,
we determine the graphs which attain the bound. We provide other sharp
bounds for \,(G), relations with other graph parameters, and structural

observations.

1 Introduction

Unless stated otherwise, we shall use small letters such as = to denote non-negative
integers or functions or elements of a set, and capital letters such as X to denote sets
or graphs. The set {1,2,...} of positive integers is denoted by N. For any n € N,
the set {1,...,n} is denoted by [n]. For a set X, the set {{z,y}: x,y € X,z # y}
(of all 2-element subsets of X) is denoted by ()2() All arbitrary sets are assumed to
be finite.

A graph G is a pair (X,Y’), where X is a set, called the vertex set of G, and Y
is a subset of ()2() and is called the edge set of G. The vertex set and the edge set
of G are denoted by V(G) and E(G), respectively. An element of V(G) is called a
vertex of G, and an element of E(G) is called an edge of G. We may represent an
edge {v,w} by vw. If vw is an edge of G, then v and w are said to be adjacent in
G, and we say that w is a neighbour of v in G (and vice-versa). An edge vw is said
to be incident to x if xt = v or z = w.

For v € V(G), Ng(v) denotes the set of neighbours of v in G, Ng[v] denotes
Ne(v) U{v} and is called the closed neighbourhood of v in G, Eg(v) denotes the set
of edges of G that are incident to v, and dg(v) denotes |Ng(v)| (= |Eg(v)|) and is
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called the degree of v in G. For X C V(G), we denote | J,.y Na(v), U,ex Nalv],
and (J,cy Ea(v) by Ng(X), Ng[X], and Eg(X), respectively. The minimum de-
gree of G is min{dg(v): v € V(G)} and is denoted by 6(G). The mazimum degree
of G is max{dg(v): v € V(G)} and is denoted by A(G). Let M(G) denote the
set of vertices of G of degree A(G). Let G, denote the subgraph of G' given by
Usenr(c Ealv). Ea(M(G))) (= (Na[M(G)], Ec(M(G)).

If H and G are graphs such that V(H) C V(G) and E(H) C E(G), then H is
called a subgraph of G, and we say that G contains H. For X C V(G), (X, E(G) N
(3)) is called the subgraph of G induced by X and is denoted by G[X]. For S C V(G),
G — S denotes the subgraph of G induced by V' (G)\S. We may abbreviate G —{v} to
G —v. For L C E(G), G — L denotes the subgraph of G obtained by removing from
G the edges in L, that is, G — L = (V(G), E(G)\L). We may abbreviate G — {e} to
G —e.

In [3], we investigated the smallest number of vertices that can be removed from a
graph so that the new graph obtained has a smaller maximum degree. In the present
paper, we investigate the smallest number of edges that can be removed from a graph
for the same purpose. The first problem is of domination type (see [3]), whereas the
second problem is of edge-covering type (see below).

We call a subset L of E(G) a A-reducing edge set of G if A(G — L) < A(G) or
A(G) = 0. We denote the size of a smallest A-reducing edge set of G by \o(G).

We provide several bounds and equations for \,(G). Before stating our results,
we need to add some definitions and notation, and make a few observations.
For L C E(G) and X C V(G), we say that L is an edge cover of X in G if for

each v € X with dg(v) > 0, at least one edge in L is incident to v. Note that L is a
A-reducing edge set of G if and only if L is an edge cover of M(G) in G. Thus,

Ae(G) = min{|L|: L is an edge cover of M(G) in G}.
Consequently, we immediately obtain
/\e(G) = )‘e(Ge)' (1)

If G,Gy, ..., G, are graphs such that V(G) =J_,V(G;) and E(G) = J,_, E(G)),
then we say that GG is the union of G, ..., G,.

If Xq,...,X, are sets such that no r of X;,..., X, have a common element, then
Xq,..., X, are said to be r-wise disjoint. Graphs Gq,..., G, are said to be r-wise
vertex-disjoint if V(Gy),...,V(Gs) are r-wise disjoint. Graphs Gy, ..., G, are said
to be r-wise edge-disjoint if E(Gy),..., E(Gs) are r-wise disjoint. We may use the
term pairwise instead of 2-wise.

If vy, v,...,v, are the distinct vertices of a graph G with E(G) = {vv;11: 1 €
[n—1]}, then G is called a vyv,-path or simply a path. The path ([n], {{1,2},...,{n—
1,n}}) is denoted by P,. For a path P, the length of P, denoted by [(P), is |V (P)|—1.

For a graph G and u,v € V(G), the distance of v from wu, denoted by dg(u,v), is
given by dg(u,v) =0 if u = v, dg(u,v) = min{l(P): P is a uv-path, G contains P}
if G contains a wv-path, and dg(u,v) = oo if G contains no uwv-path.
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A graph H is connected if for every u,v € V(H) with u # v, H contains a uv-
path. A component of a graph G is a maximal connected subgraph of G (that is,
one that is not a subgraph of any other connected subgraph of G). It is easy to see
that if Gq,...,G, are the distinct components of G, then G,...,G, are pairwise
vertex-disjoint and hence pairwise edge-disjoint, and G is the union of Gy, ..., G,.

Let H be a graph. A graph G is a copy of H if there exists a bijection f : V(G) —
V(H) such that E(H) = {f(u)f(v): wv € E(G)}.

If n > 3 and vy, vy,...,v, are the distinct vertices of a graph G with F(G) =
{v1v9, Vo3, . .., Vy_10Un, U1 }, then G is called a cycle. The cycle ([n], {{1,2},...,
{n —1,n},{n,1}}) is denoted by C,,. A triangle is a copy of Cj.

A tree is a connected graph that contains no cycles. A forest is a graph whose

components are trees. For k > 1, the tree ({0} U [k], {{0,4}: ¢ € [k]}) is denoted by
Ky ;. A copy of K will be called a k-star or simply a star.

A graph G is complete if every two vertices of G are adjacent (that is, F(G) =
(V(QG))). A graph G is empty if no two vertices of G are adjacent (that is, F(G) = 0).
A graph G is a singleton if |V(G)| = 1, in which case G is complete and empty.

If £ € {0} UN and each vertex of a graph G has degree k, then G is called
k-regular or simply reqular.

We are now ready to state our main results, given in the next section. In Section 3,
we investigate \o(G) from a structural point of view; we obtain equations for A.(G)
in terms of certain parameters of certain subgraphs of G, and observe how A\ (G)
changes with the deletion of edges. Some of the structural results are then used in
the proofs of the main upper bounds presented in the next section; these proofs are
given in Section 4.

2 Main results

In this section, we present our main results, most of which are bounds for A\.(G) in
terms of basic paramaters of G. We start with a lower bound.

Proposition 2.1 If G is a graph, n = |V(G)|, m = |E(G)|, k = A(G) > 1, and

t = [M(G)|, then
2 {2t 1]

Moreover, equality holds if G is complete.

Proof. Let L be a A-reducing edge set of G of size A\e(G). Since A(G—L) < k—1,
the handshaking lemma (applied to G — L) gives us |E(G — L)| < ¥ Since

m = [B(G — L) + L] € B2 4 20 (G), A(€) = [22=ticn].

2

Since L is a A-reducing edge set of G, each vertex in M(G) is contained in some
edge in L. Thus, M(G) C U, e. Therefore, t < >  _, |e|] = 2|L|, and hence
(@) > [5].

2
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n(n—1)

Suppose that G is a complete graph. Then t = n, k =n — 1, and m =
Let vy, ..., v, be the vertices of G. Let X = {vy_1v: 1 € N, 4 < §}. If n is even,

then X is a A-reducing edge set of G of size § = (%w = [w-‘ If n is odd,

then X U {v,v1} is a A-reducing edge set of G of size ! = [L] = [WW O

In the rest of this section, we present upper bounds for \.(G), the proofs of which
are given in Section 4. For this purpose, we shall first introduce a class of graphs
that attain each of these upper bounds.

For k > 1, we will call a graph G a special k-star union if A(G) = k and each
non-singleton component of GG is the union of k-stars that are pairwise edge-disjoint
and k-wise vertex-disjoint. In Section 4, we prove the following.

Lemma 2.2 If G is a special k-star union, m = |E(G)|, and t = |M(G)|, then
m =kt and A\(G) = t.

Theorem 2.3 If G is a graph, m = |E(G)|, k = A(G) > 1, and t = |M(G)|, then

m+ (k—1)t
< - N 7
Ae(G) < 2k — 1

Moreover, equality holds if and only if G is a special k-star union or each non-
singleton component of G is a 2-star or a triangle.

Remark 2.4 By (1), we may take m = |E(G,)| in each of the results above, and
n = |V(Ge)| in Proposition 2.1. Note that A(G) = A(G.) and M(G) = M(G.).
Thus, we actually have the following immediate consequence.

Corollary 2.5 If G is a graph, n = |V(G.)|, m = |E(G.)|, k = A(G) > 1, and
t =|M(G)|, then

o { Fm SLL ”ﬂ, H} <A@ <Mk

Moreover, the bounds are sharp.

Consider the numbers m, k, and t in Corollary 2.5. By the definition of G,

m < kt. Let H = G.. By the handshaking lemma, 2m = }_ ) du(v) >
> vem(c) du(v) = kt (and equality holds if and only if G, is regular). Thus,

kt

Using a probabilistic argument similar to that used by Alon in [1], we prove the
following bound.



P.BORG AND K. FENECH / AUSTRALAS. J. COMBIN. 73 (1) (2019), 247260 251

Theorem 2.6 If G is a graph, m = |E(G,)|, k = A(G) > 2, and t = |M(G)|, then

]

Moreover, equality holds if G, is a special k-star union.

As we also show in Section 4, a slight adjustment of the proof of Theorem 2.6 yields
the following weaker but simpler (and still sharp) result.

Theorem 2.7 If G is a graph, m = |E(G,)|, k = A(G) > 1, and t = |M(G)|, then

A(G) < % (1 +In (%)) .

Moreover, equality holds if G is a special k-star union.

A set of pairwise disjoint edges of G is called a matching of G. The matching
number of G is the size of a largest matching of G and is denoted by o/(G). In the
next section, we prove the following result.

Theorem 2.8 For every non-empty graph G,
Ae(G) = [M(G)| = o/ (GIM(G))).

If G is a regular non-empty graph, then M(G) = V(G), and hence, by Theo-
rem 2.8, A\(G) = |[V(G)| — &/(G). Thus, for a regular graph G, a lower bound for
o/(G) yields an upper bound for A\.(G), and vice-versa. For k& > 3, Henning and Yeo
[4] established a lower bound for o/(G) for all k-regular graphs G, and showed that
the bound is attained for infinitely many k-regular graphs. Biedl, Demaine, Duncan,
Fleischer, and Kobourov [2] had proved the bound for k = 3 and several other inter-
esting lower bounds for o/(G). Another important lower bound for k-regular graphs
with & > 4 is given by O and West [6]. The 2-regular graphs are the cycles. Tt is
easy to see that {n, 1} U{{2:,2i +1}: 1 <i < [n/2] — 1} is a smallest A-reducing
edge set of C),, so

A(Ca) = | 5] (3)

For k > 1, we will call a tree T" an edge-disjoint k-star union if T is the union of
pairwise edge-disjoint k-stars. In Section 4, we prove the following sharp bound for
trees.

Theorem 2.9 IfT is a tree, n = |V(T)|, m = |E(T)|, and k = A(T) > 1, then

n—1 m
A(T) < = —.
(T) < k k

Moreover, equality holds if and only if T is an edge-disjoint k-star union.
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The trees of maximum degree at most 2 are the paths. It is easy to see that {{2i, 2i+
1}:1<i<[(n—2)/2]} is a smallest A-reducing edge set of P,, so

n—2
N et g
Theorem 2.9 yields the following generalization.
Theorem 2.10 If F is a forest, m = |E(F)|, and k = A(F) > 1, then
m
Ae(F) < —.
(F) <7

Moreover, equality holds if and only if each non-singleton component of F is an
edge-disjoint k-star union.

Proof. Let C be the set of components of F. Let D = {C € C: A(C) = k}. Since

A(F) =k, D # 0. Foreach D € D, Dis atree, so (D) < ELL 1y Theorem 2.9. By

k
Proposition 3.7 (given in the next section), Ae(F) = > pep Ae(D) <D pep |E§€D)| <

7. It each non-singleton component of F'is an edge-disjoint k-star union, then,

by Theorem 2.9, A\e(F) = > pep |E(kD)| = 7. Now suppose A.(F') = 7. Then, by
the above, m = } ;5 |E(D)| and A\ (D) = kkD)‘ for each D € D. Thus, each
non-singleton component of F' is a member of D, and, by Theorem 2.9, it is an

edge-disjoint k-star union. a

By the observations in Remark 2.4, we may take m = |E(G.)| in Theorem 2.10.
Thus, for the case where G is a forest, Theorem 2.10 improves each of the upper
bounds in Corollary 2.5, Theorem 2.6, and Theorem 2.7. Indeed, since m < kt (by

1
m+(k—1)t m4(k—1)(m/k) _ m k=1 m)F* 1 k—1\ _
(2), we have "Et > TG )(/)—E’m<1_T<_> )2m(1—7)—

2k—1 — k-1 kt

m and m (1 +In (%)) >m

3 Structural results

In this section, we take a close look at how A.(G) is determined by the structure
of G and at how it is affected by removing edges from G. Some of the following
observations are used in the proofs given in the next section.

Let M;(G) denote {v € M(G): vw € E(G) for some w € M(G)\{v}}. Let
M(G) denote M(G)\M;(G). Thus, My(G) = {v € M(G): dg(v,w) > 2 for each
w e M(G)\{v}}.

Recall the definition of an edge cover, given in Section 1. An edge cover of V(G)
in G is called an edge cover of G. The edge-covering number of G is the size of a
smallest edge cover of G and is denoted by f'(G). Clearly, A\(G) = p'(G) if G is

regular. In general, we have the following.
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Theorem 3.1 For every non-empty graph G,
Ae(G) = [Ma(G)] + B'(G[M1(G)]).

Proof. We start with a few observations. Let &k = A(G). Since G is non-empty,
k > 1. For each v € M(G), G has exactly k edges incident to v. By definition of
MQ(G>7

for any v € My(G) and any e € Eg(v), e ¢ Eg(w) for each w € M(G)\{v}. (5)

For any v € M;(G), vw € E(G) for some w € M(G)\{v}, and therefore w € M;(G)
and vw € G[M;(G)]. In other words,

for any v € M;(G), G[M;(G)] has at least one edge incident to v. (6)

Thus, G[M;(G)] has an edge cover.

Let K be an edge cover of G[M;(G)] of size f'(G[M;(G)]). For each v € My(G),
let e, € Eg(v). Let K" = {e,: v € My(G)} U K. Then K’ is a A-reducing edge set
of G. By (5), || = |Mx(G)] + K], Thus, M(G) < [Ma(G)] + B(GIM(G)).

Now let L be a A-reducing edge set of G of size A\(G). For each v € M(G),
there exists some e, € Eg(v) such that e, € L. Let Ly = {e,: v € M;(G)} and
Ly = {e,: v € My(G)}. Then L; U Ly is a A-reducing edge set of G. Thus, since
LiULs C Land |L| = A(Q), L = L1 U Ly. By (5), |L1 U Ls| = |L1| + | Ma(G)].
Let X = {v € Mi(G): e, ¢ E(G[M(G)])}. By (6), for each v € M;(G), there
exists some €, € FEg(v) such that e € E(G[M(G)]). Let L] = (Li\{e,: v €
X} u{e:v e X}, Foreach v € X, e, N My(G) = {v}. Thus, L] is an edge
cover of G[M;(G)], and |Lj| < |Ly|. We have A\ (G) = |L| = |My(G)| + |L1| >
[My(G)| + [Li] = [Ma(G)] + B'(GIMi(G)]). Since Ae(G) < [Ms(G)] + B/(GIMU(G)]),
the result follows. O

We now prove Theorem 2.8. Using a well-known result of Gallai [5], we then show
that Theorems 2.8 and 3.1 are equivalent, meaning that they imply each other.

Proof of Theorem 2.8. Let H = G[M(G)]. Let K be a matching of H of size
o' (H). Let X = J,c e Then X € M(G) and |X| = 2|K]|. For each v € M(G)\ X,
let e, € Eg(v). Let K’ = {e,: v € M(G)\X}. Then K UK’ is a A-reducing edge
set of G. Thus, \(G) < |K|+ |K'| < |K| + [M(G\X| = |K|+ |M(G)| — |X]| =
[M(G)| - [K| = [M(G)] = o/(H).

Now let L be a A-reducing edge set of G of size A\o(G). Then, for each v € M(G),
there exists some e, € Eg(v) such that e/ € L. Let J be a largest subset of L
that is a matching of H. Let Y = (J..;e. Then Y C M(G) and |Y| = 2|J|. Let
Y'=M(G)\Y. Let J' = {e}: v € Y'}. If we assume that e/, = ¢/ for some u,v € Y’
with u # v, then we obtain that e}, = e/ = wv and that J U {uv} is a matching
of H of size |J| + 1, which contradicts the choice of J. Thus, |J'| = |Y’|. Now
JUJ C Land JNJ' = 0. We have A\(G) = |L| > |JUJ'| = |J|+|J| = |J|+ Y| =
[I+M(G)| = Y] = [M(G)|=[J| 2 [M(G)| =a/(H). Since A(G) < [M(G)|—/(H),
the result follows. O
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Proposition 3.2 Theorems 2.8 and 3.1 are equivalent.

Proof. By (6), 0(G[M1(G)]) > 1. A result of Gallai [5] tells us that o/ (H) + 5'(H)
= |V(H)| for every graph H with §(H) > 1. Thus,

o (GIMy(G))) + B(GIM(G))) = [V(GIMU(G)])] = [Mi(G)].

If v,w € M(G) such that vw € E(G), then vw € M;(G). Thus, E(G[M(G)])
E(G[M,(G)]), and hence o/ (G[M;(G)]) = o/(G[M(G)]). Therefore, since |M(G)|
|M1(G)| + |Ms(G)], Theorem 2.8 implies Theorem 3.1, and vice-versa.

a

From Theorem 3.1 we immediately obtain the next two results.

Proposition 3.3 If G is a non-empty graph, then \(G) < |[M(G)|, and equality
holds if and only if M2(G) = M(G).

Proof. For each v € M(G), let e, € Eg(v). Since {e,: v € M(G)} is a A-
reducing edge set of G, \(G) < [{e,: v € M(G)}| < |M(G)|. By Theorem 3.1,
Ae(G) = |M(G)| if M3(G) = M(G). Suppose My(G) # M(G). Then M;(G) # 0.
Let x € M,(G). By (6), xy € E(G[M;(G)]) for some y € M;(G)\{z}. Also by (6), for
each v € M;(G)\{z,y}, there exists some €/ € Eg(v) such that e, € E(G[M;(G)]).
Let L = {ay}U{e :v € Mi(G)\{z,y}}. Since L is an edge cover of G[M;(G)],
B'(G[M(GQ)]) < |L| < |Mi(G)| — 1. Thus, by Theorem 3.1, A\(G) < |My(G)| +
ML)~ 1< M(G)] 5

Proposition 3.4 IfG is a graph with My(G) # M(G), then A(G—My(G)) = A(G)
and Ao(G) = |M2(G)| + Xe(G — M5 (G)).

Proof. Let H = G — My(G). Since My(G) # M(G), Mi(G) # 0. By (5),
Eq(M,(G)) C E(H). Together with M(G) = M,(G)UMy(G), this gives us M (H) =
M;(G). Let K be an edge cover of G[M;(G)] of size §'(G[M,(G)]) (K exists by (6)).
Then K is a A-reducing edge set of H, and hence A\(H) < p'(G[M;(G)]). By Theo-
rem 3.1, \o(G) > |M2(G)|+ Ae(H). Now let L; be a A-reducing edge set of H of size
Xe(H), and let Loy be as in the proof of Theorem 3.1. Then L; U Ly is a A-reducing
edge set of G. Thus, A\e(G) < |L1| + |La| = Ae(H) 4 |M3(G)|. The result follows. O

In the rest of the section, we take a look at how A.(H) relates to A\(G) for a
subgraph H of G, or rather, how \.(G) is affected by removing edges from G.

Lemma 3.5 If G is a graph, H is a subgraph of G with A(H) = A(G), and L is a
A-reducing edge set of G, then LN E(H) is a A-reducing edge set of H.

Proof. Let J = LN E(H). It is sufficient to show that for each v € M(H),
e € Eg(v) for some e € J. Let v € M(H). Since A(H) = A(G), v € M(G) and
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Ey(v) = Eg(v). Since v € M(G), e € Eg(v) for some e € L. Since Eg(v) = Ey(v),
e € E(H). Therefore, e € J. O

We point out that |L| = A(G) does not guarantee that |L N E(H)| = A(H).
Indeed, let k£ > 2, let Gy and G be copies of K with V(G1) NV (Gs) = 0, and let
G be the union of Gy and Go. Let e; € E(Gy) and e; € E(G3). Let e € E(Gy)\{ez2}.
Let H = (V(GQ), E(G)\{e}). Let L = {e1,es}. Then L is a A-reducing edge set of
G of size \o(G), LN E(H) = {e1,e2} = L, but {e;1} is a A-reducing edge set of H of
size Ae(H). Thus, L N E(H) is not a smallest A-reducing edge set of H.

Corollary 3.6 If H is a subgraph of G such that A(H) = A(G), then A\(H) <
Ae(G).

Proof. Let L be a A-reducing edge set of G of size A\(G). Let J = LN E(H).
By Lemma 3.5, J is a A-reducing edge set of H. Therefore, \(H) < |J| < |L| =
Ae(G). O

Proposition 3.7 If G is a graph and G4, ..., G, are the distinct components of G
whose mazimum degree is A(G), then A\e(G) = >"1_; Xe(G5).

Proof. Let L be a A-reducing edge set of G of size \(G). For each i € [r], let
L, = LN E(G;). Then Ly, ..., L, partition L, so |L| = > ._, |L;|. By Lemma 3.5,
for each @ € [r], L; is a A-reducing edge set of G;, so A\(G;) < |L;|. Suppose
Ae(Gj) < |Lj| for some j € [r]. Let L’ be a A-reducing edge set of G; of size
Ae(Gj). Then LU Uie[r]\{ iy Li 18 & A-reducing edge set of G that is smaller than
L, a contradiction. Thus, \.(G;) = |L;| for each i € [r]. We have A\(G) = |L| =
> i 1Ll = 201 AGa). D

Proposition 3.8 If G is a graph, u,v € V(G)\M(G), and uwv € E(G), then \o(G —
uv) = Ao(Q).

Proof. Let e = uv. Since u,v ¢ M(G), A(G —e) = A(G). By Corollary 3.6,
Ae(G —€) < A(G). Let L be a A-reducing edge set of G — e of size A\o(G — €). Since
u,v ¢ M(G), M(G —e) = M(G). Thus, L is a A-reducing edge set of G, and hence
Ae(G) < Ae(G — ). Since A\o(G — €) < A(G), the result follows. O

Proposition 3.9 If G is a graph and e € E(G), then A\o(G) < 1+ X(G —e).

Proof. If A(G —e) < A(G), then A\(G) = 1. Suppose A(G — e) = A(G). Then
M(G—e) C M(G)Ue. Let L be a A-reducing edge set of G—e of size A\e(G—¢). Then
L U {e} is a A-reducing edge set of G. Thus, A\e(G) < [LU{e}| =1+ (G —¢). O

Corollary 3.10 If ey,...,e; are edges of a graph G, then A(G) < t + A(G —
{617 c et})'

Proof. The result follows by repeated application of Proposition 3.9. a



P.BORG AND K. FENECH / AUSTRALAS. J. COMBIN. 73 (1) (2019), 247-260 256

4 Proofs of the main upper bounds
We now prove Lemma 2.2 and Theorems 2.3, 2.6, 2.7, and 2.9.

Proof of Lemma 2.2. Since G is a special k-star union, A(G) = k and E(G) =
E(G1)U---UE(G,) for some k-stars G, ..., G, that are pairwise edge-disjoint and k-
wise vertex-disjoint. Thus, m = kr, and for i € [r|, there exist u;, v;1,...,v;x € V(G)
such that G; = ({w;, v, ..., vig}, {uvi1, ..., uvix}). Fori € [r], |Eg,(w)| = k =
A(G), so we have Eg(u;) = Eg,(u;) = E(G;). Thus, since E(Gy),..., E(G,) are
pairwise disjoint, uy,...,u, are distinct. Consider any w € V(G)\{u,...,u,}. For
each ¢ € [r] such that w € V(G;), Eq¢(w) N E(G;) = {u;w}. Thus, dg(w) = [{i €
[r]: w € V(G;)}|, and hence, since Gy, ..., G, are k-wise vertex-disjoint, dg(w) < k.
Thus, M(G) = {uy,...,u.}, and hence t = r. Since m = kr, m = kt.

Now let L be a A-reducing edge set of G of size A\(G). For i € [r|, there exists
some e; € Fg(u;) such that e; € L. Let L' = {ey,...,e.}. Fori,j € [r] with i # j,
Ec(u;) N Eg(u;) = E(G;) N E(G)) = 0, so e; # ¢;. Thus, |[L'| =r. Now L' is a
A-reducing edge set of G and L' C L, so A\(G) < |L'| < |L]. Since A\(G) = |L|, we
obtain L' = L, so A(G) = r. Since t = r, the result is proved. O

Proof of Theorem 2.3. If G is a special k-star union, then, by Lemma 2.2, we
have m = kt and A\ (G) =t = m;gfll)t. If G has exactly ¢; 4+ ¢o + ¢3 components, ¢;
components of GG are singletons, co components of G are 2-stars, and c3 components
of G are triangles, then m = 2¢y + 3c3, k = 2, t = ¢o + 3c3, and, by Proposition 3.7,

)\e(G) = 62)\6(P2> + 63)\6(03) = Cy + 2C3 e m;lﬁ;]izl)t

We now prove the bound in the theorem and show that it is attained only in the
cases above. If m = 1, then k£ = 1, and the result follows immediately. We now
proceed by induction on m. Thus, suppose m > 2. If k = 1, then the edges of G are
pairwise disjoint, G is a special 1-star union, and A\.(G) = m = m;;f__ll)t. Suppose
k> 2.

Suppose My(G) = M(G). Let vy, ..., v; be the vertices in My(G). By (5), Eg(vy),
..., Eg(v;) are pairwise disjoint, so |Eg(My(G))| = i, |Ea(vi)| = Si_ k = kt.
Thus, m > kt, and equality holds only if E(G) = Ule Eg(v;). By Proposition 3.3,
A(G) =t = kt;g:l)t < m;,(f__ll)t. Suppose \(G) = m;g:”t. Then m = kt, and
hence E(G) = |J._, Eg(v;). For i € [t], let G; be the k-star (Ng[v], E¢(v;)). Then
G, ...,Gy are pairwise edge-disjoint. For i € [t], we have dg,(v;) = A(G), so v; ¢
V(G,) for j € [t]\{i}. Consider any w € J:_, V/(Gi)\{v1,...,v;}. Then w ¢ M(G),
and hence dg(w) < k. For i € [t] such that w € V(G;), Eq(w) N E(G;) = {vw}.
Thus, [{i € [t]: w € V(G;)}| = dg(w) < k. We have therefore shown that G,..., Gy
are k-wise vertex-disjoint. Since E(G) = J'_, Eq(v;) = U_, E(G,), G is a special
k-star union.

Now suppose My(G) # M(G). Then zy € E(G) for some z,y € M(G). Let
H = G—xy. Wehave m > |Eg(z)UEc(y)| = |Ea(2)[+[Ea(y)| - |Ea(z) N Ea(y)| =
ok — |{zy}| = 2k — 1. It A(H) < k, then M(G) = {x,y} and A(G) = 1 < mtEDL

2k—1
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Suppose A(H) = k. Then M(H) = M(G)\{z,y}. By the induction hypothesis,
Ae(H) < (m_l);g:l)(t_m. By Proposition 3.9,

(m—1)+(k—1)(t—2)  m+ (k- 1)

< < =
A(G) ST+ A(H) <1+ T T

Suppose A\ (G) = % Then A\o(G) = 14+ X(H) and A\ (H) = (mfl);g:l)(td).
By the induction hypothesis, H is a special k-star union or each non-singleton com-

ponent of H is a 2-star or a triangle.

Suppose that H is a special k-star union. We have |M(H)| = t — 2. Let
U1, ..., Uu_o be the distinct vertices in M(H). By the proof of Lemma 2.2, Ey(uq),
oo, Eg(us—_s) partition E(H), and A\(H) = |M(H)|. Since dy(z) = |Eg(z)\{zy}| =
k—1 >0, u,z € E(H) for some p € [t—2|. Similarly, u,y € E(H) for some ¢ € [t—2].
For each i € [t — 2]\{p, ¢}, let ¢; € Ep(u;). Since M(G) = {uy,...,u—2} U{z,y},
{e;:i € [t —2]\{p,¢}} U {upz,usy} is a A-reducing edge set of G. Together with
t—2=|M(H)| = \(H), this gives us Ae(G) < A(H), which contradicts \.(G) =
1+ X(H).

Therefore, each non-singleton component of H is a 2-star or a triangle. Thus,
k = 2. For v € {z,y}, let H, be the component of H such that v € V(H,). Since
2=k =dg(x) =|En, (x)U{zy}| = dy,(x)+1, we have dy, () = 1, so H, is a 2-star
and z is a leaf of H,. Suppose H, # H,. Then there are 6 distinct vertices a, ..., ag
of H such that H, = ({a1,a2,a3},{a1as2,a2a3}), H, = ({as,as, as}, {asas, asas}),
a3 = x, and a4y = y. Let L be a smallest A-reducing edge set of H. Since H,
and H, are components of H, we have M(H) N (V(H,) UV (H,)) = {az,a5} and
LNEH,) #0 # LnNE(H,). Lete, € LNE(H,) and ¢, € LN E(H,). Let
L' = (L\{es, ey}) U{agas, asas}. Then L' is a A-reducing edge set of G. Thus, we
have A\e(G) < |L'| = |L| = Ae(H), which contradicts A\o(G) = 1 + X\o(H). Therefore,
H,=H,. Let G, = (V(H,),E(H;)U{zy}). Then G, is a component of G. Since
x and y are the two leaves of the 2-star H,, G, is a triangle. Consequently, each
non-singleton component of GG is a 2-star or a triangle. O

Proof of Theorem 2.6. We may assume that Eq(M(G)) = [m]. By (2), m < kt.

Let p=1— (%)ﬁ We set up m independent random experiments, and in each
experiment an edge is chosen with probability p. More formally, for ¢ € [m], let
(Q4, P;) be given by ; = {0,1}, P,({1}) = p, and P,({0}) =1 —p. Let Q = x
o X Q,, and let P: 22 — [0, 1] (where [0, 1] denotes {z € R: 0 < 2 < 1}) such that
P({w}) = TT:%; Pi({wi}) for each w = (w1, ...,wn) € Q, and P(A) =>4 P({w})
for each A C Q. Then (€2, P) is a probability space.

For each w = (wy,...,wy) € Q, let S, = {i € [m]: w; = 1} and T, = {v €
M (G): no edge incident to v is a member of S, }.

Let X: Q — R be the random variable given by X (w) = |S,|. For i € [m], let
X;: Q — R such that, for w = (wy,...,wy) € Q,

Xi(w) = {

1 ifieS,;
0 otherwise.
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Then X =" X;. Fori e [m], P(X; =1) = P,({1}) =p.
Let Y: ©Q — R be the random variable given by Y (w) = |T,,|. For v € M(G), let
Y,: © — R such that, for w = (wy,...,wn) € Q,

1 ifveT,;
0 otherwise.

) =

Then Y =} cyyq) Yo Forv e M(G), P(Y, =1) = (1 —p)k.

For any random variable Z, let E[Z] denote the expected value of Z. By linearity
of expectation,

BIX + V] = BIX] 4+ Y] = S B+ Y EY)
i=1 veM(G)
- Zm:P(Xi =1+ Y P, =1)=mp+il-pt
=1 vEM(G)

Thus, by the probabilistic pigeonhole principle, there exists some w* € €2 such that
X(w*) +Y(w*) <mp+t(l—pk Forve T, lete, € Egv). Let L,» = S, U
{e,: v € T,»}. Then L, is a A-reducing edge set of G. Thus, A\(G) < |Lo+| <

|Sue]| + | T | = X(w*) + Y (W) <mp+t(l—pk=m (1 — %(m)ﬁ> If Ge is a

kt
special k-star union, then, by Lemma 2.2, we have m = kt and A\(G) = ¢, and hence

M@ =m (1= 51 () 7). -

Remark 4.1 Note that the minimum value of the function f : [0,1] — R given by

_1
f(p) =mp+t(1 —p)* occurs at p =1 — (%) *=1 " hence the choice of p in the proof
above.

Proof of Theorem 2.7. Let p* = 1— (%)ﬁ and g = 1 In (%). By (2), kt/2 <m <
kt. Thus, 0 < ¢ < %an < 1. Let f be as in Remark 4.1. Thus, f(p*) < f(q). By
the proof of Theorem 2.6, \.(G) < f(p*) < f(q) = mg+t(1—q)*. Since 1 —q < e,
we obtain Ae(G) < mg + te % = % In (&) e (W) = 2(1+1In (%)), If G is a
special k-star union, then, by Lemma 2.2, we have m = kt and A\(G) = ¢, and hence
Ae(G) = 2 (1+1n (2)). =

We now prove Theorem 2.9, making use of the following well-known facts.

Lemma 4.2 Let x be a vertex of a tree T'. Let m = max{dr(z,y): y € V(T)}, and
let Dy ={y € V(T): dp(x,y) =i} for each i € {0} U[m]. For eachi € [m] and each

v € Di, Nr(v) NUj_o Dj = {u} for some u € D; ;.

Indeed, let v € D;. By definition of D;, v can only be adjacent to vertices of distance
t—1,40r ¢+ 1 from x. If v is adjacent to a vertex w of distance ¢ from z, then,
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by considering an zv-path and an zw-path, we obtain that T contains a cycle, a
contradiction. We obtain the same contradiction if we assume that v is adjacent to
two vertices of distance i — 1 from z.

If a vertex v of a graph G has only one neighbour in G, then v is called a leaf

of G.

Corollary 4.3 IfT is a tree, x,z € V(T'), and dp(x, z) = max{dr(z,y): y € V(T)},
then z 1s a leaf of T'.

Proof. Let Dy, Dy,...,D,, be as in Lemma 4.2. Then z € D,,. By Lemma 4.2,
Nr(z) = {u} for some u € D,, ;. O

Proof of Theorem 2.9. The result is trivial for n < 2. We now proceed by
induction on n. Thus, consider n > 3. Since T is connected, k > 2.

Suppose that 7" has a leaf z whose neighbour is not in M(7"). Let w be the
neighbour of z in 7. Let 7" =T — z. By (1), Ae(T) = Ae(T") as T, = T".. By the
induction hypothesis, A\o(7") < 22 < 2L, Thus, A(T) < 1. Suppose T is an
edge-disjoint k-star union. Then T contains a k-star S such that z € V(.S). Since
Ns(z) € Nr(z) = {w}, zis aleaf of S and S = ({w, z1,..., 2.}, {wz], ..., wz.}),
where 2| = z and z), ..., 2, are distinct elements of V(T')\{w, z}. Thus, we have
dr(w) = k, contradicting w ¢ M(T'). Therefore, T' is not an edge-disjoint k-star
union.

Now suppose that each leaf of T has its neighbour in M(7T). Let x, m, and
Do, ..., D,, be as in Lemma 4.2. Let z € V(T') such that dr(z,z) = m. By Corol-

lary 4.3, z is a leaf of T'. Let w be the neighbour of z in 7. By Lemma 4.2, w € D,,_;.

Suppose w = x. Then m =1 and T = ({z,21,..., 2}, {x21,...,2x2}) for some
distinct vertices zy,...,z; in D,,. Thus, T is a k-star. Since xz; is a A-reducing
edge set of T, Ae(T') =1 = 21

Now suppose w # z. Together with Lemma 4.2, this implies that Np(w) =
{v,21,...,21} for some v € D,,_» and some distinct vertices z1,...,25_1 in D,.
By Corollary 4.3, z1, ..., zx_1 are leaves of T'. Let e = wv. Let

Th=T—{w,z,...,2z,1} and To = ({w,z,..., 2,1}, {wz1,...,wzE_1}).

Clearly, T} and 75 are the components of 7" — e, and they are trees. Let T, =
({v}UV(Ty), {e}UE(T3)). If T = T3, then A(T'—e) < k, and hence \o(T) = 1 = L.
We have A(T3) < k.

Suppose A(T1) < k. Then A(T —e) < k, and hence A\(T)
Ae(T) =222 Then n = k+1 = |V(T»)| + 1. Since n = |V(T3)|
|V (T1)] = 1, s0 V(T1) = {v}. Thus, T is the k-star 7.

Finally, suppose A(T}) = k. By Proposition 3.7, A\o(T — e¢) = Ae(T1). By the
induction hypothesis, \o(7}) < %=1 and equality holds if and only if T} is an edge-

k

disjoint k-star union. By Proposition 3.9, Ae(T) < 1+ Ao(T' —¢) < 14 2= = 2L,

1< ”T_l Suppose
|V (T3)|, we obtain

+
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Suppose Ao(T) = . Then A(T7) = “~£=L, and hence T} is an edge-disjoint

k-star union. Since T is the union of 77 and T}, T is an edge-disjoint k-star union.
We now prove the converse. Thus, suppose that T is an edge-disjoint k-star
union. Then there exist pairwise edge-disjoint k-stars G4, ..., G, such that z; €
V(G,) and T is the union of Gy,...,G,. Since Ng,(21) C Nr(z1) = {w}, G, =
({w, 21,91, -, ye—1}, {wz,wyn, ..., wy,_,}) for some yq,...,y.—1 € V(T). Since
dg,(w) =k = dr(w), Ng,(w) = Np(w). Thus, {z1,y1, .- U1} = {21, 2k-1,V},
and hence G, = Tj. Consequently, 7} is the union of Gy,...,G,_1, and hence
Ae(T7) = 2=E=1. Let L be a A-reducing edge set of T' of size A\o(T). Let L =
LN E(T) and Ly = LN E(T}). Since E(T1) and E(T3) partition E(T'), L, and
Ly partition L. Since w € M(T) and Er(w) = E(T3), Ly # (. Suppose that
Ly is not a A-reducing edge set of Tj. Then, since A(7T7) = k, there exists some
u € V(T1) such that dp, (u) = k and Ep(u)NL C Ls. Since V(T1)NV(Ty) = {v} and
Ly CV(T}), u =v. Now k > |Er(v)| = |Er,(v) U {e}| > |Er, (v)| = dr,(v), which
contradicts drp, (v) = dp,(u) = k. Thus, L, is a A-reducing edge set of 77. We have

B2 Ae(T) = L = |Lo| + Lol 2 Ae(Th) + 1= 25571 4+ 1= 2, 50 Ao(T) = .

A basic result in the literature is that |[E(G)| = |[V(G)| — 1 if G is a tree. This
completes the proof. a
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